Classification and Management of Short and Long Term Complications in Esophageal Cancer Surgery

Steven N. Hochwald, MD, MBA Chief of Surgical Oncology Director, Comprehensive Cancer Center Mount Sinai Medical Center Miami Beach, FL

Clinical Professor of Surgery Columbia University

Your patient is leaking following esophagectomy!!!

First Step

Incidence of GI leaks

Type of anastomosis	Incidence of		
	anastomotic leak		
Esophageal	9.6%-14%		
Stomach	1.1%-3.3%		
Small intestine	1%-3.8%		
lleocolic	2%-6.5%		
Colocolonic	3%-5.4%		
Colorectal	7%-13%		
lleorectal	5%-19%		

Population based analyses of esophagogastric anastomotic leak rates based on location

Author, Year	#	Study Design	Leak Rate
Hulscher et al, 2001	5662	Systematic review and meta-analysis	Cervical = 13.6% Intrathoracic = 7.2%
Markar et al, 2013	298	Systematic review and meta-analysis	Cervical = 13.6% Intrathoracic = 3%
Kassis et al, 2013	7595	Retrospective database review	Cervical = 12.3% Intrathoracic = 9.3%

Mortality and length of stay in patients with and without anastomotic leak

Characteristic	No Leak (n = 6,791) n (%)	Leak (n = 804) n (%)	Total (n = 7,595) n (%)	<i>p</i> Value
Length of stay (days)	n = 6,711	n = 794	n = 7,505	< 0.001
Mean \pm SD	13.1 ± 12.3	$\textbf{27.4} \pm \textbf{23.8}$	14.7 ± 14.6	
Median	10.0	19.5	10.0	
Range	0.0-342.0	3.0-187.0	0.0-342.0	
IQR	8.0-14.0	12.0-33.0	8.0-15.0	
Discharge or 30-day mortality	n = 6,755	n = 800	n = 7,555	$<\!\!0.001$
1 = Alive	6,54 3 (96.9)	742 (92.8)	7,585 (96.4)	
2 = Dead	(212 (3.1)	(58 (7.2)	270 (3.6)	

IQR = interquartile range; SD = standard deviation.

Mortality is more than doubled with a leak

Critical issues in managing an esophogastric anastomotic leak

Timing—early or not

Stability of patient

Comorbidities

Size of defect

Location of defect

Extent of contamination

Conduit necrosis present or not

Consensus definition of anastomotic leak

Anastomotic Leak

Defined as: Full thickness GI defect involving esophagus, anastomosis, staple line, or conduit irrespective of presentation or method of identification

Type I: Local defect requiring no change in therapy or treated medically or with dietary modification

Type II: Localized defect requiring interventional but not surgical therapy, for example, interventional radiology drain, stent or bedside opening, and packing of incision

Type III: Localized defect requiring surgical therapy

Consensus definition of conduit necrosis

Conduit Necrosis

Type I: Conduit necrosis focal

Identified endoscopically Treatment—Additional monitoring or non-surgical therapy

Type II: Conduit necrosis focal

Identified endoscopically and not associated with free anastomotic or conduit leak Treatment—Surgical therapy not involving esophageal diversion

Type III: Conduit necrosis extensive

Treatment—Treated with conduit resection with diversion

Gastric necrosis

Methods to diagnose esophageal leak

- Clinical signs and symptoms
- Character of drain output
- Contrast esophagogram
- Flexible upper endoscopy
- Computed tomography scan (with or without oral contrast)
- Analysis of amylase level in drain fluid

Principles of diagnosis and resuscitation of an esophageal anastomotic leak

•CT with venous contrast + oral contrast if patient stable and conscious with low aspiration risk

Endoscopy and assessment of gastric pull-up and jejunal loop vitality

Proposed treatment algorithm for the management of an esophagogastric leak

Messager, M, EJSO 43 (2017)

Management of cervical anastomotic leak

Factors impacting esophagogastric anastomotic healing

I. Systemic

- Severe malnutrition
- Hypovolemia/hypotension
- Heart failure
- Hypertension
- Renal insufficiency
- Coronary disease
- Vascular disease
- Steroid use
- Diabetes mellitus
- Tobacco use
- Systemic chemotherapy

II. Local

- Arterial insufficiency
- Venous compromise
- Gastric trauma/inflammation/fibrosis
- Extrinsic compression
- Gastric distention
- Infection
- Radiation therapy

III. Technical

- Tension
- Anastomotic location
- Anastomotic technique
- Anastomotic buttressing
- Errors

Anastomotic leak

Esophageal anastomotic leak

Esophageal stent placement

Endoscopic stent management of anastomotic leak

Endoscopic polyflex stent placement for anastomotic leak

Endoscopic vacuum therapy for anastomotic leak

Endoscopic vacuum therapy for anastomotic leak

POD 10 3 X 2 cm cavity

Endoluminal vacuum therapy

Fluoro: deep fistulas are excluded

Granulation tissue

Cavity nearly closed after 24 days

Cavity smaller after 10 days

Endoscopic management of anastomotic leak

cSEMS = covered self expanding metal stent dPEJ= direct percutaneous endosopic jejunostomy

Large leak and some conduit necrosis Unstable patient

Large leak and some conduit necrosis Unstable patient

Small leak, stable patient

Small leak, stable patient Endoscopic clip

Contained leak, identified 5 weeks after surgery

Contained leak, identified 5 weeks after surgery Esophageal stent and percutaneous drain

Contained leak Much improved

Forrest plot demonstrating no significant difference in anastomotic leak Between handsewn and stapled esophagogastric anastomosis

Review of omental reinforcement following esophagectomy

		Anastomotic	<u>Leak rate, n (%)</u>	
<u>Author</u>	<u># patients</u>	<u>technique</u>	Omental flap	No omental flap
Bhat et al (2006)	194	Handsewn	3/97 (3)	14/97 (14)
Dai et al (2011)	255	Circular stapled	1/128 (1)	7/127 (6)
Sepesi et al(2012)	607	Stapled	10/215 (5)	41/392 (11)
Zheng et al (2013)	184	Handsewn	1/92 (3)	9/92 (10)

Leak with stricture

Avoid EEA, prefer side-to-side anastomosis

Minimally invasive esophagectomy with stapled side-to-side anastomosis (n=316)

Postoperative Outcomes

Total hospital LOS, median (range):	8 (5-137)
Reoperation:	24 (7.6%)
Readmission within 30 days:	23 (7.3%)
In-hospital mortality:	3 (1%)
30-day mortality:	4 (1.3%)
90-day mortality:	16 (5%)

Cervical Anastomosis n=247

Anastomotic leak occurred in 21 of 247 patients (8.5%) following a cervical anastomosis.

Ben-David, Tuttle and Hochwald, Ann Surg Onc, 23: 2016

Robotic stapled side to side intrathoracic anastomosis Leak in 2/150 patients= 1%

Peng JS, Hochwald SN. Surg Oncol Clin N Am. 2019 Apr;28(2):177-200

Kukar M and Hochwald S, J Gastrointest Surgery, in press, 2025

Conclusions

Anastomotic problems following esophagectomy are more frequent than in other areas of the GI tract

Vast majority do not need reoperative surgery

Clinical stability of patient is a critical factor to dictate intervention

Look for conduit necrosis, timing and size of defect

Manage with endoscopy and drainage

Diagnosis and management of esophageal leak

