# Robotic approaches to surgical resection in esophageal cancer

Steven N. Hochwald, MD, MBA
Chief of Surgical Oncology
Director, Comprehensive Cancer Center
Mount Sinai Medical Center
Miami Beach, FL

Clinical Professor of Surgery Columbia University



### Gastric and esophageal tumors

11 million tumors diagnosed worldwide

Gastric and Esophageal: 1.39 million cases

Exceeds lung (1.35 million) or breast cancer (1.15 million)

Estimate half of patients would benefit from surgery and have resectable disease (700,000)

### Incidence of esophageal carcinoma

 In Asia, most common esophageal cancer is squamous cell carcinoma in the mid and proximal esophagus

 In most Western countries it is adenocarcinoma in the distal esophagus and at the GE junction

 In USA: About 21,560 new esophageal cancer cases diagnosed (17,030 in men and 4,530 in women)

# Historical perspective of results of esophageal resection for tumors

"Mortality associated with esophageal resection is unacceptably high", Gut 1994

1975-1988: 316 patients presented with esophageal tumors

| -Surgical Exploration         | 134      | 42% |
|-------------------------------|----------|-----|
| -Tumor Resection              | 106      | 79% |
| -Operative Mortality          |          | 27% |
| -Median Survival Following Su | 292 Days |     |
| -5-year survival              | 7%       |     |

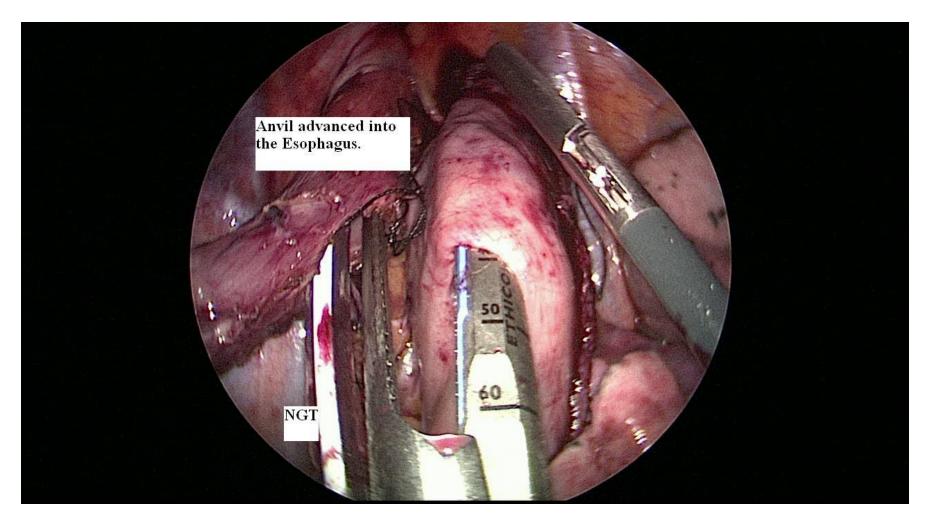
## Hospital volume and surgical mortality in the United States

|                        | Low Volume | High Volume | Diff |
|------------------------|------------|-------------|------|
| Colectomy              | 6.9%       | 5.4%        | 1.5  |
| Gastrectomy            | 12.7%      | 8.7%        | 4.0  |
| Esophagectomy          | 18.9%      | 8.1%        | 10.8 |
| Pancreatectomy         | 15.4%      | 3.8%        | 12.6 |
| Nephrectomy            | 3.2%       | 2.6%        | .6   |
| Cystectomy             | 6.3%       | 2.9%        | 3.4  |
| Pulmonary<br>Lobectomy | 5.9%       | 4.2%        | 1.7  |
| Pneumonectomy          | 15.4%      | 10.6%       | 4.8  |

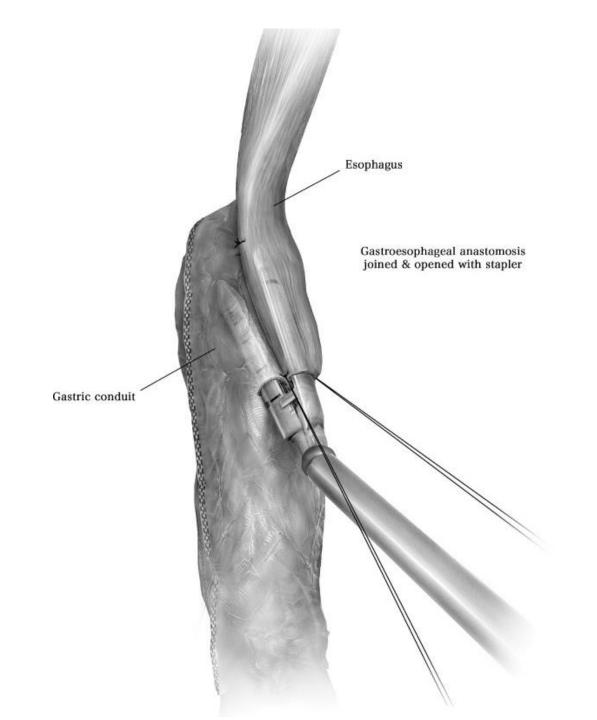
### Minimally invasive versus open esophagectomy Randomized controlled trial

|                         |                         | <u>Open(N=56)</u> | MIE (N=59) | <u>p value</u> |
|-------------------------|-------------------------|-------------------|------------|----------------|
| Primary outcom          | mes                     |                   |            |                |
| Pulmonary infe          | ection within 2 weeks   | 16 (29%)          | 5 (9%)     | 0.005          |
| Pulmonary infe          | ection in-hospital      | 19 (34%)          | 7 (12%)    | 0.005          |
| Secondary out           | comes                   |                   |            |                |
| Hospital stay (c        |                         | 14 (1–120)        | 11 (7–80)  | 0.044          |
|                         | 1:.                     |                   | <b>•</b>   | 0.04           |
| Short-term qua          | ality of life: 3 scales |                   |            | 0.01           |
| Total lymph no          | des retrieved           | 21 (7–47)         | 20 (3–44)  | 0.852          |
|                         |                         |                   |            |                |
| RO Resection            |                         | 47 (84%)          | 54 (92%)   | 0.080          |
| البيدانيين              |                         |                   |            | 0.500          |
| Mortality <sup>  </sup> | 30-day mortality        | 0 (0%)            | 1 (2%)     | 0.590          |
|                         | In-hospital mortality   | 1 (2%)            | 2 (3%)     |                |

### Modern results of esophagectomy


|            |      | Operation | N    | Mortality |
|------------|------|-----------|------|-----------|
| Portale    | 2006 | Open      | 263  | 4.5%      |
| Orringer   | 2007 | Open      | 2007 | 3.0%      |
| Low        | 2007 | Open      | 340  | 0.3%      |
| Smithers   | 2007 | Open      | 114  | 2.6%      |
| Van Heijl  | 2010 | Open      | 940  | 3.3%      |
| Palanivelu | 2006 | MIE       | 130  | 1.5%      |
| Luketich   | 2012 | MIE       | 1011 | 1.8%      |
| Hochwald   | 2022 | MIE       | 600  | 1.1%      |

We have learned that esophagectomy should not be done in all medical centers and not by all surgeons. Mortality rates can be routinely in the 3% range and certainly should be <5%.


# **ESOPHAGECTOMY Controversial Topics**

- Ideal approach:
  - --Laparascopic/Thoracoscopic vs Robotic Ivor Lewis
- Ideal anastomotic technique:
  - -circular
  - -side to side stapled
  - handsewn

### Intrathoracic side to side anastomosis



Technique of minimally invasive IVOR-LEWIS esophagogastrectomy with intrathoracic stapled side to side anastomosis. Ben-David K and Hochwald S. Journal of Gastroint Surg. (2010): 14; 1613-8.



# Postoperative outcomes for patients with MIE (Ivor Lewis) with Intrathoracic side-to-side anastomosis (n=114)

| Any postoperative complication   | 58 (50.9%) |
|----------------------------------|------------|
| Respiratory                      |            |
| Failure requiring intubation     | 7 (6.1%)   |
| Failure not requiring intubation | 5 (4.4%)   |
| Aspiration                       | 14 (12.3%) |
| Pneumonia                        | 11 (9.6%)  |
| Arrhythmia                       | 13 (11.4%) |
| Anastomotic leak                 | 6 (5.3%)   |
| RLN paresis                      | 3 (2.6%)   |
| Chyle leak                       | 2 (1.8%)   |
| Reoperation                      | 7 (6.1%)   |

# Postoperative outcomes for patients with MIE (Ivor Lewis) with Intrathoracic side-to-side anastomosis (n=114)

| Stricture             | 6 (5.1%)   |
|-----------------------|------------|
| 90 day                | 2 (1.8%)   |
| <b>30 day</b>         | 1 (0.9%)   |
| Mortality             |            |
| 30 day readmission    | 14 (12.3%) |
| Disposition to home   | 90.3%      |
| Length of stay (days) | 8 [7,11]   |

#### Why use robotics for esophagectomy?

- Training Surgical Residents and Fellows for the future
- Minimizing learning curve
- Some struggle even past the learning curve, specifically precise suturing
- Attending surgeon fatigue and frustration

## Robot assisted minimally invasive esophagectomy (RAMIE) vs open esophagectomy A randomized controlled trial Dutch multicenter trial

| Endpoint Overall complications | RAMIE (n=54)<br>32 (59%) | <u>Open (n=55)</u><br>44 (80%) | <u>р</u><br>0.02 |
|--------------------------------|--------------------------|--------------------------------|------------------|
| Pulmonary                      | 17 (32%)                 | 32 (58%)                       | 0.005            |
| Cardiac                        | 12 (22%)                 | 26 (47%)                       | 0.006            |
| Wound                          | 2 (4%)                   | 8 (14%)                        | 0.09             |
| Anastomotic leak               | 13 (24%)                 | 11 (20%)                       | 0.42             |
| Functional recovery            | 38 (70%)                 | 28 (51%)                       | 0.04             |
| Health related quality of life | 57.9                     | 44.6                           | 0.02             |

Van Der Sluis PC, Ann Surg 2019, 269: 621-30.

#### **Robotic Assisted MIE vs Laparoscopic/Thoracoscopic**

- 2016 to June 2021
- 72 Laparoscopic/Thoracoscopic cases matched to 67 Complete Robotic Ivor Lewis
- 0%: 30 day mortality
- 1%: 90 day mortality

## Patient Demographics Lap/Thoraco vs RAMIE

|                   |      | <u>Lap/Thoraco</u> | <u>Robotic</u> | <u>p value</u> |
|-------------------|------|--------------------|----------------|----------------|
| N                 |      | 72                 | 67             |                |
| Age (median)      |      | 66                 | 64             | 0.06           |
| BMI (median)      |      | 28.5               | 29.7           | 0.19           |
| COPD              |      | 11 (15.3%)         | 11 (16.7%)     | 1.0            |
| Neoadjuvant Tx    |      | 64 (88.9%)         | 54 (80.6%)     | 0.24           |
| Path: Adenocarcin | noma | 67 (93.1%)         | 60 (89.6%)     | 0.55           |
| Clinical stage    | 1    | 5 (6.9%)           | 13 (10.4%)     | 0.03           |
|                   | IIA  | 1 (1.4%)           | 1 (1.5%)       |                |
|                   | IIB  | 6 (8.3%)           | 9 (13.4%)      |                |
|                   | Ш    | 53 (73.6%)         | 43 (64.2%)     |                |
|                   | IV   | 7 (9.7%)           | 1 (1.5%)       |                |

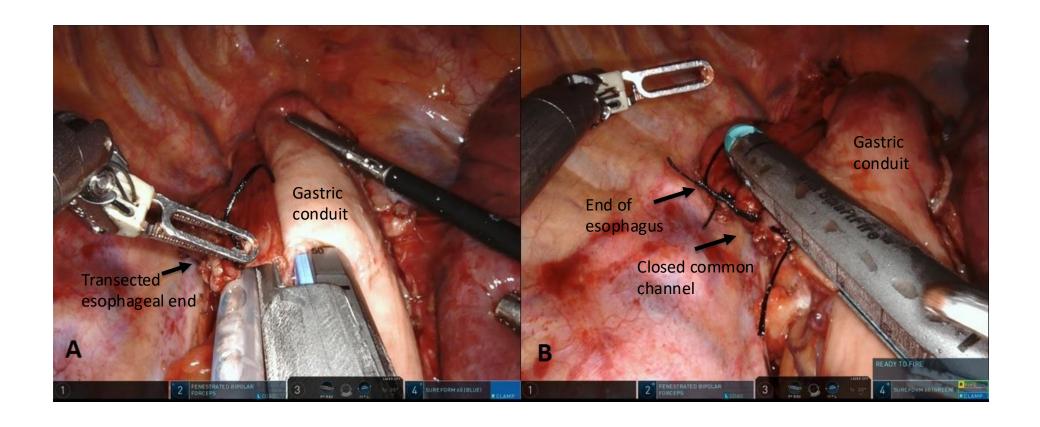
## Patient Demographics Lap/Thoraco (n=72) vs RAMIE (n=67)

|                      |      | <u>Lap/Thoraco</u> | <u>Robotic</u> | <u>p value</u> |
|----------------------|------|--------------------|----------------|----------------|
| Location: Type 1     |      | 29 (40.3%)         | 32 (47.8%)     | 0.31           |
| Type 2               |      | 30 (41.7%)         | 30 (44.8%)     |                |
| Type 3               |      | 2 (2.8%)           | 1 (1.5%)       |                |
| Esophagea            | al   | 11 (15.3%)         | 4 (6%)         |                |
| Pathological Stage:  | 0    | 15 (20.8%)         | 18 (26.9%)     | 0.33           |
|                      | 1    | 23 (31.9%)         | 23 (34.3%)     |                |
|                      | 2    | 14 (19.4%)         | 5 (7.5%)       |                |
|                      | 3    | 18 (25%)           | 18 (26.9%)     |                |
|                      | 4    | 2 (2.8%)           | 3 (4.5%)       |                |
| Nodal yield, med (ra | nge) | 19 (9-39)          | 20 (0-49)      | 0.82           |

## Patient Complications Lap/Thoraco (n=72) vs RAMIE (n=67)

|                         | <u>Lap/Thoraco</u> | <u>Robotic</u> | <u>p value</u> |
|-------------------------|--------------------|----------------|----------------|
| Grade 2 complication    | 43 (59.7%)         | 28 (41.8%)     | 0.04           |
| Grade 3 complication    | 27 (37.5%)         | 17 (25.4%)     | 0.15           |
| Anastomotic leak        | 9 (12.5%)          | 2 (3%)         | 0.06           |
| Length of Stay (median) | 8 days             | 7 days         | 0.02           |

### Worldwide Techniques and Outcomes in Robot-Assisted Minimally Invasive Esophagectomy (RAMIE): Results from the Multicenter International Registry


- 20 centers from Europe, Asia, North and South America, UGIRA
- 2012 patients were included

| Anastomotic technique Ivor Lewis | 2016-2018<br>n=368 | 2019-2020<br>n=563 | 2021-2023<br>n=1081 |
|----------------------------------|--------------------|--------------------|---------------------|
| Circular Stapled                 | 44%                | 66%                | 64%                 |
| Hand Sewn                        | 47%                | 14%                | 12%                 |
| Linear Stapled                   | 9%                 | 20%                | 24%                 |

### Worldwide Techniques and Outcomes in Robot-Assisted Minimally Invasive Esophagectomy (RAMIE): Results from the Multicenter International Registry

|                       | 2016-2018<br>n=368 | 2019-2020<br>n=563 | 2021-2023<br>n=1081 |
|-----------------------|--------------------|--------------------|---------------------|
| Anastomotic leak rate | 22%                | 22%                | 16%                 |
| Textbook outcome      | 39%                | 48%                | 49%                 |

#### Stapled side to side intrathoracic anastomosis



### Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients

### Patient demographics 2020-2024

| Age (median, range) |                            | 64 (33-83)                     |
|---------------------|----------------------------|--------------------------------|
| Sex                 | Male<br>Female             | 128 (85%)<br>22 (15%)          |
| Race                | White<br>Black<br>Hispanic | 141 (94%)<br>7 (7%)<br>2 (2%)  |
| ECOG                | 0<br>1                     | 110 (74%)<br>38 (26%)          |
| ASA                 | 2<br>3<br>4                | 50 (33%)<br>99 (66%)<br>1 (1%) |

Kukar M and Hochwald S, J Gastrointest Surgery, in press, 2025

## Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients Smoking and BMI

Smoking Status Never 45 (30%)

Quit>6 months 59 (40%)

Quit<6 months 16 (11%)

Active 19 (13%)

BMI (median, range) 27.9 (19.7-45.8)

## Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients Stage, location and histology

| Clinical Stage       | I                     | 18 (13%)  |
|----------------------|-----------------------|-----------|
|                      | 11                    | 26 (19%)  |
|                      | III                   | 89 (64%)  |
|                      | IV                    | 7 (5%)    |
| Clincal Nodal Status | Negative              | 94 (63%)  |
|                      | Positive              | 56 (37%)  |
| Neoadjuvant Tx       | None                  | 22 (15%)  |
|                      | Chemotherapy          | 20 (13%)  |
|                      | Chemoradiation        | 98 (65%)  |
|                      | Chemo followed by CRT | 10 (7%)   |
| Siewert Type         | Type 1                | 52 (35%)  |
|                      | Type 2                | 71 (47%)  |
|                      | Type 3                | 9 (6%)    |
|                      |                       |           |
| Histology            | Adeno                 | 138 (92%) |
|                      | Squamous              | 11 (7%)   |
|                      | Other                 | 1 (1%)    |

## Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients Operative Details

Operative Time (median, range) 410 (294-665)

EBL (median, range) 80 (5-500)

Lymph nodes harvested (median, range) 21 (13-49)

Chest conversion 0

Abdomen conversion 0

### Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients

#### **Pathology**

| Pathology stage   | 0                    | 35 (23%)            |
|-------------------|----------------------|---------------------|
|                   | 1                    | 49 (33%)            |
|                   | 2                    | 18 (12%)            |
|                   | 3                    | 44 (29%)            |
|                   | 4A                   | 4 (3%)              |
| Pathology Margins | Negative<br>Positive | 144 (96%)<br>6 (4%) |
| Pathologic CR     |                      | 35 (27%)            |

## Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients Complications

| Length of Stay (median days, range) | 7 (5-25) |
|-------------------------------------|----------|
| Anastomotic leak                    | 2 (1%)   |
| Reoperation (30 days)               | 2 (1%)   |
| Reoperation (31-90 days)            | 0        |
| Chyle leak                          | 3 (2%)   |
| Pneumonia                           | 11 (7%)  |
| Septic shock                        | 1 (1%)   |
| Stricture (90 days)                 | 3 (3%)   |

Kukar M and Hochwald S, J Gastrointest Surgery, in press, 2025

## Achieving Textbook Outcomes with Robotic Assisted Ivor Lewis Esophagectomy: A Single Center Experience with 150 consecutive patients Complications

| Readmission ( | (30 davs) | 5 (3         | 3%)   |
|---------------|-----------|--------------|-------|
| 110001011     |           | <b>5</b> / 5 | ,,,,, |

30 day mortality 1 (1%)

90 day mortality 2 (1%)

Textbook outcome 135 (90%)

## **Esophagectomy Pathway Mount Sinai Medical Center**

POD#1: Intermediate care unit

POD#2: Transfer to regular floor

POD#3 : D/C NG tube

POD#4 : Clear liquid test

<u>POD#5</u>: Remove drains/tubes, full liquids

POD#6: D/C home with tube feeds

## The volume equation: Is it just about the numbers of resections?

- Diversity of services
  - Thoracic anesthesiology
  - Dedicated ORs and ICU's
  - Interventional GI
  - Interventional radiology
- Established pathways and databases
- Improved communications: Oncologic nurse coordinators
- Committed to long term functional follow-up
- Dedicated tumor boards
- Published results

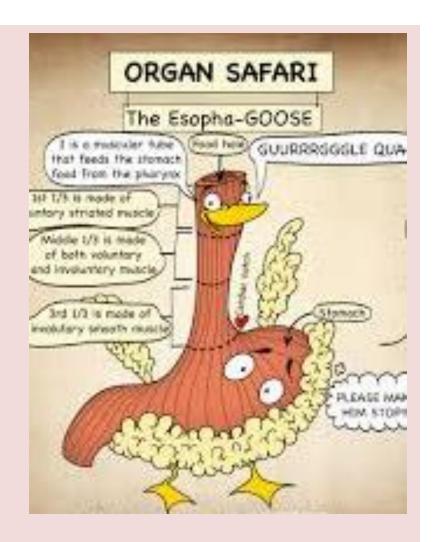
#### Robotic approaches to surgical resection in esophageal cancer

#### **Conclusions**

Robotic Ivor Lewis is the procedure of choice for adenocarcinoma of the esophagus

Side to side anastomoses associated with excellent results

Low leak and stricture rates


Procedure can be adopted by trainees with reasonable learning curve

Less attending surgeon fatigue

Thank you!

Questions?

steven.hochwald@msmc.com

