Neoadjuvant immunotherapy for HR+/HER2- early-stage breast cancer

Laura Huppert, MD

Assistant Professor of Medicine University of California, San Francisco San Francisco, CA

> Comprehensive Cancer Center

Background: Immunotherapy for HR+/HER2- early-stage breast cancer?

Hormone receptor positive breast cancer

- Most common subset of breast cancer worldwide
- Heterogeneous
- Most are luminal, but clear separation between luminal A and B
- pCR rates overall following neoadjuvant chemotherapy are low (~5%)

Gene expression tests

- Huge advance in understanding which tumors benefit from chemotherapy with DFS endpoint
- More data for use in the adjuvant setting

• Immunotherapy for HR+/HER2- EBC?

- Is there a subset of HR+ disease that may benefit from immunotherapy?
- Biomarkers of IO response and resistance?

HR+/HER2- is a heterogenous subtype with low rates of pCR to NACT

pCR rates with NACT by intrinsic subtype for **HR+/HER2-** EBC

Overall pCR rate: 12% (n=451)

Prat et. al. BMC Med 2015

Neoadjuvant Chemotherapy: pCR & Prognosis by Subtype

- Which pts will benefit from NACT and IO?
- <u>Considerations</u>:
 - pCR does not appear to be prognostic for very low proliferative disease
 - Adjuvant chemotherapy is now the SOC for many pre- and perimenopausal women with 1-3 positive axillary nodes based on the data from RxPonder even with low proliferative disease
 - Response to NACT can help to modify treatment post-surgery to optimize outcome
 - This is only beneficial when response impacts prognosis

Select IO trials in metastatic HR+/HER2- breast cancer

- KEYNOTE-028: Phase 1b study of single agent pembrolizumab for PDL1+ HR+/HER2- MBC¹
 - Only modest activity (objective response rate, ORR = 12%)
 - Limited activity of IO monotherapy in HR+/HER2- MBC
- Phase I study of abemaciclib + pembrolizumab +/- AI²
 - Median PFS 8.9 mo
 - Grade 3 AEs (tx naive / prior tx):
 - AST increase (34.6% / 17.9%); ALT increase (42.3% / 10.7%)
 - ILD/pneumonitis (7.7% / 3.6%)
 - PACE: Phase II trial of fulvestrant +/- palbociclib +/- avalumab³
 - The combination of palbociclib and fulvestrant did not prolong PFS compared to fulvestrant alone
 - Triplet of fulvestrant/palbo/avalumab led to doubled PFS- small study but warrants further evaluation
- Phase II study of eribulin +/- pembrolizumab⁴
 - Median PFS, ORR, OS did not differ between groups
 - Two treatment related deaths due to colitis (IRAE + sepsis)
 - Phase II study of sacituzumab govitecan +/- pembrolizumab⁵
 - PFS saci + pembro 8.4mo vs. saci 6.2mo (HR 0.76, p=0.26), No statistically significant difference (n=110)

- 1. Rugo et. al. *CCR* 2018
- 2. Rugo et. al. NPJ Breast Cancer 2022
- 3. Mayer et. al. *JCO* 2024
- 4. Tolaney et. al. *JAMA Oncology* 2020
- 5. Castro-Garrido ASCO 2024

۲

only

CDK4/6i + 10

+

I-SPY2: Pembrolizumab graduated for efficacy in HER2-negative cohorts

- 69 patients (40 HR+/HER2-; 29 TNBC) were randomized to 4 cycles of pembrolizumab in combination with weekly paclitaxel followed by AC
- Final estimated pCR rates for pembrolizumab vs. control:
 - 44% vs 17% in HER2-
 - 30% vs 13% HR+/HER2-
 - 60% vs 22% TNBC
- Pembrolizumab shifted the RCB distribution to a lower disease burden for each cohort

ISPY2: Observed pCR Rate by Mammaprint, BluePrint, and Imprint status among patients with HR+/HER2- early-stage breast cancer

- Analysis of clinical and molecular characteristics associated with pCR in patients with HR+/HER2disease in ISPY (n=379) across 8 treatment arms
- Most patients with MP-High1 disease were Luminal and Imprint-
- Most patients with MP-High2 disease were Basal and Imprint+
- Patients with MP-High 2, Basal, and/or Imprint+ disease were more likely to achieve pCR than patients with MP-High1, Luminal, and/or Imprint- disease

ISPY2: Observed pCR Rate by Mammaprint, BluePrint, and Imprint status among patients with HR+/HER2- early-stage breast cancer

There was overlap between MammaPrint, BluePrint, and ImPrint, but not complete concordance, so each component may offer unique additional info

Patients with lower %ER and ER-/PR+ or ER+/PR- were more likely to be MP-High2, BP-Basal, and/or ImPrint+

ISPY2: Evaluation of ImPrint across 5 IO arms in HR+/HER2- EBC

- Among patients with HR+/HER2- EBC across 5 IO arms in ISPY, 29% of patients were ImPrint+
- Patients who were ImPrint+ had much higher pCR rates vs. patients who were ImPrint-neg

29% ImPrint+ in HR+HER2-

- 76% pCR in ImPrint+
- 16% pCR in ImPrint-

Wolfe et. al. ASCO 2023 Wolfe et. al. submitted *JCO Precision Oncology* 2025

Phase III clinical trials of immunotherapy for high-risk HR+/HER2- EBC

.

Both powered to detect difference in pCR rates

factors

1º endpoint(s)

KN756: 22C3 CPS

7FL: SP142 (and 28-8 CPS in biomarker analysis)

KN756 also powered to detect difference in EFS

Results: Pathological Complete Response (ypT0/Tis ypN0)

- Addition of neoadjuvant IO to NACT improved pCR rates in both studies
- EFS data still immature
- not yet FDA-approved

- 1. Cardoso et. al. ESMO 2023
- 2. Loi et. al. ESMO 2023

Keynote-756: Safety

Treatment-related AEs in Neoadjuvant Phase with incidence ≥ 20% in either treatment arm

Immune-related AEs in Neoadjuvant Phase with incidence ≥ 20% in either treatment arm

Safety profile consistent with known profiles of each regimen; no new safety signals

Cardoso et. al. ESMO 2023

KN756: Key subgroup and biomarker analyses

Clinical charact.	Impact of pembro on pCR rate		
Stage II (n-807) III (n=471)	• Benefit regardless of stage - stage II (+ Δ 9.1) and III (+ Δ 8.0)		
LN involvement pos (n=1152) neg (n=126)	 Benefit in LN pos (+Δ 9.3) Benefit less clear LN neg (+Δ3.8) 		
Chemo exposure full (n=634) partial (n=641)	 Benefit regardless of whether chemotherapy completed 		

Biomarker	Impact of pembro on pCR rate		
PD-L1 22C3 CPS	 Benefit if CPS ≥1. Higher pCR rates & larger Δ with higher CPS Benefit less clear CPS <1 		
ER status Stratified by CPS score	 <u>CPS ≥1</u>: Benefit for all ER%, with larger benefit if ER <10% <u>CPS <1</u>: Benefit less clear ER ≥10% 		

Cardoso et. al. SABCS 2023

PD-L1 status (22C3 CPS)

Checkmate-7FL: Biomarkers predictive of pCR or RCB 0/1

Biomarker	Impact of nivo on pCR and RCB 0/1 rates			
PD-L1 score SP142 IC% (n=510) 28-8 CPS (n=349)	 Benefit if PD-L1+ by both assays, with increasing benefit in higher 28-8 CPS scores Benefit less clear PD-L1 neg 			
ER%	 Benefit with low ER% (<50%) Benefit less clear high ER% (≥50%) 			
PR% Stratified by ER	 Benefit with low PR% (<10%) Benefit less clear high PR% (≥10%) 			
sTIL (<5%, ≥5%)	 Higher with sTIL ≥1% Benefit less clear sTIL <1% 			
Ki67 (<20%, ≥20%)	No association			

PD-L1 status

80

60

40

20

Ω

60

40

20

(%)

pCR rate

∆24.7

(9.5-38.1)

n=136

(28%)

(%)

rate

pCR

ER%

Loi et. al. SABCS 2023

ISPY: Datopotamab-DXd +/- durvaluamb for HER neg EBC

Response Predictive Subtype	N	pCR	non-pCR*	Modeled Rate (95% CI)	Threshold	P(>Thr)
HR+Immune-DRD-	25	0	23	3% (0%-7%)	15%	0.00
HR-Immune-DRD-	23	2	14	13% (3%-23%)	15%	0.33
Immune+	47	20	11	65% (47%-83%)	40%	0.99
Immune-DRD+	11	3	6	24% (4%-44%)	40%	0.06

Receptor Subtypes	N	pCR	non-pCR*	Modeled Rate (95% CI)	Threshold	P(>Thr)
HR+	42	4	29	18% (6%-30%)	15%	0.68
HR-	64	21	25	44% (32%-56%)	40%	0.74

Patient Chara	Dato-DXd + Durva (N=106)		
Median age (r	Median age (range), years		
Response predictive subtype, n (%)	HR+/Immune-/DRD-	25 (23.6)	
	HR-/Immune-/DRD-	23 (21.7)	
	Immune+	47 (44.3)	
	HR+	16 (15.1)	
	HR–	31 (29.2)	
	Immune-/DRD+	11 (10.4)	
	HR+	1 (0.9)	
	HR–	10 (9.4)	
Receptor	HR+	42 (39.6)	
subtype, n (%)	HR-	64 (60.4)	

38% of HR+/HER2– patients are Immune+

49% of HR-/HER2- patients are Immune+

- Dato-DXD + durvalumab graduated in Immune+ subtype
- TROPION-Breast04 ongoing phase III study evaluating Dato-DXd + durvalumab vs. KN522 regimen in TNBC

Shatsky et. al. Nature Med 2024

Conclusions: Current state of IO for HR+/HER2- EBC

- The phase III studies KN756 and Checkmate-7FL demonstrated that neoadjuvant IO + NACT improved pCR rates in high-risk HR+/HER2- early-stage breast cancer
 - Particular benefit in patients who were PD-L1+, low ER%, low PR%
 - EFS data immature -- Await EFS data!
 - Not yet FDA approved and would not yet use for most patients with HR+/HER2- EBC now
 - Are there individual cases with HR+/HER2- EBC for whom IO could be considered now?
 - Low ER% (1-10%) -- would consider treating with KN522 regimen
 - Low ER% (<50%) and Basal subtype not yet approved but could consider for large tumors, acknowledging lack of EFS data at this time
- Can we identify an optimal composite biomarker of IO response to guide treatment selection?
- Important to consider balancing efficacy and toxicity (e.g., IRAEs, cost)
- Sequencing CDK4/6 inhibitors will be a critical issue given potential toxicity with combination therapy
- Novel combinations are of interest (e.g., ADC + IO, targeted therapies + IO)