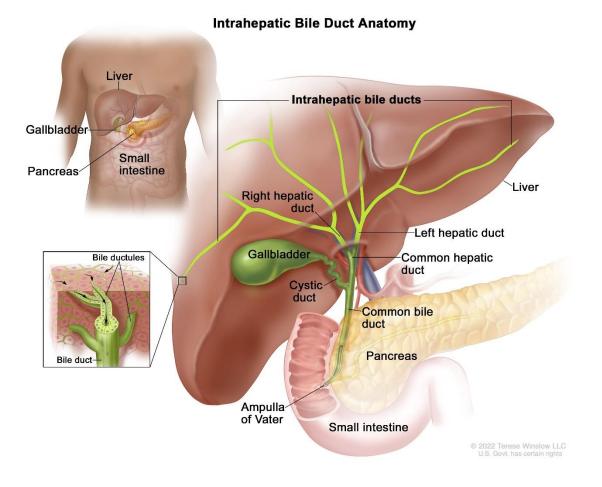
Systemic Therapy for Advanced Bile Duct Malignancy

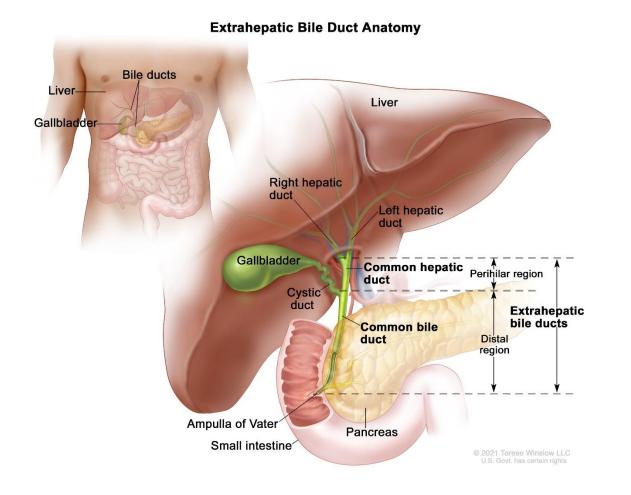
South Florida GI Cancer Symposium – 2025

Gulam Abbas Manji, MD PhD


Associate Professor of Medicine Section Chief Gastrointestinal Medical Oncology, Division of Hematology and Oncology

Co-Director, Pancreas Center

Co-Leader Precision Oncology and Systems Biology, Herbert Irving Comprehensive Cancer Center


Anatomy and Classification

- A network of small tubes that carry bile inside the liver
- Right and left hepatic duct join outside the liver common hepatic duct
- Cholangiocarcinoma is the epithelial cell tumor that arise from cholangiocytes of the biliary tract
- Cancer that forms within the bile ducts *inside the liver* are classified as intrahepatic cholangiocarcinoma (ICC)

COLUMBIA COLUMBIA COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Anatomy and Classification

Cancer that forms within the bile ducts *outside the liver* are classified as extrahepatic
 cholangiocarcinoma

Perihilar (Klatskin) Distal

COLUMBIA COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

<u>a</u>

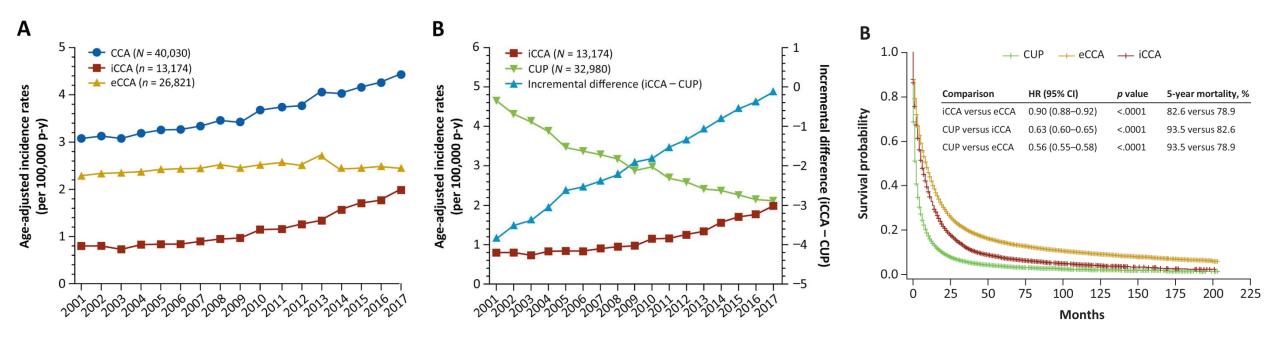
Cholangiocarcinoma Outcomes by Stage

Intrahepatic Cholangiocarcinoma

SEER* stage	5-year relative survival rate
Localized	23%
Regional	9%
Distant	3%
All SEER stages combined	9%

Extrahepatic Cholangiocarcinoma

SEER stage	5-year relative survival rate
Localized	18%
Regional	18%
Distant	2%
All SEER stages combined	11%


*SEER= Surveillance, Epidemiology, and End Results

Data from 2012 – 2018. American Cancer Society

Incidence of Cholangiocarcinoma (2001 – 2017)

National Cancer Institute Surveillance, Epidemiology, and End Results 18 cancer registry

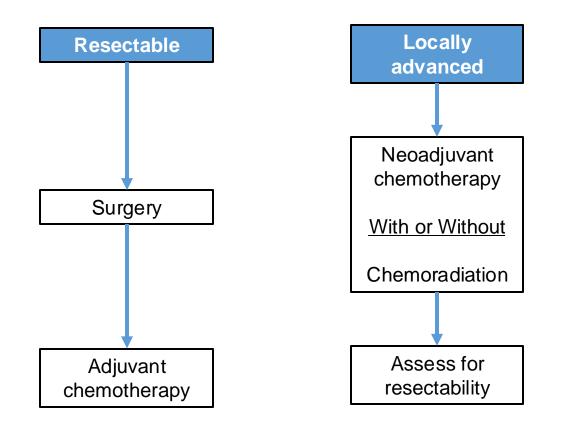
- Incidence of cholangiocarcinoma is increasing
- Incidence of Cancer of Unknown Primary is declining while iCCA is increasing

50

Established

- Parasitic infections (Chinese liver fluke)
- Primary sclerosing cholangitis (PSC) Inflammation and scarring of ducts
- Biliary duct cysts
- Hepatolithiasis

50

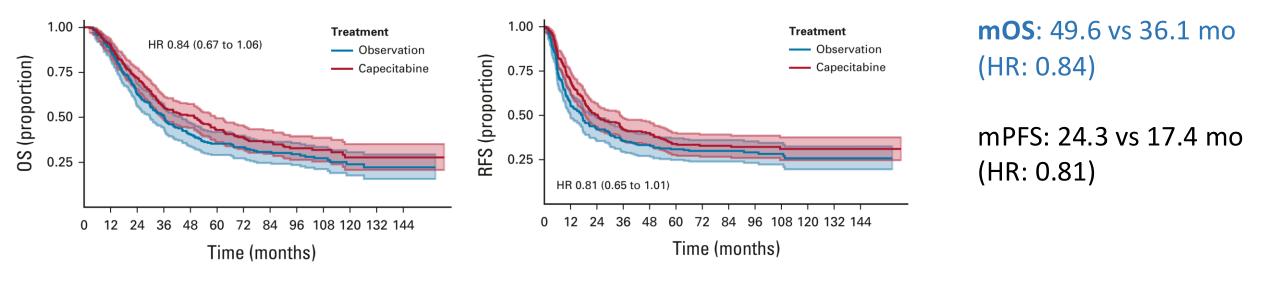

Being Considered

- Inflammatory bowel disease Inflammatory bowel disease
- Hepatitis C or B virus
- Metabolic dysfunction
 Diabetes
- Cirrhosis

Non-alcoholic fatty liver disease

Tyson GL et al. *Hepatology*. 2011 Wirth TC, Vogel A. *Best Pract Res Clin Gastroenterol*. 2016;

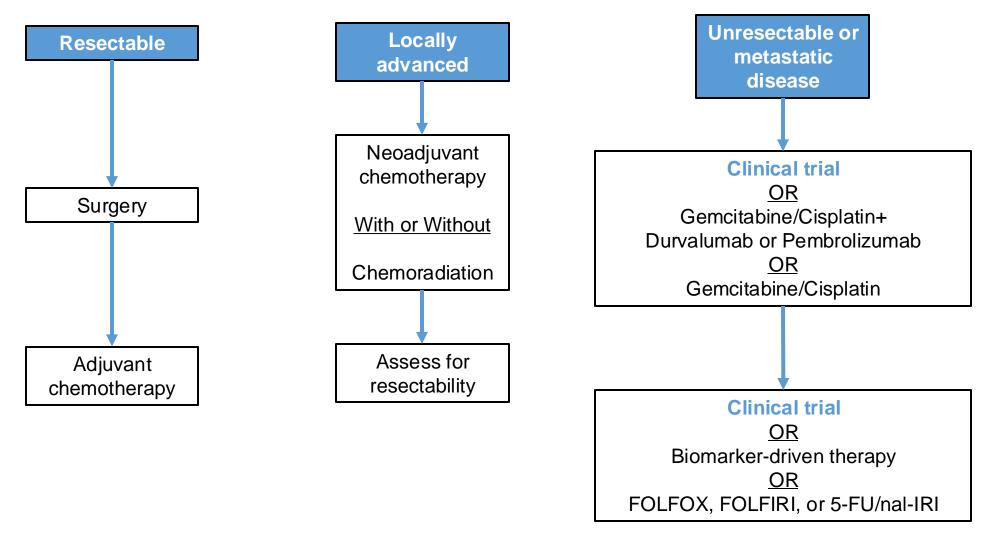
Bile Duct Cancer – Perioperative Chemotherapy


National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Biliary Tract Cancers. Version 1.2025.

Bile Duct Cancer – Adjuvant Therapy

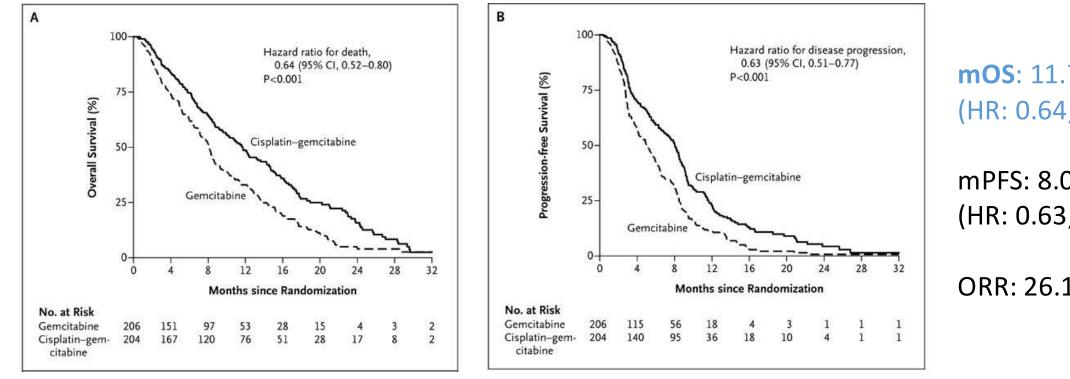
BILCAP

- Randomized phase 3 (N = 447)
- CC and GB after resection with curative intent
- Capecitabine (1,250mg/m2 oral twice daily on days 1-14 every 21 days for 8 cycles) versus observation



COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

Bridgewater J, et al. JCO. 2022


Treatment Paradigm for Cholangiocarcinoma

National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Biliary Tract Cancers. Version 1.2025.

Advanced BTC – Gemcitabine with Cisplatin

- ABC-02. Randomized phase 3 (N = 410)
- Locally advanced or metastatic cholangiocarcinoma, gallbladder or ampullary carcinoma
- Gemcitabine versus Gemcitabine with cisplatin for up to 24 weeks

mOS: 11.7 vs 8.1 mo (HR: 0.64; *P* <.001)

mPFS: 8.0 vs 5.0 mo (HR: 0.63; *P* <.001)

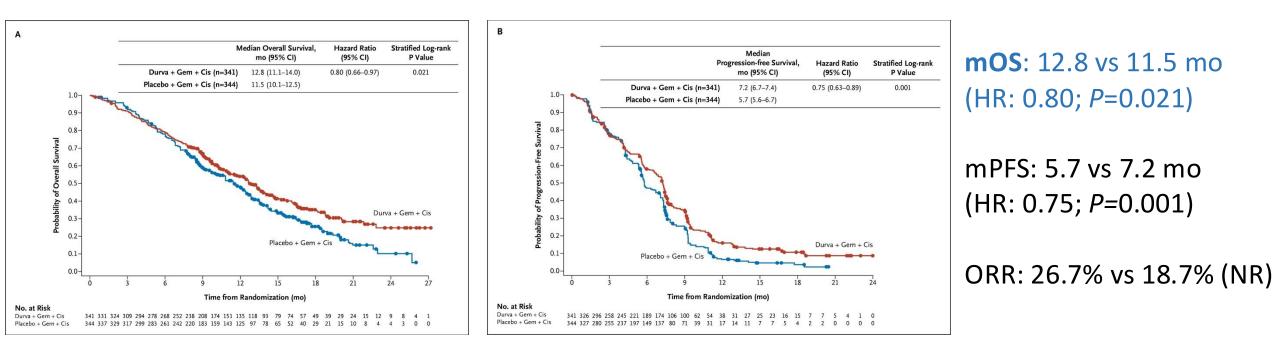
ORR: 26.1% vs 15.5% (NR)

50

Valle, J et al. NEJM. 2010; 362:1273

HR According to Trial and Prespecified Baseline Factors

Subgroup	No. of Patients		н	azard Ratio (S	95% CI)	
ABC trial group				1		
01	86		e	i		0.65 (0.42-1.01)
02	324			- 1		0.64 (0.50-0.83)
Extent of disease				į		
Locally advanced	104					0.47 (0.29-0.74)
Metastatic	306			—		0.74 (0.57-0.95)
Primary tumor site						
Intrahepatic	80			— 1		0.57 (0.34-0.94)
Extrahepatic	73			- !		0.73 (0.43-1.23)
Hilar	57	×	-			0.59 (0.32-1.09)
Gallbladder	149			- 1		0.61 (0.42-0.89)
Ampulla	20	*				0.62 (0.21-1.82)
Not specified	31			-		0.98 (0.46-2.11)
ECOG score				i		
0	130	-				0.50 (0.33-0.77)
1	228			— i		0.68 (0.51-0.91)
2	52			-	_	0.90 (0.49-1.66)
Previous therapy				i		
No	100			<u> </u>		0.65 (0.41-1.01)
Yes	310		-	- 1		0.64 (0.49-0.82)
All patients	410					0.64 (0.52-0.80)
		0.25	0.50	1.00	2.00	
		Cispl	atin–Gemcitabine Better	Gemcita		



COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

Valle, J et al. NEJM. 2010; 362:1273

Advanced BTC – Gemcitabine/Cisplatin/Durvalumab

- TOPAZ-01. Randomized phase 3 (N = 685)
- Unresectable or metastatic biliary tract cancer
- Gemcitabine/cisplatin with durvalumab or placebo for up to 8 cycles

COLUMBIA HERBER CANCER

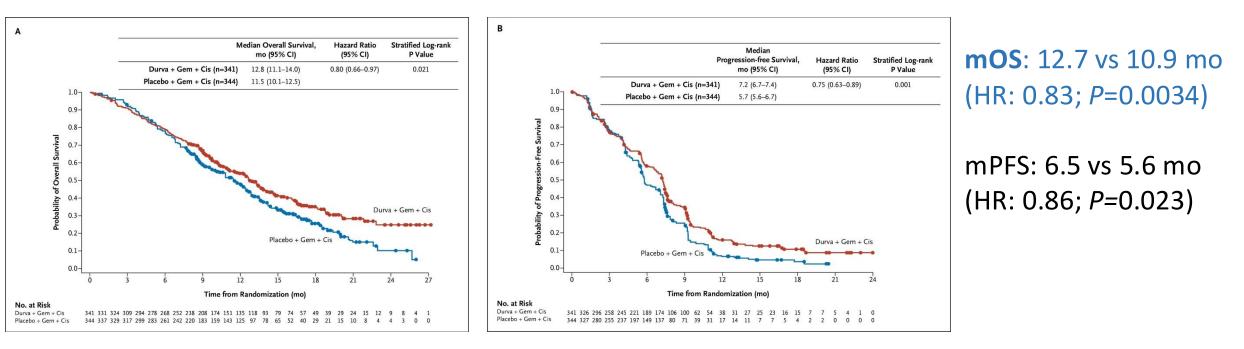
COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Oh D-Y et al. NEJM Evid 2022

Advanced BTC – Gemcitabine/Cisplatin/Durvalumab

Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=338)	Placebo plus Gemcitabine and Cisplatin (n=342)
Adverse events — no. (%)		
Any grade	336 (99.4)	338 (98.8)
Serious	160 (47.3)	149 (43.6)
Grade 3 or 4	256 (75.7)	266 (77.8)
Leading to discontinuation of any study treatment	44 (13.0)	52 (15.2)
Leading to death	12 (3.6)	14 (4.1)
Treatment-related adverse events — no. (%)		
Any grade	314 (92.9)	308 (90.1)
Serious	53 (15.7)	59 (17.3)
Grade 3 or 4	212 (62.7)	222 (64.9)
Leading to discontinuation of any study treatment	30 (8.9)	39 (11.4)
Leading to death*	2 (0.6)	1 (0.3)

* Treatment-related adverse events leading to death were ischemic stroke and hepatic failure in the durvalumab treatment group and polymyositis in the placebo treatment group.



COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

Oh D-Y et al. NEJM Evid 2022

Advanced BTC – Gemcitabine/Cisplatin/Pembrolizumab

- KEYNOTE-966. Randomized phase 3 (N = 1069)
- Locally advanced or metastatic biliary tract cancer
- Gemcitabine/cisplatin with durvalumab or placebo for up to 8 cycles

Systemic steroids required for immune-related AEs – 9% vs. 5%

COLUMBIA

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Kelley RK, et al. Lancet.2023

Key Differences – TOPAZ-1 and KEYNOTE-966

TOPAZ-1

Allowed recurrent (> 6m after curative surgery or adjuvant therapy) Durvalumab/Placebo allowed to progression after ≤ 8 cycles of Gem/Cis

KEYNOTE-966

No prior systemic therapy allowed Gemcitabine with Pembrolizumab/Placebo allowed to ≤ 35 cycles of Pembrolizumab/Placebo

NCCN Guidelines Version 1.2025 **Biliary Tract Cancers**

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF SYSTEMIC THERAPY^a

Primary Treatment for Unresectable and Metastatic Disease

,		
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances
 Durvalumab + gemcitabine + cisplatin (category 1)^{e-h,4,5} Pembrolizumab + gemcitabine + cisplatin (category 1)^{e,g,h,4,6} 	 Gemcitabine + cisplatin (category 1)^{e,4,7} Capecitabine + oxaliplatin FOLFOX Gemcitabine + albumin-bound paclitaxel Gemcitabine + capecitabine Gemcitabine + oxaliplatin Single agents: 5-fluorouracil Capecitabine Gemcitabine 	• Targeted therapy (BIL-C 3 of 5)
	/ Ochicitabilie	

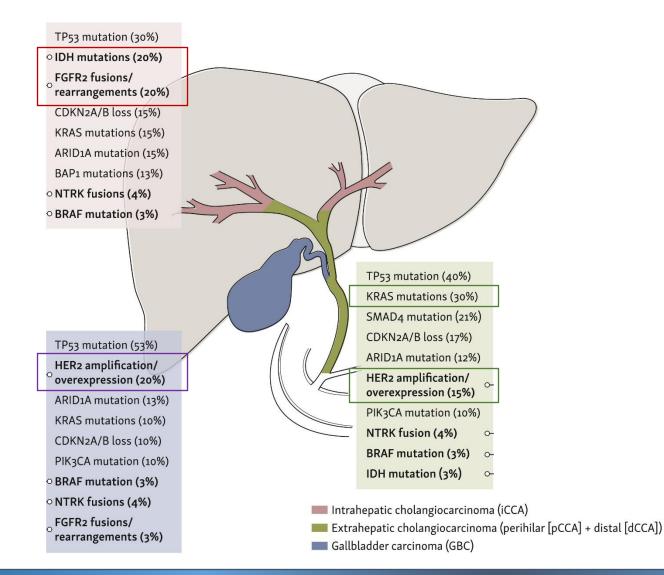
Subsequent-Line Therapy for Biliary Tract Cancers if Disease Progression¹

Preferred Regimens

FOLFOX⁸

50

Other Recommended Regimens


FOLFIRI⁹

- Liposomal irinotecan + fluorouracil + leucovorin (category 2B)¹⁰
- Regorafenib (category 2B)¹¹
- See also: Preferred and Other Recommended Regimens for Unresectable and Metastatic Disease above

Useful in Certain Circumstances

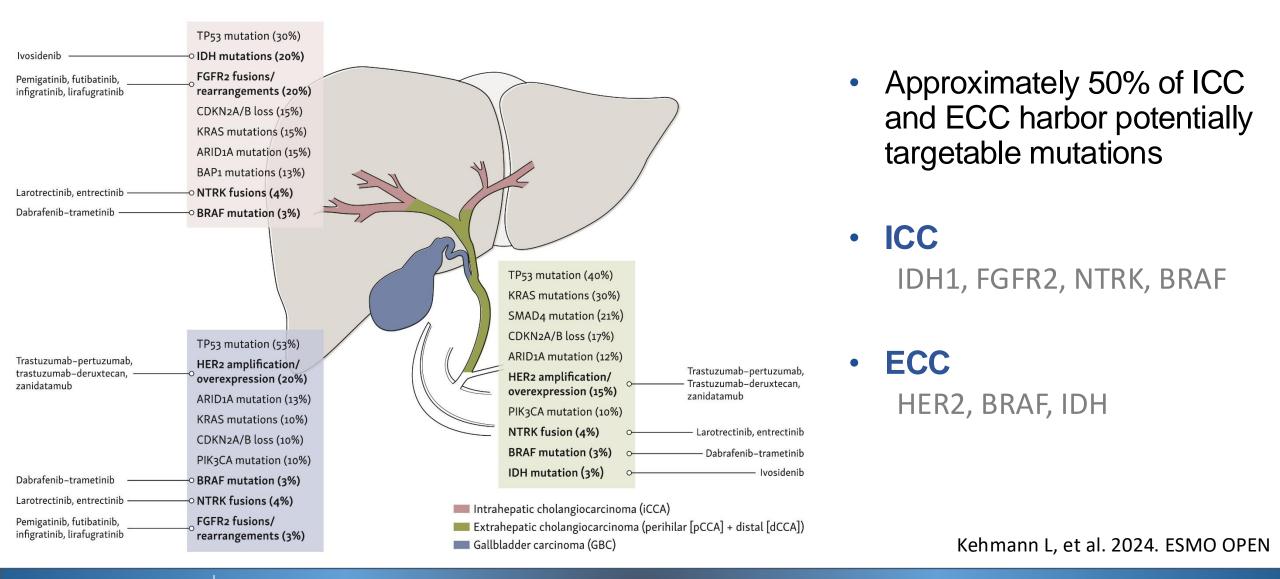
- Targeted therapy (BIL_C 3 of 5)
 Nivolumab (category 2B)^{g,h,j,12}

Molecular Landscape of Bile Duct Tumors

Approximately 50% of ICC and ECC harbor potentially targetable mutations

ICC

IDH1, FGFR2, NTRK, BRAF


ECC HER2, BRAF, IDH

Kehmann L, et al. 2024. ESMO OPEN

-NewYork-Presbyterian

COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

Molecular Landscape of Cholangiocarcinoma

🖆 COLUMBIA

COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Molecular Testing NCCN Recommendations

NCCN NCCN Network[®]

NCCN Guidelines Version 1.2025 Biliary Tract Cancers

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF MOLECULAR TESTING

Table 2: Incidence of Therapeutic Targets in Advanced Biliary Tract Cancers

Aberration	Approximate Incidence ^e
NTRK fusion	<1%
MSI-H/dMMR	1%–3%
ТМВ-Н	<5%
BRAF V600E mutation	1%–5%
FGFR2 fusion or rearrangement	9%–15% of intrahepatic CCAs and rare in other subsites
IDH1 mutation	10%–20% of intrahepatic CCAs and rare in other subsites
HER2 (ERBB2) overexpression and/or amplification	5%–20% of CCAs, 15%–30% of gallbladder cancer
RET fusion	<1%
KRAS G12C mutation	1%

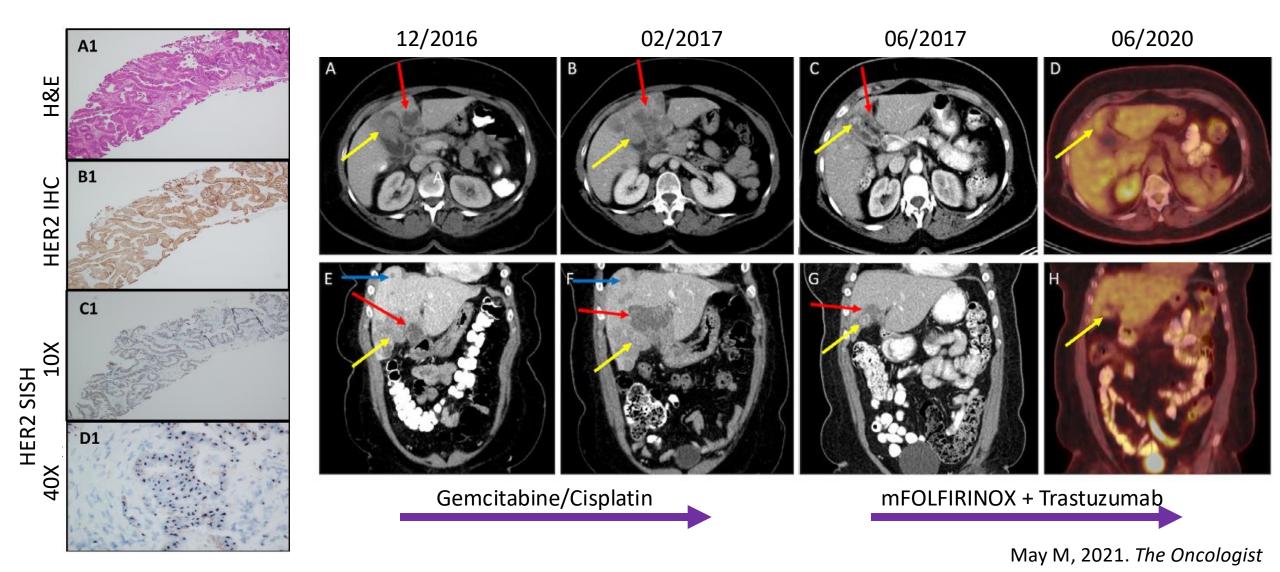
Molecular Testing NCCN Recommendations

National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2025
 Biliary Tract Cancers

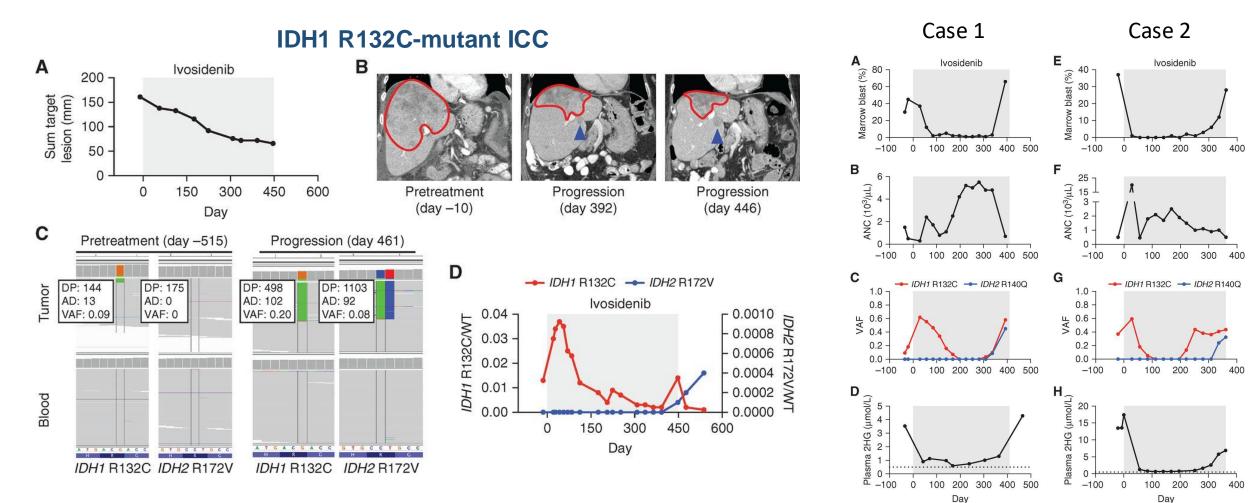
NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF MOLECULAR TESTING


Table 1: Recommendations for Molecular Testing in Unresectable or Metastatic Biliary Tract Cancers^{a-d}

Recommended Molecular	Anatomic Subsite			
Testing	Gallbladder	Intrahepatic CCA	Extrahepatic CCA	
NTRK gene fusion	X	X	X	
MSI-H/dMMR	X	X	X	
ТМВ-Н	X	X	X	
BRAF V600E mutation	X	X	X	
FGFR2 fusion or rearrangement	-	X	X	
IDH1 mutation	-	X	X	
HER2 (ERBB2) overexpression and/or amplification	X	X	X	
RET gene fusion	X	X	X	
KRAS G12C mutation	X	X	X	

MSI-H: microsatellite instability-high dMMR: mismatch repair deficient TMB-H: tumor mutational burden-high

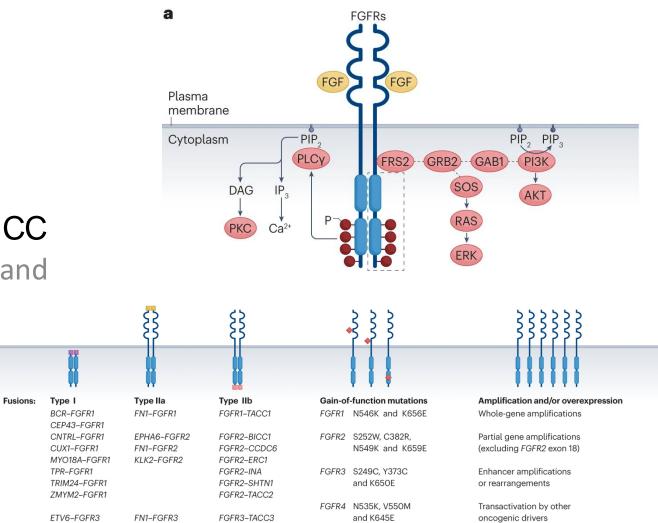

Targeting HER2 in Bile Duct Tumors

COLUMBIA COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

IDH1 Resistance – Isoform Switching

IDH1 R132C-mutant AML

Harding J, et al. Cancer Discov. 2018

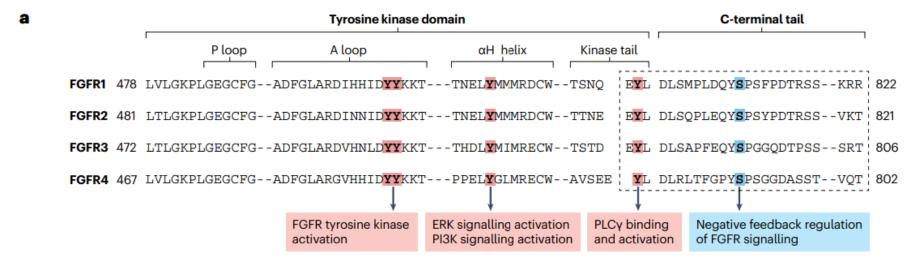

-NewYork-Presbyterian

Columbia University Herbert Irving Comprehensive Cancer Center

50

Fibroblast Growth Factor Receptor 2

- FGFR 1 4 receptor tyrosine kinases
 Proliferation, angiogenesis, differentiation, survival, and repair
- Activation of FGFR2 observed in 10-15% ICC
 Fusions, rearrangements, point mutations, and in-frame deletions
- Fusions result in ligand-independent dimerization and downstream activation

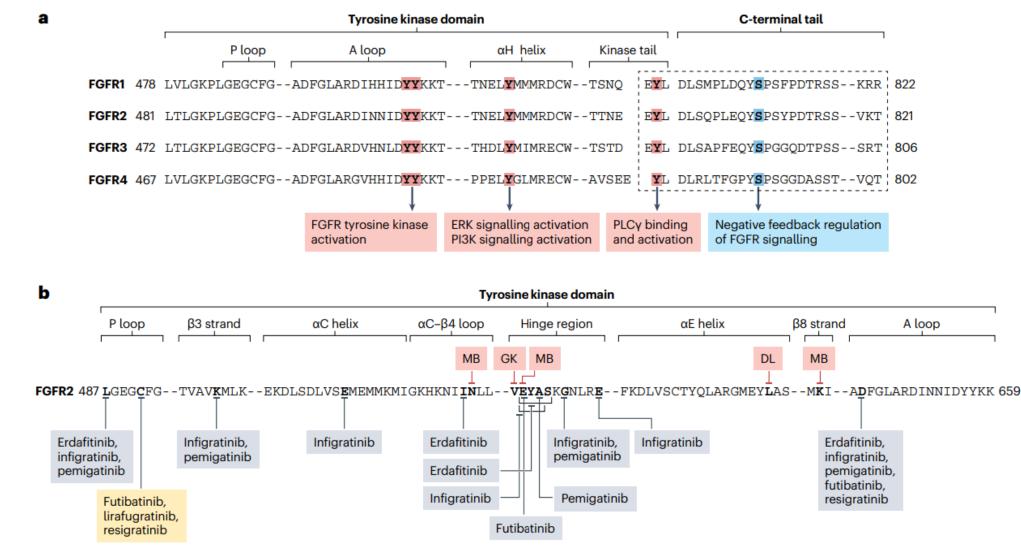


Katoh M, et al. Nat Rev Clin Oncol. 2024

-NewYork-Presbyterian

Columbia University Herbert Irving Comprehensive Cancer Center

FGFR Tyrosine Kinase Domain and Drug Binding Site

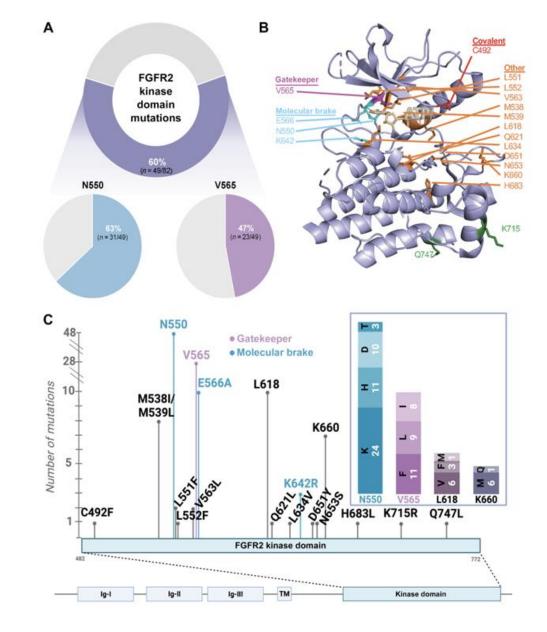

Katoh M, et al. Nat Rev Clin Oncol. 2024

-NewYork-Presbyterian

COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

50

FGFR Tyrosine Kinase Domain and Drug Binding Site


Katoh M, et al. Nat Rev Clin Oncol. 2024

COLUMBIA UNIVERSITY Herbert Irving Comprehensive Cancer Center

FGFR Resistance

- Circulating DNA or tumor tissue upon disease progression following FGFR inhibitor therapy 82 FGFR2-altered CC patients
- 49 of 82 (60%) had FGFR2 kinase domain mutations on acquired resistance
 N550 (63%) and V565 (47%)
- Secondary mutations within FGFR2 kinase domain is the primary mode of acquired resistance

Wu Q, et al. Clin Cancer Res 2024

-NewYork-Presbyterian

COLUMBIA COLUMBIA UNIVERSITY HERBERT IRVING COMPREHENSIVE CANCER CENTER

Molecular Testing NCCN Recommendations

NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2025 Biliary Tract Cancers

NCCN Guidelines Index Table of Contents Discussion

PRINCIPLES OF MOLECULAR TESTING

Table 1: Recommendations for Molecular Testing in Unresectable or Metastatic Biliary Tract Cancers^{a-d}

Recommended Molecular	Anatomic Subsite			
Testing	Gallbladder	Intrahepatic CCA	Extrahepatic CCA	
NTRK gene fusion	X	X	X	
MSI-H/dMMR	X	X	X	
ТМВ-Н	X	X	X	
BRAF V600E mutation	X	X	X	
FGFR2 fusion or rearrangement	-	X	X	
IDH1 mutation	-	X	X	
HER2 (ERBB2) overexpression and/or amplification	X	X	x	
RET gene fusion	X	X	X	
KRAS G12C mutation	X	X	X	

MSI-H: microsatellite instability-high dMMR: mismatch repair deficient TMB-H: tumor mutational burden-high

Summary

- Cholangiocarcinoma may clinically present as cancer of unknown primary
- Capecitabine is the current standard of care in the adjuvant setting
- Gemcitabine and cisplatin with either durvalumab or pembrolizumab is the current standard of care in advanced disease
- IDH, FGFR2, Her2, BRAF, and NTRK are clinically meaningful targets
- Second generation inhibitors of IDH and FGFR need to tackle treatment resistance
- Yet to establish whether KRAS inhibitors will have meaningful clinical benefit in CC

