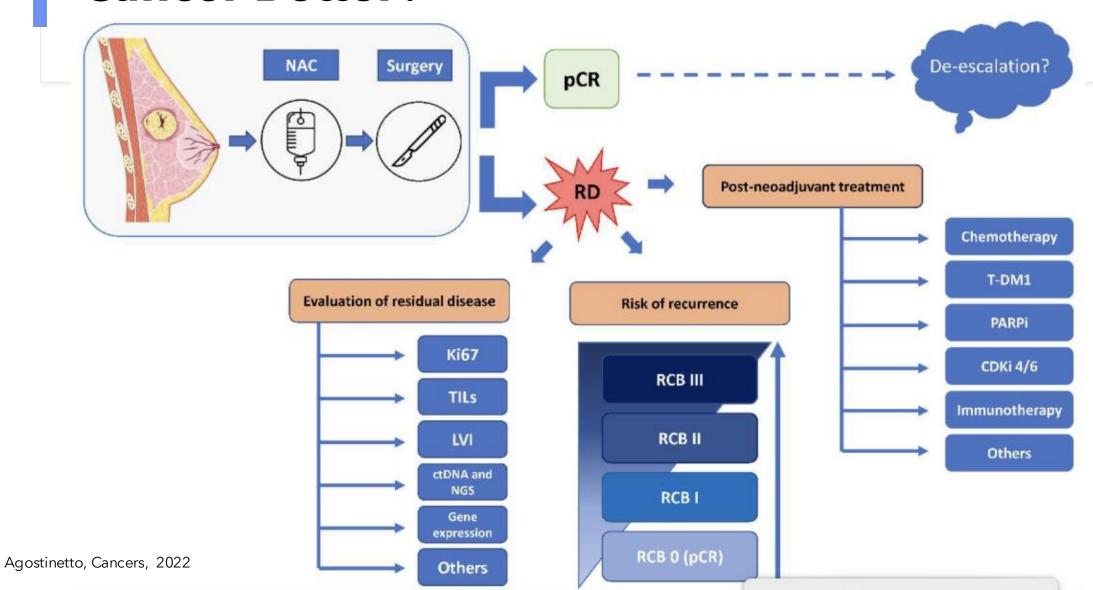


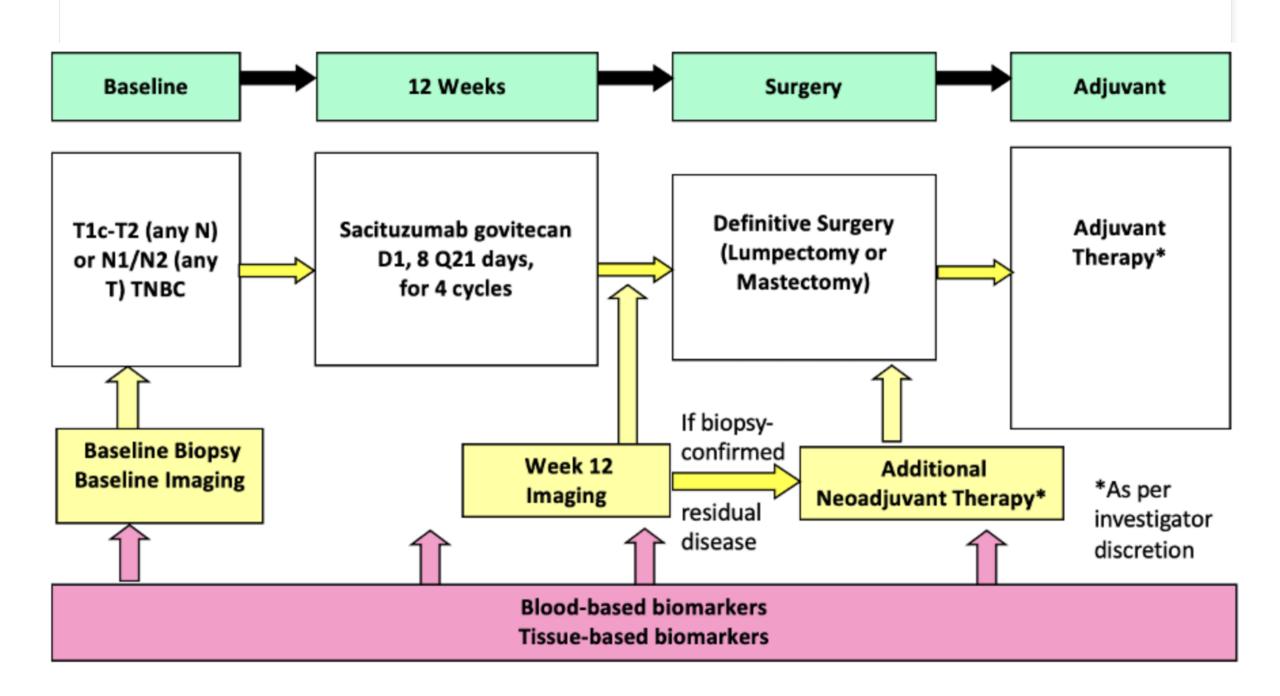
Antibody Drug Conjugates as Neoadjuvant Therapy in Breast Cancer


Rebecca Shatsky, MD
Associate Professor of Medicine
Breast Medical Oncology Team Leader
Scientific Director of Inflammatory and Triple Negative
Breast Cancer Program
University of California, San Diego
Moores Cancer Center

Structure of an ADC and Properties of Its Components

High-complexity engineering constructs

Why is Neoadjuvant Tx for Aggressive Breast Cancer Better?

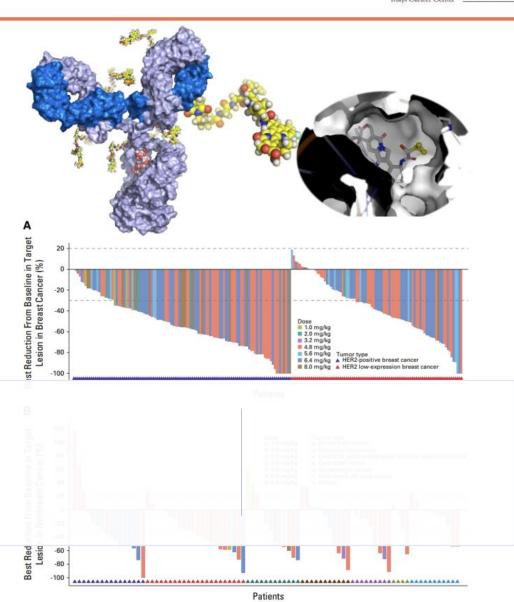


Neoadjuvant vs. MBC Trial Success

- Bar is higher no room for error when you're going for cure
- Goal is pCR!!!! Beat Keynote 522
- Less tolerance of toxicity
- Specific toxicities that are INTOLERABLE
 - Secondary Malignancy
 - Eye tox especially long term
 - Neuropathy
 - ILD
 - Cardiotoxicity
 - Tox that limits ability to get further therapy if needed
- Tox that IS tolerable
 - Neutropenia as long as responsive to GCSF
 - Alopecia as long as not permanent (though holy grail is to avoid this!!!)

NeoSTAR: Sacituzumab govitecan

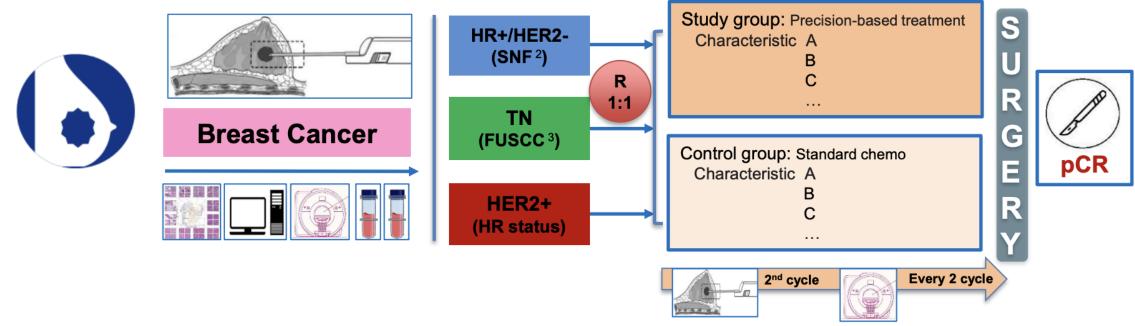
NeoSTAR Demographics and Efficacy


- Lower risk population given exclusion of T3, T4 and N3
- 50 patients treated
 - Median age 48
 - 52% Stage 2
- Overall pcR rate 30%
- 21 patients received additional chemotherapy
 - Of those 7 patients (33%) achieved pCR
- 2 year EFS was 100% from those who received SG alone

HER2 ADCs: FASCINATE-N +T'Dxd

Background: SHR-A1811

- SHR-A1811 is a novel HER2-targeted new-generation ADC composed of trastuzumab, a cleavable linker, and the topoisomerase I inhibitor payload SHR169265:1
 - Payload SHR169265: high membrane permeability and potent cell-killing effect;
 - Protease-cleavable GGFG linker: high stability;
 - Moderate drug-antibody ratio of 6 and minimal amount of early-released toxin contribute to a favorable safety profile.
- ➤ A global phase 1 study of SHR-A1811 in heavily pretreated HER2-expressing or mutated advanced solid tumors:²
 - Promising antitumor activity: ORR was 59.9% for all tumors; 76.3% for HER2+ BC and 60.4% for HER2 low-expressing BC;
 - Manageable safety: interstitial lung disease only 2.6% of patients;
 - Recommended dose: 4.8 or 6.4 mg/kg.



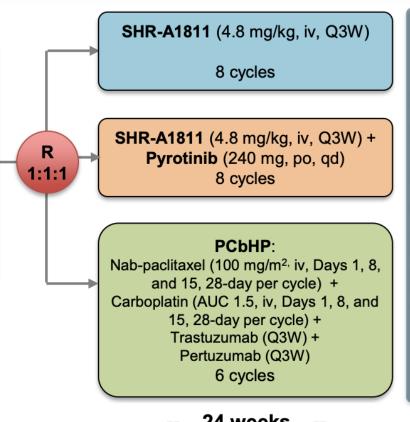
References: 1. 2023 AACR LB031. 2. J Clin Oncol. 2024;42(29):3453-65.

Study Design: FASCINATE-N

Fudan University Shanghai Cancer Center Breast Cancer Precision Platform Series study-Neoadjuvant therapy (NCT05582499) ¹

- Randomized, open-label, single-center, phase 2 umbrella trial.
- Using multiomic characteristics to classify in different subtypes: Luminal SNF,² TN FUSCC classification,³ and HER2+ HR status.
- > To test the efficacy of subtyping-based treatment and to evaluate the efficacy of targeted therapies through Bayesian monitoring method.

HER2+ Subtype Study Design



Key eligibility criteria:

- 18 years or older;
- Primary tumour size of ≥2 cm;
- Early-stage (T2-3, N0-1, M0) or locally advanced (T2-3, N2 or N3, M0; T4, any N, M0) BC;
- Pathologically confirmed HER2+ BC (defined as IHC score 3+ or 2+ with ISH amplification on the primary tumor);
- Left ventricular ejection fraction of ≥55%;
- ECOG performance status of 0 or 1.

Stratification:

- HR status (HR+ vs. HR-)

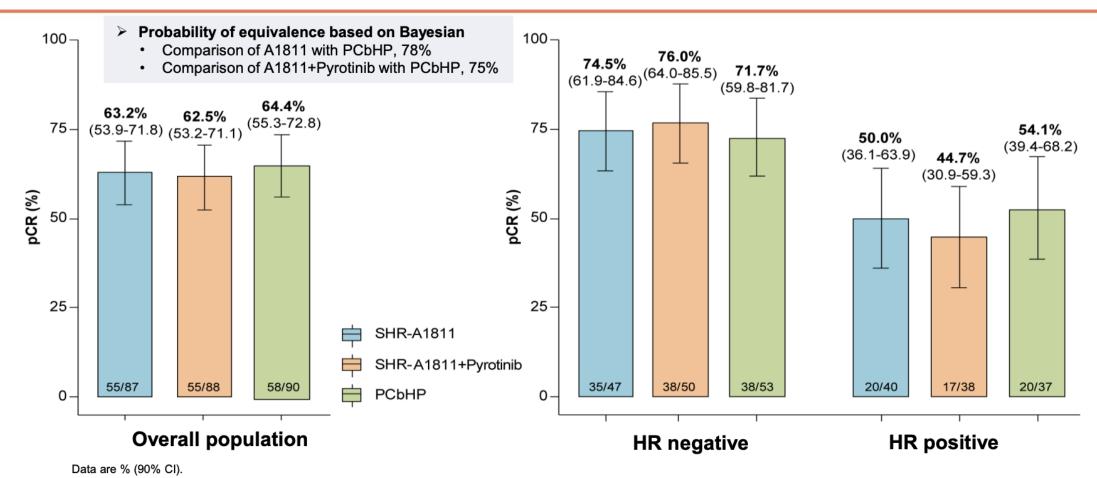
Primary endpoint:

R

G

pCR (/Tis and ypN0)

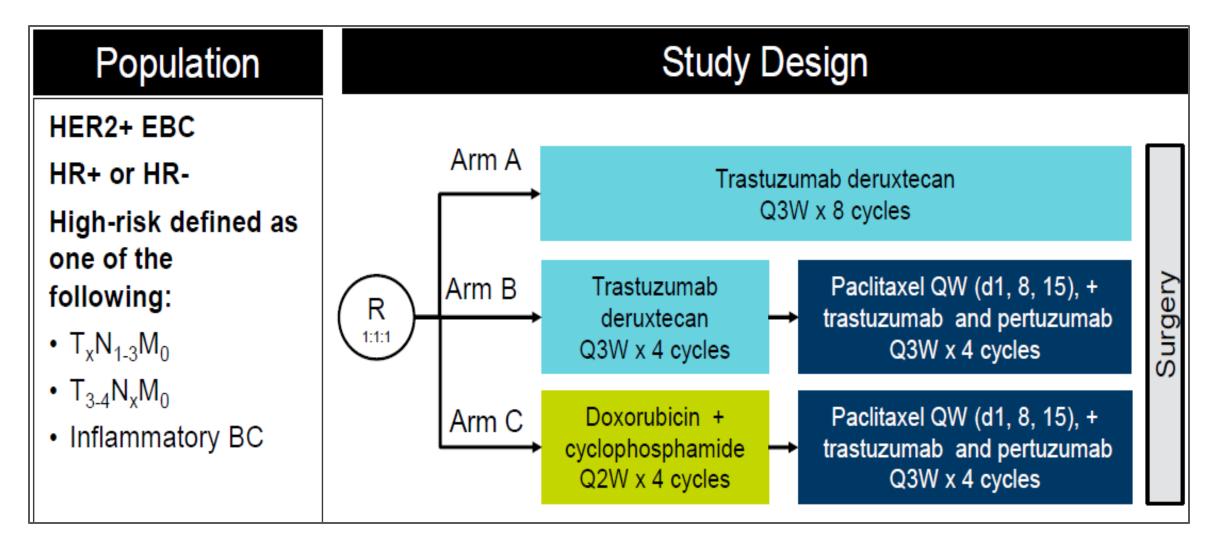
Secondary endpoints:


· ORR, iDFS, OS, and Safety

24 weeks --

Tumor assessments, including CT or MRI scans, were conducted by investigators at baseline and every two cycles thereafter until disease progression, patient withdrawal, initiation of new therapy, or death, in accordance with RECIST (version 1.1) guidelines.

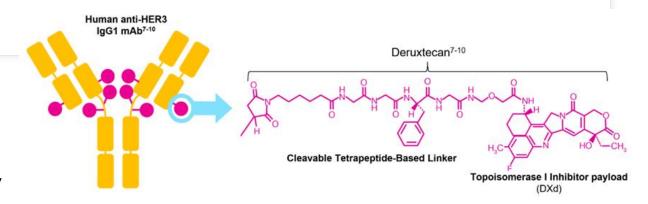
Efficacy Analysis: pCR



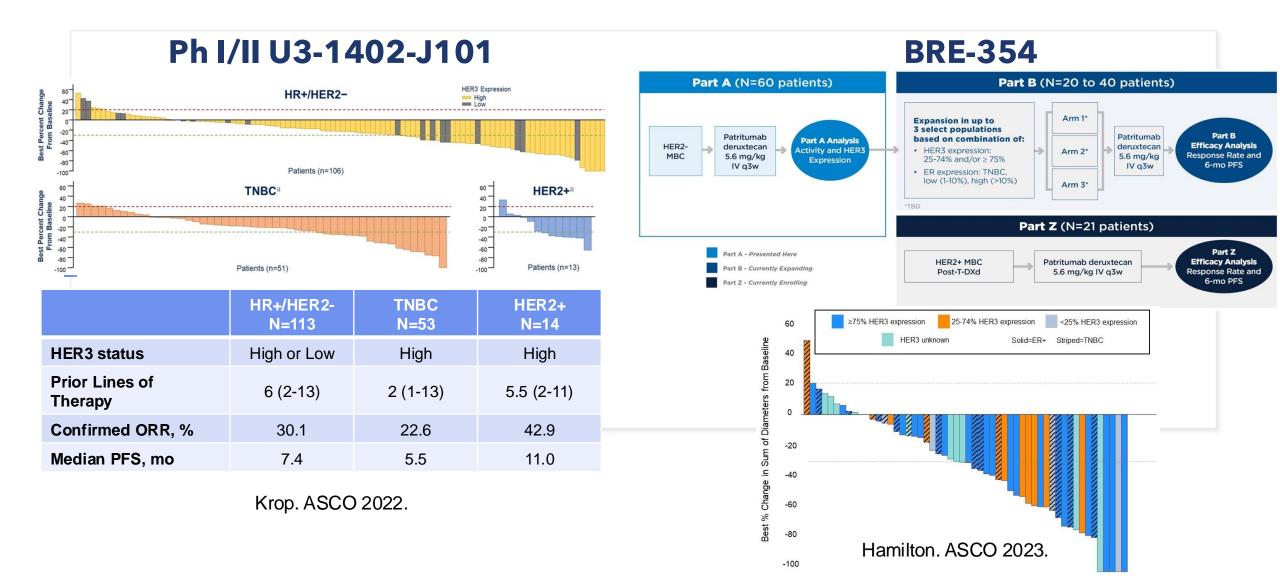
There was no significant difference in pCR rate among the SHR-A1811, SHR-A1811 plus pyrotinib, and PCbHP groups

DESTINY Breast11: Neoadjuvant HER2+ BC

NCT05113251

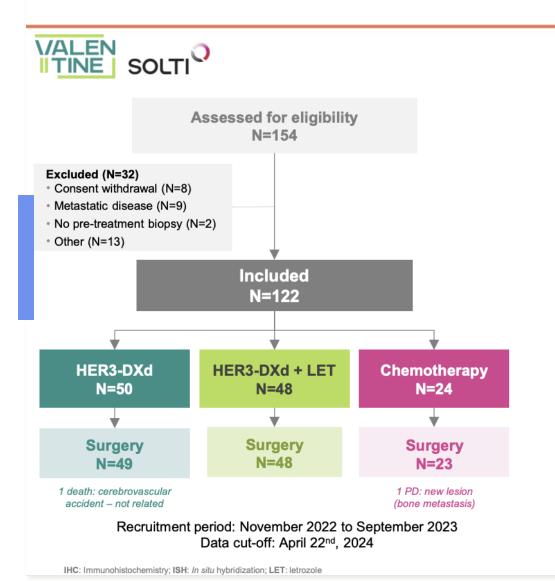


HER3 D'xd: Solti-Valentine


Background

Structure of HER3-DXd (Antibody-Drug Conjugate)

- HER3 is overexpressed in MBC and has been associated with poor clinical outcomes¹⁻⁵
- Patritumab deruxtecan (HER3-DXd; U3-1402) is a novel investigational ADC directed against HER3 that has 3 components:
 - a fully human anti-HER3 IgG1 monoclonal antibody (patritumab)
 - a topoisomerase I inhibitor payload, an exatecan derivative,
 - a tetrapeptide-based cleavable linker
- Safety and preliminary antitumor activity of DXd were previously reported in this ongoing, phase 1/2 clinical trial (NCT02980341/JapicCTI-163401)⁶
 - Initial results from the dose-escalation and dose-finding cohorts demonstrated antitumor activity in heavily pretreated patients with HER3-expressing MBC



Patritumab Deruxtecan Across HER3 Expression Levels

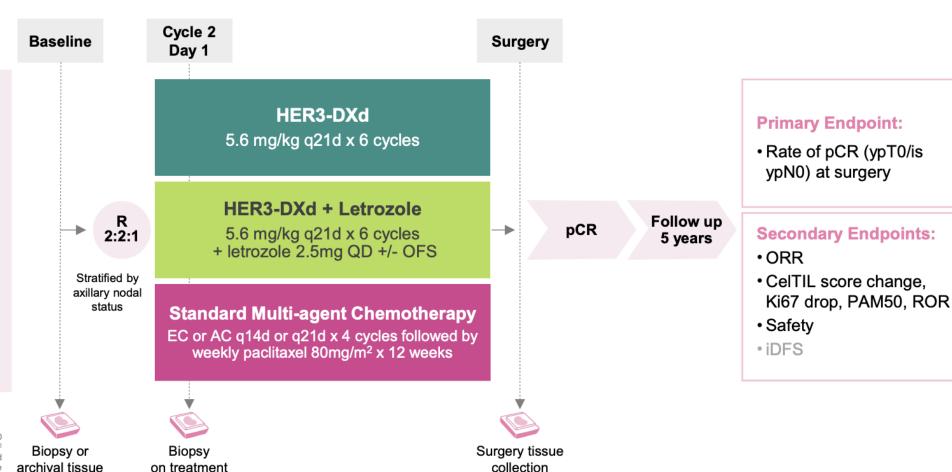
Baseline Characteristics

	HER3-DXd N=50	HER3-DXd + LET N=48			
Age, median (range)	51 (29-77)	49 (32-82)	52 (31-73)	51 (29-82)	
Female	50 (100.0%)	48 (100.0%)	23 (95.8%)	121 (99.2%)	
Pre/Perimenopausal	24 (48.0%)	28 (58.3%)	12 (52.2%) ^a	64 (52.9%)	
cT stage					
T1-T2	29 (58.0%)	29 (60 4%)	17 (70.8%)	75 (61.5%)	
T3-T4	21 (42.0%)	19 (39.6%)	7 (29.2%)	47 (38.5%)	
Lymph node positive	38 (76.0%)	37 (77.1%)	18 (75.0%)	93 (76.2%)	
Stage					
II	32 (64%)	29 (60.4%)	17 (70.8%)	78 (64.0%)	
III	18 (36.0%)	19 (39.6%)	7 (29.2%)	44 (36.0%)	
Histological Grade					
G1-G2	38 (82.6%)	35 (79.5%)	14 (66.7%)	87 (78.4%)	
Not available	4	4	3	11	
HER2 IHC ^b					
0	20 (40.0%)	16 (33.3%)	9 (37.5%)	45 (36.9%)	
1+	18 (36.0%)	21 (43.8%)	6 (25.0%)	45 (36.9%)	
2+	12 (24.0%)	11 (22.9%)	8 (33.3%)	31 (25.4%)	
Local Ki67 median (range)	35 (20-85)	37 (18-80)	35 (20-90)	35 (18-90)	
HER3 IHC°					
High	29 (80.6%)	31 (83.8%)	15 (88.2%)	75 (83.3%)	
Low	5 (13.9%)	4 (10.8%)	2 (11.8%)	11 (12.2%)	
Negative	2 (5.6%)	2 (5.4%)	0	4 (4.4%)	
Not available	14	11	7	32	
Intrinsic subtype (PAM50)					
Basal-Like	0	1 (2.1%)	0	1 (0.8%)	
HER2-Enriched	1 (2.0%)	2 (4.2%)	1 (4.3%)	4 (3.3%)	
Luminal A	21 (42.0%)	14 (29.2%)	10 (43.5%)	45 (37.2%)	
Luminal B	27 (54.0%)	29 (60.4%)	11 (47.8%)	67 (55.4%)	
Normal-Like	1 (2.0%)	2 (4.2%)	2 (4.2%) 1 (4.3%) 4 (3		
Not available	0	0	1	1	

^aOne male; ^bOne sample with HER2 IHC NA/ISH negative in chemotherapy arm (4.2%); ^cHER3 measured by membrane protein expression (%) using anti-HER3 recombinant rabbit mAb clone SP438 (Ventana Medical Systems), 10X: High:≥75%, Low: <75% and ≥25%, Negative: <25%.

SOLTI VALENTINE: Study Design

Parallel, randomized, non-comparative, open-label, phase II trial (NCT05569811)

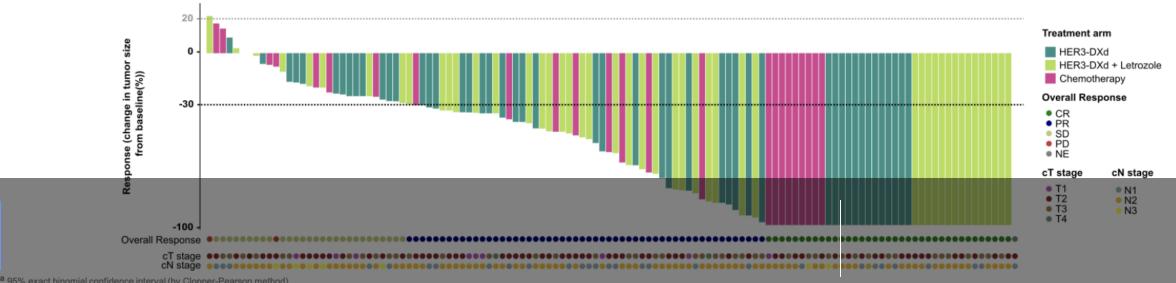

N = 120

Key eligibility criteria:

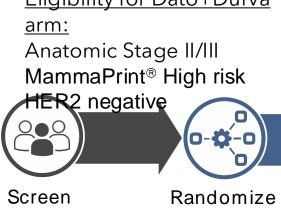
- Pre- and post-menopausal women, or men
- Primary operable breast cancer ≥1 cm by MRI
- HR+/HER2-negative^a
- Ki67 ≥20%^a and/or high genomic risk (gene signature)
- No prior treatment for the current breast cancer
- Available pre-treatment FFPE core-needle biopsy

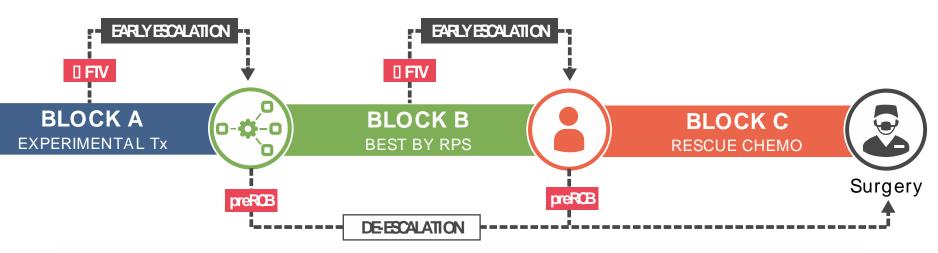
^aHR, HER2, and Ki67 determined by local assessment.

AC: Doxorubicin 60 mg/m² plus cyclophosphamide 600 mg/m²; EBC: Early breast cancer; EC: Epirubicin 90 mg/m² plus cyclophosphamide 600 mg/m²; FFPE: Formalin-fixed paraffin-embedded; HR: Hormone receptor; iDFS: Invasive disease-free survival; OFS: Ovarian function suppression (LHRH analogs); ORR: Objective response rate; QD: Every day; pCR: Pathological complete response; ROR: Risk of



HER3-DXd showed pCR and ORR rates similar to standard multi-agent chemotherapy


	HER3-DXd N=50	HER3-DXd + LET N=48	Chemotherapy N=24	Overall N=122
pCR rate				
N	2	1	1	4
% (95%Cl ^a)	4.0% (0.5-13.7)	2.1% (0.1-11.1)	4.2% (0.1-21.1)	3.3% (0.9-8.2)
ORR				
N	35	39	17	91
% (95%Cl ^a)	70.0% (55.4-82.1)	81.3% (67.4-91.1)	70.8% (48.9-87.4)	74.6% (65.9-82.0)
PD				
N (%)	0	1 (2.1%)	1 (4.2%)	2 (1.6%)



ORR: objective response rate: pCR: pathological complete response: PD: progressive disease

I-SPY 2: The Perfect Platform for Neoadjuvant ADC Exploration!

I-SPY 2.2 Design Features: Multiple Sequential Regimens

Treatment Assignments/Randomization based on Response Predictive Subtype (RPS)

HR+ HER2- Immune- DRD-	Taxol	AC
HR- HER2- Immune- DRD-:	Taxol + Carbo + Pembro	AC + Pembro
HER2- Immune+:	Taxol + Carbo + Pembro	AC + Pembro
HER2- Immune- DRD+:	Taxol + Carbo + Pembro	AC + Pembro
HER2- Immune- DRD+:	Taxol + Carbo	AC + Pembro

Comparator arm: Dynamic control

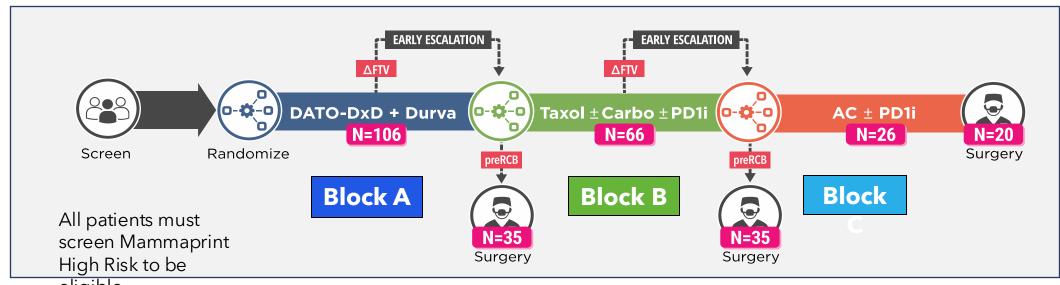
Specific to each subtype identified from previously tested I-SPY2 agents between March 2010 and April 2022 (e.g. paclitaxel -> AC; paclitaxel +

New I-SPY 2.2 Design Features: Multiple Sequential Regimens Called Blocks

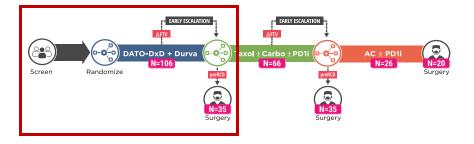
Block A

 Investigational agents without standard chemo across RPS

Block B


- Optimal regimens based on Response Predictive Subtypes (RPS) and SOC
- Investigational agents to improve response

Block C


Adriamycin/CytoxanAdriamycin/Cytoxan + IO per SOC

Surgery

pCR and RCB endpoints

Efficacy of Block A

Dato + Durva meets the graduation threshold in the Immune+ subtype

Response Predictive Subtype	N	pCR	non-pCR*	Modeled Rate (95% CI)	Threshold	P(>Thr)
HR+Immune-DRD-	25	0	23	3% (0%-7%)	15%	0.00
HR-Immune-DRD-	23	2	14	13% (3%-23%)	15%	0.33
Immune+	47	20	11	65% (47%-83%)	40%	0.99
Immune-DRD+	11	3	6	24% (4%-44%)	40%	0.06

Receptor Subtypes	N	pCR	non-pCR*	Modeled Rate (95% CI)	Threshold	P(>Thr)
HR+	42	4	29	18% (6%-30%)	15%	0.68
HR-	64	21	25	44% (32%-56%)	40%	0.74

^{*} Includes Patients with Biopsy Positive for Invasive Cancer after Block A or non-pCR or in subsequent blocks

I-SPY ADCs Already Tested!!!

- Trastuzumab emtansine + pertuzumab
- Ladiratuzumab vedotin (LIV1-A)
- Datopotamab deruxtecan +/- durvalumab
- Trastuzumab deruxtecan + rilvegostimig (PD-1/TIGIT bispecific) (ongoing)
- Trastuzumab duocarmazine (SYD-985)
- ARX-788
- Dan 222 + Niraparib (ongoing)

Unanswered questions

- Which ADCs need biomarker testing and biomarkers?
- How do we assess HR+ patient in efficacy analyses since rates of pCR are low and late distant relapse can occur?
- What tox is acceptable and what is not?
- What are the best combinational strategies?

Thank You!!!!