

Antibody Drug Conjugates to Enhance Anti-Tumor Immune Response

Ana C. Garrido-Castro, MD Assistant Professor of Medicine, Harvard Medical School Breast Oncology Center, Dana-Farber Cancer Institute MaTOS – March 29, 2025

Current Landscape of ADCs in Breast Cancer

Modified from: LoRusso P et al. Clin Cancer Res 2011;17(20):6437-47; Modi S et al. J Clin Oncol. 2022;30(17_suppl); Bardia A et al. Ann Oncol 2022;33(suppl_7):S88-S121; Bardia A et al. Ann Oncol 2020;31(suppl_4):S1142-S1215; Garrido-Castro AC. SABCS 2023.

ADCs in HER2-positive Breast Cancer

WOMEN'S HOSPITAL

HARVARD MEDICAL SCHOOL

DB04: T-DXd vs TPC for HER2-low MBC After Chemotherapy

BRIGHAM AND WOMEN'S HOSE

WOMEN'S HOSPITAL

Dana-Farber

Cancer Institute

DB06: T-DXd for HER2-low/ultra-low Endocrine-Refractory MBC

Sacituzumab govitecan for HER2-negative MBC

BRIGHAM AND WOMEN'S HOSE

WOMEN'S HOSPITAL

Dana-Farber

Cancer Institute

Bardia A et al. ESMO 2020; Rugo H et al. ASCO 2022; Rugo H et al. ESMO 2022.

Datopotamab deruxtecan for HER2-negative MBC

Bardia A et al. J Clin Oncol. 2024;42(19):2281-94; Bardia A et al. Ann Oncol. 2023;34(suppl 2):S1254-S1335; Bardia A et al. J Clin Oncol. 2024;43(3):285-96; Pistilli B et al. ESMO VP1-2025. doi:10.1016/j.annonc.2025.01.009.

BRIGHAM AND WOMEN'S HOSE

WOMEN'S HOSPITAL

ADCs in Breast Cancer

	Trastuzumab emtansine (T-DM1)	Trastuzumab deruxtecan (T-DXd)	Trastuzumab duocarmazine (SYD985)	Disitamab vedotin (RC48-ADC)	Sacituzumab govitecan (SG)	Datopotomab deruxtecan (Dato-DXd)	Sacituzumab tirumotecan (MK-2870)	Patritumab deruxtecan (U3-1402)	Enfortumab vedotin (EV)
Target	HER2	HER2	HER2	HER2	TROP2	TROP2	TROP2	HER3	Nectin-4
Payload	Microtubule inhibitor (DM1)	Topo I inhibitor (DXd)	DNA alkylation (duocarmazine)	Microtubule inhibitor (MMAE)	Topo I inhibitor (SN38)	Topo I inhibitor (DXd)	Topo I inhibitor (KL610023)	Topo I inhibitor (DXd)	Microtubule inhibitor (MMAE)
Linker cleavage	No	Enzymatic (peptidase)	Enzymatic (peptidase)	Enzymatic (peptidase)	Enzymatic and pH- dependent	Enzymatic (peptidase)	Enzymatic and pH-dependent	Enzymatic (peptidase)	Enzymatic (peptidase)
Bystander effect	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
DAR	3.5	~8	~2.8	4	7.6	4	7.4	7.8	3.8
Dosing	D1 (Q3W)	D1 (Q3W)	D1 (Q3W)	D1 (Q2W)	D1, D8 (Q3W)	D1 (Q3W)	D1 (Q2W)	D1 (Q3W)	D1, D8, D15 (Q4W)

ADC Engagement with Immune Effector Cells to Elicit Antitumor Immunity

Fu Z et al. Sig Transduct Target Ther 2022:7(93). doi.org/10.1038/s41392-022-00947-7.

Topo-I Inhibition Depletes T-regs and Upregulates MHC class-I and PD-L1 Expression

BRIGHAM AND WOMEN'S HOSPITAL

Dana-Farber

Cancer Institute

Topo-I Inhibition Depletes T-regs and Upregulates MHC class-I and PD-L1 Expression

IwaiT et al. Oncotarget. 2018;9(59):31411-21.

DNA Damage Induces cGAS-STING Pathway Activation

Intratumoral STING depletion abolishes PARPi-induced T-cell recruitment and antitumor efficacy

pIRF3+ tumor cells

OLA

OLA

pIRF3⁺ DCs

P = 0.0176

VEH

STING KO

P = 0.0400

OLA

OLA

STING KO

Hypothesis: TOPi ADC Synergize with ICI via DNA Damage-Induced T-cell Recruitment + Restoration of Effector Function

Dana-Farber Cancer Institute

KATE-2: T-DM1 + Atezolizumab for HER2+ MBC

In the PD-L1+ subgroup, 1-year OS rate was numerically higher in T-DM1 + atezolizumab (94.3%) vs T-DM1 + placebo arm (87.9%); in PD-L1-, 85.1% vs. 89.7%

Emens L et al. ESMO 2019; Emens LA et al. Lancet Oncol. 2020;21:1283-95

BRIGHAM AND

WOMEN'S HOSPITAL

DS8201-A-U105: T-DXd + Nivolumab

Hamilton E. et al. ESMO Breast 2022.

HARVARD

MEDICAL SCHOOL

MORPHEUS: Topo I-inhibitor ADC + ICI in 1L mTNBC

WOMEN'S HOSPITAL

BEGONIA: Topo I-inhibitor ADC + ICI in 1L mTNBC

Dato-DXd + Durvalumab in mTNBC

- Responses observed regardless of PD-L1
- No DLTs

na-Farbe

icer Institute

• TRAE ILD/pneumonitis: G1, n=1; G2, n=2

BRIGHAM AND

WOMEN'S HOSPITAL

• Stomatitis: most common AE leading to dose reduction (n=11)

T-DXd + Durvalumab in HER2-low mTNBC

- Responses regardless of PD-L1 or HER2-low category
- No DLTs
- TRAE ILD/pneumonitis: G1, n=3; G2, n=3; G3, n=1, G5, n=1 (COVID-associated pneumonitis)

Schmid P et al. ESMO 2023; Schmid P et al. SABCS 2022.

TROP2-directed ADC + ICI in 1L PD-L1+ mTNBC

TROP2-directed ADC + PD-(L)1 Inhibitor for Residual Disease Post-Neoadjuvant Therapy

TROP2-directed ADC + PD-(L)1 Inhibitor as Neoadjuvant Therapy

McArthur HL et al. SABCS 2023; Spring L et al. ASCO 2022; Spring L et al. Ann Oncol 2024;5(3):293-301; Shatsky R et al. ASCO 2024; Meisel J et al. ASCO 2024.

TROP2-directed ADC + ICI in "Immune-cold" MBC

SACI-IO HR+: Study Schema

Metastatic or locally advanced unresectable breast cancer

- HR-positive (ER ≥ 1% or PR ≥ 1%), HER2negative (IHC 0, 1+, or 2+/ ISH-)
- No restriction on PD-L1 status^a
- ≥1 endocrine therapy for mBC <u>or</u> progression on or within 12 months of adjuvant endocrine therapy
- 0-1 prior chemotherapy for mBC
- No prior topoisomerase I-inhibitor ADC, irinotecan, or PD-1/-L1 inhibitor
- No known active brain metastases or leptomeningeal disease

Study activation date: 9/23/2020. Data cutoff for analysis: 3/9/2024

^a Protocol amendment activated in 1/2022 to allow participants with any PD-L1 status to enroll. ^b Central PD-L1 testing performed with PharmDx 22C3 assay. PD-L1-positive, combined positive score (CPS) ≥1. Note: There is no approved CDx with 22C3 for HR+/HER2- mBC.

Abbreviations: HR, hormone receptor; ER, estrogen receptor; PR, progesterone receptor; IHC, immunohistochemistry; ISH, in sit u hybridization; mBC, metastatic breast cancer; ADC, antibody drug conjugate; ITT, intent-to-treat; PFS, progression-free survival; OS, overall survival; ORR, objective response rate; DOR, duration of response; TTOR, time to objective response; CBR, clinical benefit rate; HRQoL, health-related quality of life.

HARVARD MEDICAL SCHOOL

Baseline Characteristics

	SG + Pembrolizumab	SG	Total
	(N=52)	(N=52)	(N=104)
Age, median (range)	56.5 (31.0 - 81.0)	57.0 (27.0 - 80.0)	57.0 (27.0 - 81.0)
ER status ^a			
≥10%	49 (94.2%)	50 (96.2%)	99 (95.2%)
1-9%	2 (3.8%)	1 (1.9%)	3 (2.9%)
Unknown	1 (1.9%)	1 (1.9%)	2 (1.9%)
PD-L1 status ^b			
Negative	35 (67.3%)	28 (53.8%)	63 (60.6%)
CPS ≥1	16 (30.8%)	24 (46.2%)	40 (38.5%)
CPS 1-9	13 (25.0%)	20 (38.5%)	33 (31.7%)
CPS ≥10	3 (5.8%)	4 (7.7%)	7 (6.7%)
Not tested	1 (1.9%)	0 (0.0%)	1 (1.0%)
Presentation at mBC diagnosis			
De novo mBC	10 (19.2%)	13 (25.0%)	23 (22.1%)
Recurrent mBC	42 (80.8%)	39 (75.0%)	81 (77.9%)
Liver metastasis at baseline			
Yes	40 (76.9%)	41 (78.8%)	81 (77.9%)
No	12 (23.1%)	11 (21.2%)	23 (22.1%)
Prior neo-/adjuvant chemotherapy ^c			
Yes	28 (66.7%)	28 (71.8%)	56 (69.1%)
No	14 (33.3%)	11 (28.2%)	25 (30.9%)
Prior CDK4/6 inhibitor in any setting			
Yes	47 (90.4%)	45 (86.5%)	92 (88.5%)
No	5 (9.6%)	7 (13.5%)	12 (11.5%)
Prior chemotherapy regimens for mBC			
0	27 (51.9%)	26 (50.0%)	53 (51.0%)
1	25 (48.1%)	26 (50.0%)	51 (49.0%)

^a Estrogen receptor (ER) in the most recent available tumor sample prior to study registration. ER positive (% unknown) in 2 patients. ^b Central PD-L1 testing performed on the baseline research biopsy (if a research biopsy was not performed, testing was performed on the most recent available archival tumor sample prior to study registration). Tissue was not available for testing in one patient. PD-L1-positive defined as combined positive score (CPS) ≥1. ^c Patients diagnosed with *de novo* stage IV breast cancer (SG + Pembrolizumab, n=10; SG, n=13) excluded from denominator.

SACI-IO HR+: ITT

Median follow-up: 12.5 months

BRIGHAM AND WOMEN'S HOSPITAL Garrido-Castro AC et al. J Clin Oncol 2024;42(suppl 17; abstr LBA1004).

SACI-IO HR+: PD-L1+ (CPS≥1)

Median follow-up: 12.5 months

BRIGHAM AND WOMEN'S HOSPITAL Garrido-Castro AC et al. J Clin Oncol 2024;42(suppl 17; abstr LBA1004).

TroFuse-010: Sac-TMT ± Pembrolizumab vs TPC in HR+/HER2- mBC after ET

WOMEN'S HOSPITAL

Landscape of ADC Payloads Beyond Microtubule and DNA-Intercalating Agents

Novel ADC Payloads

HARVARD

MEDICAL SCHOOL

Dana-Farber

Cancer Institute

Immune-Stimulating ADCs (ISACs)

Agent	Target	Payload	Latest trial phase	Setting	Trial number
TAK500	CCR2	STINGa	Phase la/b	Advanced solid tumors	NCT05070247
XMT-2056	HER2	STINGa	Phase I	Advanced solid tumors	NCT05514717
HE-S2	PDL1	TLR7-8a	Preclinical	Advanced solid tumors	Preclinical
PERTUZUMAB ZUVOLIMOD SBT-6050	HER2	TLRa	Discontinued	Advanced solid tumors	NA
BDC-1001	HER2	TLR7-8a	Discontinued	Advanced solid tumors	NA
NJH395	HER2	TLR7a	Discontinued	Advanced solid tumors	NA
TAC 001	CD22	TLR9a	Phase II	Advanced solid tumors	NCT05399654

Izzo D et al. Ther Adv Med Oncol. 2025;17: 1-16.

ADC Resistance: Beyond Target and Payload

Dana-Farber Cancer Institute Loganzo F et al. Mol Cancer Ther. 2016;15(12):2825-34.

Key Takeaways

- Potential of ADCs to enhance antitumor immune response:
 - Antibody-dependent cell-mediated cytotoxicity and cellular phagocytosis, complement-dependent cytotoxicity
 - Tumor cell death-mediated activation of DCs
 - Depletion of regulatory T-cells, upregulation of MHC class-I and PD-L1 expression
 - Activation of cGAS-STING pathway \rightarrow immune cell recruitment to tumor
- Novel ADCs and targeted therapy approaches in development:
 - New ADC targets (e.g., non-tumor cells in microenvironment) and payloads (e.g., immunomodulatory, radionuclide)
 - Bispecific ADCs (BsADCs)
 - Novel combinations (e.g., ICI, PARPi)
- Understanding mechanisms that drive response and resistance to therapies is key to help inform treatment strategies: combinations, sequencing, duration of therapy

Thank you