Should Pharmacogenomics in Colon Cancer be for everyone or not?

Heinz-Josef Lenz

Professor of Medicine, Preventive Medicine and Cancer Biology

J Terrence Lanni Chair in Cancer Research

Deputy Cancer Center Director

Co-Director, USC Brown Center for Cancer Drug Development

USC Norris Comprehensive Cancer Center

- UGT1A
- DPD

Irinotecan and UGT1A1

- o Irinotecan
 - IV backbone chemotherapy of several regimens for solid tumors
- O Unpredictable severe toxicity in 25-30% of patients
- Prodrug activated to SN-38, inactivated by glucuronidation

High PK variability

From basic genetics to a clinical trial and label change

Gilbert's syndrome and UGT1A1*28

1995

Bosma

molecular effect

1998 Beutler

UGT1A1*28

irinotecan 1998

UGT1A1:

metabolic

gene of

l 990 Iyer

UGT1A1*28

irinotecan

1999

lyer

metabolism

and

UGT1A1*28 and clinical validation

1998-2004

> 6/6 6/7 6/8 TA indel genotype

FDA revised drug label

2005

FDA Label Information of Camptosar

For complete labelling information, please visit https://www.fda.gov/drugsatfda

population is homozygous for the UGT1A1*28 allele. In a prospective study in which irinotecan was administered as a single-agent on a once-every-3-week schedule, patients

Patients with Reduced UGT1A1 Activity

Individuals who are homozygous for the UGT1A1*28 allele are at increased risk for neutropenia following initiation of CAMPTOSAR treatment. A reduced initial dose should be considered for patients known to be homozygous for the UGT1A1*28 allele (see DOSAGE AND ADMINISTRATION). Heterozygous patients (carriers of one variant allele and one wild-type allele which results in intermediate UGT1A1 activity) may be at increased risk for neutropenia; however, clinical results have been variable and such patients have been shown to tolerate normal starting doses.

A reduction in the starting dose by at least one level of CAMPTOSAR should be considered for patients known to be homozygous for the UGT1A1*28 allele (See CLINICAL PHARMACOLOGY and WARNINGS). The appropriate dose reduction in this patient population is not known.

Common UGT1A1 polymorphism

• <u>6 and 7 are the common</u> <u>alleles</u>

5 and 8 are rare

UGT1A1 defects and hyperibilirubinemia syndromes

Bilirubin is mainly eliminated by conversion to its glucuronides by UGT1A1

Gilbert's syndrome 2-19% Mild hyperbilirubinemia Asympthomatic

In Caucasians
7/7 genotype (10%)

UGT1A1: in vitro phenotypes

UGT1A1 mRNA ~ UGT1A1 Genotype (Categorical)

UGT1A1*28 and severe neutropenia of irinotecan

Genetic Variants in the *UDP-glucuronosyltransferase* 1A1 Gene Predict the Risk of Severe Neutropenia of Irinotecan

Federico Innocenti, Samir D. Undevia, Lalitha Iyer, Pei Xian Chen, Soma Das, Masha Kocherginsky, Theodore Karrison, Linda Janisch, Jacqueline Ramírez, Charles M. Rudin, Everett E. Vokes, and Mark J. Ratain

JOURNAL OF CLINICAL ONCOLOGY

Severe Neutropenia: Translating Associations into a Predictive Test

<u>Assumption</u>: Genotyping assay is 100% accurate for detection of UGT1A1*28 allele

	Clinical Sensitivity	Clinical Specificity	PPV*	NPV*
Innocenti	0.5	0.94	0.5	0.94
Rouits	0.29	0.95	0.57	0.85
Marcuello	0.18	0.92	0.4	0.79
Ando	0.15	0.97	0.57	0.8
Overall	0.22	0.95	0.5	0.83
* PPV, positive predictive value; NPV, negative predictive value.				

How to improve the predictive value of the UGT1A1*28 diagnostic test?

Bilirubin X genotype Gene X genotype Ethnicity X genotype Drug regimen X genotype Dose X genotype

Bilirubin, UGT1A1*28, or both?

Gilbert's syndrome

In Asians

- 7/7 genotype
- *6 (G71R, reduced enzyme activity)

UGT1A1*6 in Asians and toxicity (Han et al., 2006)

		G4 neutropenia
*28		
	-/-	26%
	-/+	33%
*6		
	-/-, -/+	24%
	+/+	67%

p=0.03 for *6

Can genotype be used to optimize dosing?

Standard dosage is well tolerated in 6/6 and 6/7 patients and they might tolerate higher doses

Higher doses (up to 500 mg/m²) were safe in selected patients in European trials

UGT1A1 genotype not taken into account during early phase I trials

Mandated in EU and UK Recommended by NCCN

Metabolisms of Fluoropyrimidines

Fluoropyrimidines (FP) & DPYD

- IV 5-fluorouracil (5-FU) and oral prodrug capecitabine
 - Breast, colorectal, pancreatic, esophageal, head and neck cancers
 - Toxicities: neutropenia, GI, mucositis, and hand-foot syndrome
- Fluoropyrimidine pharmacology
 - 5-FU bioactivated to FdUMP for efficacy
 - 5-FU exposure determines toxicity
 - 5-FU metabolized by dihydropyrimidine dehydrogenase (DPD/DPYD)
 - ~80% of dose metabolized by DPYD

Fluoropyrimidines (FP) & DPYD

- IV 5-fluorouracil (5-FU) and oral prodrug capecitabine
 - Breast, colorectal, pancreatic, esophageal, head and neck cancers
 - Toxicities: neutropenia, GI, mucositis, and hand-foot syndrome
- Fluoropyrimidine pharmacology
 - 5-FU bioactivated to FdUMP for efficacy
 - 5-FU exposure determines toxicity
 - 5-FU metabolized by dihydropyrimidine dehydrogenase (DPD/DPYD)
 - ~80% of dose metabolized by DPYD

DPYD SNPs with reduced DPD activity

Activity	* Allele	rsID	Aliases	Genetic effect	Allele Freq.
Null	*2A	rs3918290	IVS14+1G>A, c.1905+1G>A	Splice site	0.008
	*13	rs55886062	c.1679T>G, p.I560S	Missense	0.001
Diminished	NA	rs67376798	c.2846A>T, <mark>p.D949V</mark>	Missense	0.004
	NA	rs56038477 (LD w/rs75017182)	1236G>A, p.E412E (LD w/1129-5923C>G, HapB3)	Nonfunctional transcript	0.020
	NA	rs115232898	c.557A>G, <mark>p.Y186C</mark>	Missense	0.008 (AA)

Consequences of DPYD SNPs

Clin Pharmacol Ther. 2017 Oct;102(4):662-670. Epub 2017 May 26.

Br J Cancer, 2002 Apr 8;86(7):1028-33.

DPYD SNPs with Reduced DPD activity

Activity	* Allele	rsID	Aliases	Genetic effect	Allele Freq.
Null	*2A	rs3918290	IVS14+1G>A, c.1905+1G>A	Splice site	0.008
	*13	rs55886062	c.1679T>G, p.I560S	Missense	0.001
Diminished	NA	rs67376798	c.2846A>T, p.D949V	Missense	0.004
	NA	rs56038477 (LD w/rs75017182)	1236G>A, p.E412E (LD w/1129-5923C>G, HapB3)	Nonfunctional transcript	0.020
	NA	rs115232898	c.557A>G, <mark>p.Y186C</mark>	Missense	0.008 (AA)

- Combined carrier frequency ~6% (~1/300 patients homozygous)
- Many other rare/singleton diminished activity variants reported

DPYD Variants in no European Patients

Chan et al Nature 2024

Retrospective Validation of Increased Toxicity

- NCCTG N0147
 - 2886 patients stage III colon cancer
 - Adjuvant FOLFOX or FOLFIRI (5-FU)
- Genotype: DPYD*2A and p.D949V
- 1° Outcome: grade 3+ 5-FU AE
- DPYD*2A: 88% vs. 33%
 - OR=15.2, 95% CI: 4.5 to 51.0, p < .001
- DPYD p.D949V: 82% vs. 33%
 - OR= 9.1, 95% CI: 3.4 to 24.1, p < .001

Greater Toxicity in DPYD Variant Carriers

Fluoropyrimidine Treatment Induced-Death

Vol. 7, 1149–1153, May 2001	Clinical Cancer Res	search 1149	www.know_the_risk_of_5fu_chemotherapy.com ASK ABOUT YOUR RISK OF V BEFORE STARTING 5-FU CHE	'ERY SERIOUS SIDE EFFECT IMOTHERAPY
Lethal Outcome of a Patient with Dehydrogenase (DPD) Deficiency 5-Fluorouracil: Frequency of the C	a Complete Dihydropyrimidine after Administration of common IVS14+1G>A		KATHRYN'S CASE	ie Kathryn Case
Mutation Causing DPD Deficiency André B. P. van Kuilenburg, ² Erik W. Muller, Janet Haasjes, Rutger Meinsma, Lida Zoetekouw, Hans R. Waterham, Frank Baas, Dick J. Richel, and Albert H. van Gennip	CASE REPORT 5-Fluorouracil/irinotecan ind of a combined pharmacoger M Steiner, M Seule, B Steiner, I Bauer, M Free BJC	duced le netic syno und, с н Кöh CP British Jou Pharmacol	thal toxicity as a result drome: report of a case ne, P Schuff-Werner	DOi:10.1111/j.1365-2125.2010.03686.x
Risk of toxicity death in <i>DPYL</i> carriers ≈ 2	r-induced D variant 2.9%	ethal out vith a tot VTG1A1 o ne Mounier-B	he Editors tcome of 5-fluorouracil inf cal DPD deficiency and a c gene mutation	usion in a patient double <i>DPYD</i> and e Cauchin, ¹

Rai K. J Clin Oncol (suppl; abstr e15132)

Prospective Single-Arm Trial (NCT02324452)

- Dose-adjusted DYPD*2A vs. standard-dose DPYD*2A (historical control)
 - Reduced grade 3+ toxicity
 - 28% (5/18) vs. 73% (35/48), p<0.001
 - Nominally reduced toxicity-related death
 - 0% (0/18) vs. 10% (5/48), p=0.19
- Dose-adjusted DYPD*2A vs. standard-dose DPYD wildtype
 - Similar grade 3+ toxicity
 - 28% (5/18) vs. 23% (373/1,613), p=0.64
 - Similar drug concentrations
- DPYD screening saves \$61 per patient

Prospective

Intervention

DPYD*2A

Deenen MJ. J Clin Oncol. 2016 Jan 20;34(3):227-34.

Standard

dose

(n=1,613)

Dose-Adjustment Efficacy Study

- Paired analysis (n=37 pairs)
 - DPYD*2A dose-adjusted FP

vs.

- DPYD wild-type standard dose FP
- Matched by tumor type, stage
 - Near match: institution, sex, age, treatment line, WHO status
- OS: 27 vs. 24 months
 - HR=0.82, 95% CI: 0.47-1.43, p=0.47
- PFS: 14 vs. 10 months
 - HR=0.83, 95% CI: 0.47-1.50, p=0.54

Henricks LM. Int. J. Cancer 2019: 144, 2347-2354

Dosing in DPYD Carriers

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update

Ursula Amstutz¹, Linda M. Henricks², Steven M. Offer³, Julia Barbarino⁴, Jan H.M. Schellens^{2,5}, Jesse J. Swen⁶, Teri E. Klein⁴, Howard L. McLeod⁷, Kelly E. Caudle⁸, Robert B. Diasio^{3,9} and Matthias Schwab^{10,11,12}

<i>DPYD</i> Phenotype	DPYD Genotype	DPD Activity	Dosing Recommendation
Normal metabolizer	Two normal alleles	Normal DPD activity	Use label recommended dosage and administration.
Intermediate metabolizer	One normal and one no function allele	Decreased DPD activity	Reduce starting dose by ~50% followed by titration based on toxicity
Poor metabolizer	Two no function alleles	DPD deficiency	Avoid use or reduce starting dose by ~90% followed by titration based on toxicity

- Testing recommended throughout Europe
 - Required in France and Netherlands
 - Recently recommended in most of Europe
 - 3/2020: Europeans Medicine Agency
 - 10/2020: United Kingdom
 - 11/2020: Germany and Switzerland
- Testing not recommended in US
 - Not recommended by FDA, ASCO, or NCCN
 - Testing uncommon, though frequency unknown

https://smw.ch/article/doi/smw.2020.20375

UM DPYD Survey Conclusions

- General agreement that:
 - DPD deficient patients have increased toxicity risk
 - DPYD/DPD testing decreases toxicity
 - DPYD information is actionable if it exists
- DPYD/DPD testing is rarely ordered due to:
 - Lack of clinical guidelines
 - Low prevalence of DPD deficiency
 - Some concern with decreased efficacy with FP dose reduction
- Survey approved for SWOG distribution

Uridine Triacetate Antidot for FP Toxicity

Uridine triacetate (FDA approval 2015) antidote for FP toxicity FDA approved dosing is 1 (10 gm) packet Q6H x 20 Cost to Rogel (provided by UM purchasing) 4,013/packet = 80,260 per course of treatment Each use of UT (80,260) would pay for 133 Mayo DPYD tests (600) Identify ~8 DPYD carriers \rightarrow prevent ~4 severe toxicities and ~0.25 deaths

Predictive Test Performance

	DPYD	Notes	BRCA 1/2	Notes
Carrier frequency	~6%	Caucasians	>5%	NCCN threshold
Positive Predictive Value (PPV)	~70%	Severe toxicity in carrier	~50%	BC by age 70 in carrier
False Positive Risk	~30%	(unnecessary treatment change)	~50%	
NPV	~75%		~90%	
False Negative Risk	~25%	Toxicity in non-carrier (from standard of care tx)	~10%	BC by age 70 in non-carrier

Summary

- Consider UGT1A1 and DPYP can reduce life threatening toxicity in carriers
- UGT1A is in the label
- *DYPD* mandatory in EU/UK
- Easy blood test (cheap,quick)
- Major Concerns:
 - Lack of clinical guidelines
 - Low prevalence