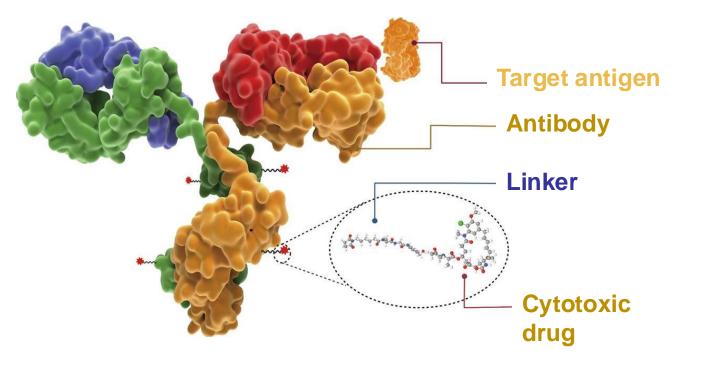


ADCs: Other Novel Targets and Pathways

Cynthia X. Ma, M.D., Ph.D. Professor of Medicine Clinical Director of the Breast Cancer Program Section of Medicine Oncology, Division of Oncology



www.siteman.wustl.edu

Antibody-drug conjugate (ADC) background

Key Components:

- Tumor-specific mAb
- Linker (Cleavable or noncleavable)
- Cytotoxic payload

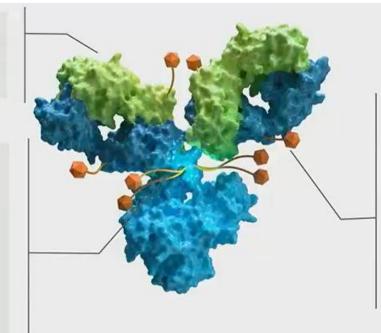
- Release payload within or near the target cancer cell
- Bystander effect for killing surrounding cancer cells

HER2 and TROP2: most-targeted antigens for Breast ADCs Topo 1 inhibitor: most common payload

	Trastuzumab Emtansine (T-DM1)	Trastuzumab Deruxtecan (T-DXd)	Sacituzumab Govitecan (SG)	Datopotamab deruxtecan (Dato-DXd)
Target antigen	HER2	HER2	TROP2	TROP2
Linker cleavage	No	Tetrapeptide-based cleavable linker	Acid cleavable hydrolysable linker	Tetrapeptide-based cleavable linker
Membrane- permeable payload	No	Yes	Yes	Yes
Payload MOA	Emtansine (tubulin inhibitor)	DXd (Topo 1 inhibitor)	SN-38 (Topo 1 inhibitor)	DXd (Topo 1 inhibitor)
Drug-antibody ratio	3.5:1	8:1	7.6:1	4:1

Sawant et al, Medical Oncology (2024) 41:301

Sacituzumab Tirumotecan (Sac-TMT)


Trop2 targeted ADC with a topo 1 inhibitor payload

Antibody

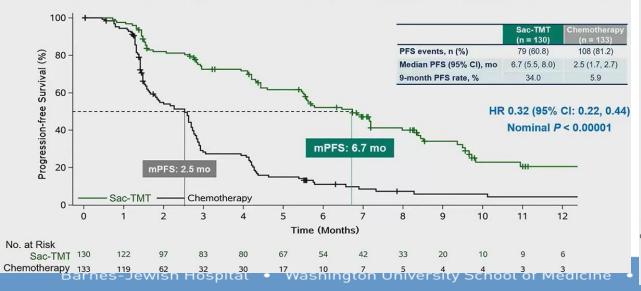
 hRS7, a recombinant humanized anti-TROP2 antibody with high affinity

Linker

- Kthiol conjugation: irreversible coupling to improve stability of ADC
- Payload release: intracellular cleavage and extracellular hydrolysis in TME
- Balanced stability: balance between efficacy and safety to expand therapeutic window

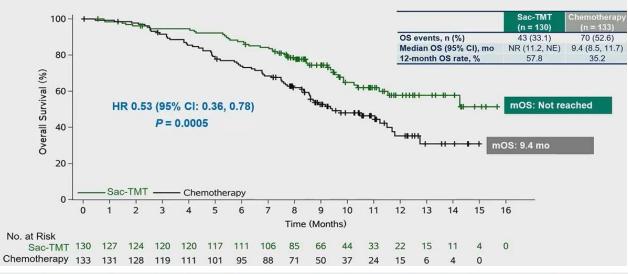
Payload

- Novel topo l inhibitor (a belotecan derivative), highly active
- Average DAR: 7.4 (range: 7–8)
- Bystander effect
- Methylsulfonyl derivatization enhances linker stability and toxin permeability

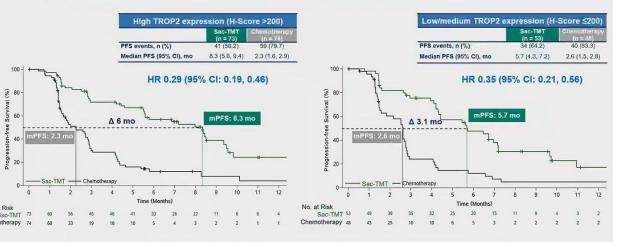

Approved in China for TNBC

OptiTROP-Breast01 Phase III trial

Patients with locally recurrent or metastatic TNBC Sac-TMT, Relapsed or refractory to 2 or more 5 mg/kg IV, every 2 weeks prior chemotherapy regimens for R unresectable, locally advanced or metastatic disease 1:1 · For prior therapy, 1 could be in the Physician's choice of (neo)adjuvant setting, provided progression occurred during treatment or chemotherapy: within 12 months after treatment eribulin, capecitabine, discontinuation gemcitabine, or vinorelbine Received taxane(s) in any setting

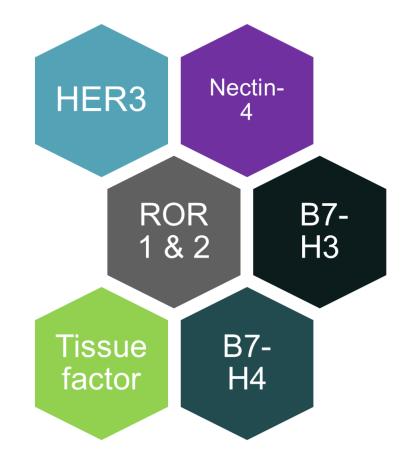

Progression-Free Survival by BICR (Final Analysis)

Sac-TMT significantly improved PFS over chemotherapy with a 68% lower risk of disease progression or death.


Overall Survival (Interim Analysis)

Sac-TMT significantly improved OS over chemotherapy with a 47% lower risk of death.

Progression-Free Survival (per BICR) by TROP2 Expression


PFS benefit was observed with sac-TMT over chemotherapy regardless of TROP2 expression.

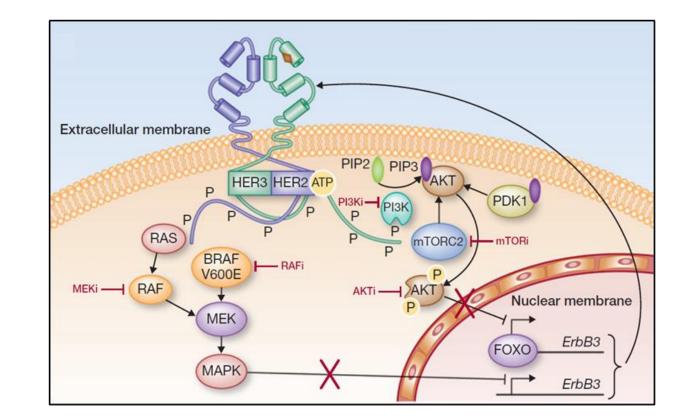
Data cutoff: Nov 30, 2023; the protocol-specified final analysis of PFS

BICR, blinded independent central review, Chemo, chemotherapy, CI, confidential interval, HR, hazard ratio; mPFS, median progression-free survival, TROP2, trophoblast cell surface antigen 2.

Other ADC targets under evaluation in breast cancer

SITEMAN CANCER CENTER

HER3 Signaling in breast cancer

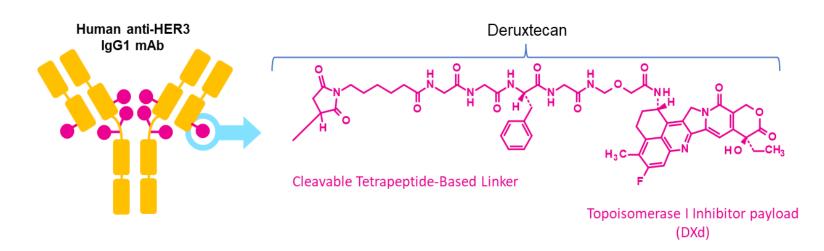

HER3 Structure

- Ligand-binding extracellular domain
- Transmembrane domain
- Intracellular domain
- C-terminal tail

HER3 receptor dimerization with EGFR or HER2 leads to activation of downstream signaling pathways

Increased HER3 expression in MBC compared with primary breast tumors

HER3 overexpression in BC associated with higher risk for death at 5 years (OR 2.89)



Gala and Chandarlapaty, *Clin Cancer Res* 2014; 20(6) Li Q *et al.* Oncotarget 2017; Ocana A *et al.*, JNCI 2013.

PATRITUMAB DERUXTECAN (HER3-DXd)

HER3-DXd is an ADC comprised of

- Fully human anti-HER3 IgG1 monoclonal antibody (patritumab)
- Tetrapeptide-based cleavable linker
- Topoisomerase I inhibitor payload, an exatecan derivative (DXd)

Key attributes of HER3-DXd

Topoisomerase I inhibitor payload

High payload potency

High drug to antibody ratio (8)

DXd has short systemic half-life

Stable linker-payload

Tumor-selective cleavable linker

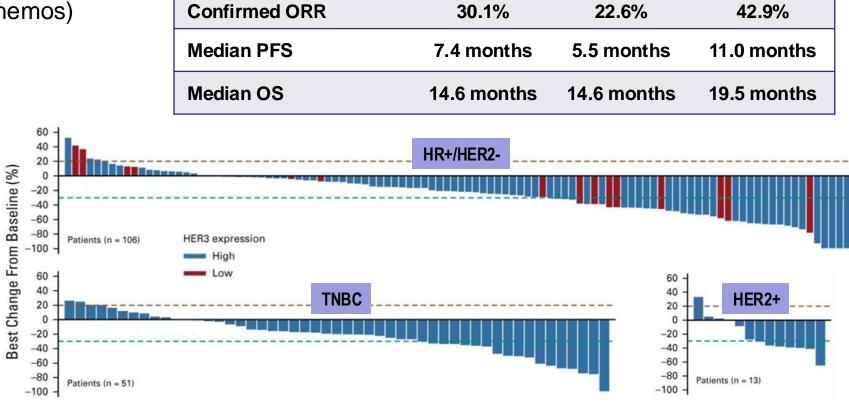
Bystander antitumor effect

Krop IE et al., ASCO 2022.

HR+/HER2-

(n=113)

TNBC


(n=53)

Ph I/II: Patritumab Deruxtecan (HER3 DXd) in mBC

Dose escalation trial in MBC

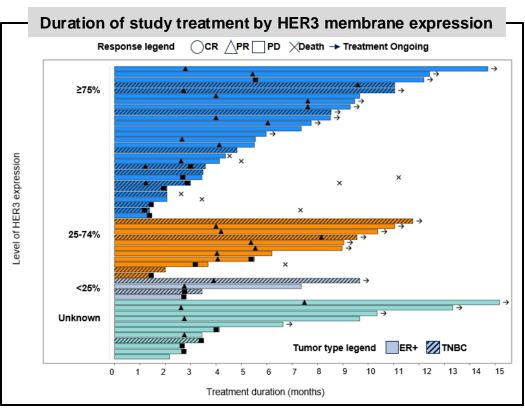
- included all 3 subtypes
- median priors for MBC: 5 (3 prior chemos)

HER3-DXd demonstrated clinically meaningful and durable activity across all subtypes.

Krop IE et al., J Clin Oncol 2023; 41(36): 5550-5560.

NCT02980341

HER2+


(n=14)

Outcome (BICR per RECIST v1.1)

HER3-Dxd: phase II study in TNBC and ER+ MBC

N=60; 40% TNBC

- Median priors for MBC: 3
- Prior chemotherapy: 90%
- Prior IO:

20%

Hamilton E et al. ASCO 2023

	Membrane HER3 ≥75% (N=30)	Membrane HER3 25-74% (N=13)	Membrane HER3 <25% (N=4)	Unknown HER3 Expression (N=13)	Total (N=60) N (%)
Partial Response	10 (33.3)	6 (46.2)	2 (50.0)	3 (23.1)	21 (35.0)
ORR, n (%)	10 (33.3)	6 (46.2)	2 (50.0)	3 (23.1)	21 (35.0)
CBR, n (%)	12 (40.0)	7 (53.8)	2 (50.0)	5 (38.5)	26 (43.3)

Among patients with heavily pretreated BC:

ORR was 35%, CBR was 43%, and DoR was at least 6 months in nearly half of responders

Responses were independent of HER-3 expression!

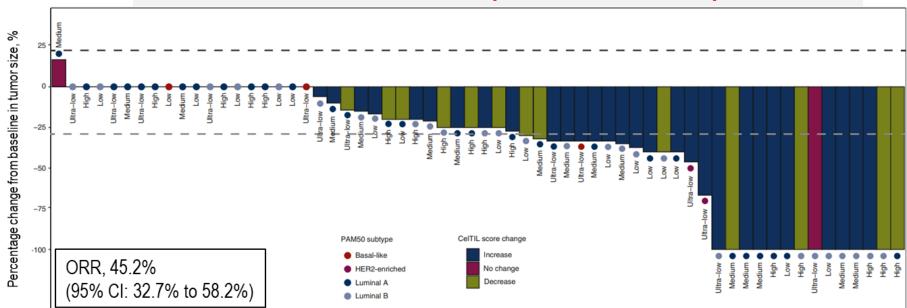
ICARUS-Breast01: Patritumab-DXd in 2L HR+/HER2- MBC

Single arm study with patritumab deruxtecan (5.6mg/kg q3w)

- HR+/HER2- or HER2low
- Progression on CDK4/6 inhibitors + ET
- Progression on 1 prior line of MBC chemotherapy

Tumor response at 3 months from treatment initiation, n (%)		
Partial response	16 (28.6)	
Stable Disease	30 (53.3)	
Progressive Disease	10 (17.9)	

Most common AEs were fatigue and GI toxicity


Grade \geq 3 neutropenia in 10% and Grade \geq 3 thrombocytopenia in 4% of patients Further efficacy and biomarker analysis from ICARUS-Breast01 ongoing

Pistilli B et al., Abstract 1890 ESMO Breast 2023.

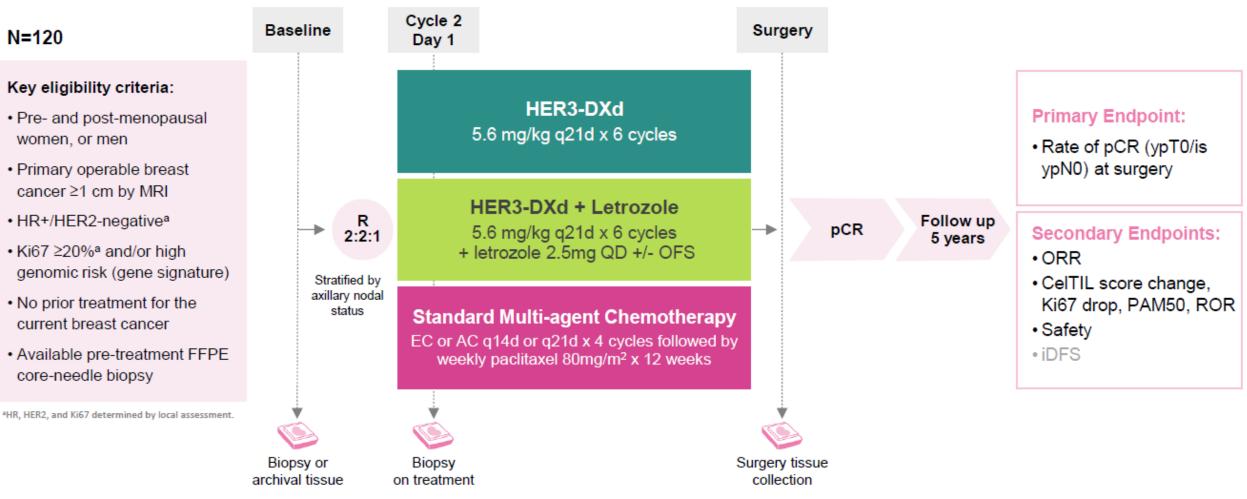
NCT04965766

Solti-TOT-HER3: Neoadj single dose patritumab-DXd in HER2- BC

Two-part window of opportunity study in treatment-naïve patients with single dose of patritumab deruxtecan **Part A:** HR+/HER2- (N=78) 6.4 mg/kg **Part B:** HR+/HER2- (N=20) or TNBC (N=17) 5.6 mg/kg

Part A results: ORR 45.2% independent of HER3 expression

- ORR for Part B was 32%
- Lower incidence of hematological and hepatic toxicity observed with lower dose


Oliveira M et al., Ann Oncol 2023; 34(8):670-680. Oliveira M et al., ASCO 2023

NCT04610528

N=120

Parallel, randomized, non-comparative, open-label, phase II trial (NCT05569811)

Oliveira M et al, SABCS 2024

HER3-DXd showed pCR and ORR rates similar to multi-agent chemotherapy

- Treatment response correlated with decrease in Ki67, switch to less proliferative PAM50 subtype, decrease in ROR, and increase in CeITIL score.
- HER3-DXd led to a lower incidence of G3+ AE, dose reduction, treatment discontinuation.

Oliveira M et al, SABCS 2024

Ongoing trials for patritumab-DXd

• TUXEDO-3 Trial NCT05865990

- Phase II single-arm study of patritumab-DXd in patients with active brain metastases from BC and NSCLC
- Patritumab deruxtecan in patients with MBC NCT04699630
 - Phase II three-part study evaluating Patritumab-DXd in patients with MBC
 - HR+/HER2- or TNBC post other ADCs

HER3-targeted ADCs in development

DB-1310¹

- Duality Biologics
- Topo I inhibitor payload
- DAR ~8
- Preclinical efficacy in breast & NSCLC models

BL-B01D1²

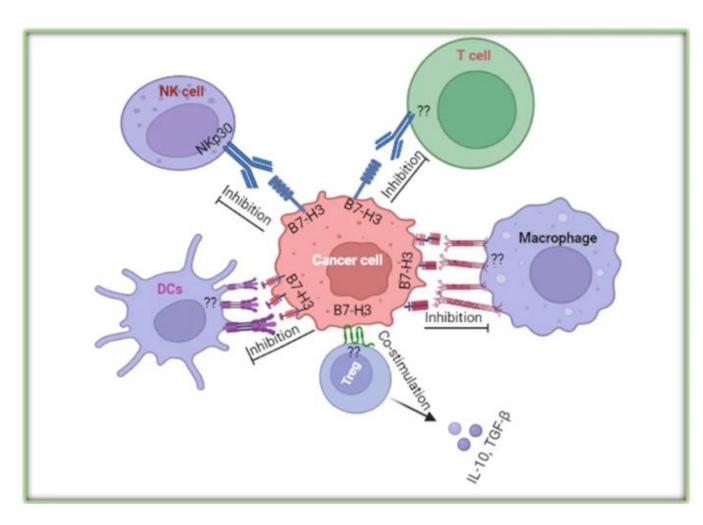
- SystImmune & BMS
 EGFR-HER3 bispecific antibody with Topo I inhibitor payload
 DAR ~8
- Phase I BC study, ORR 45.5%

SHR-A2009³

- Jiangsu Hengrui
- Topo I inhibitor payload
- adv solid tumors (median 3L prior) ORR 25.0%, mDoR 7.0 months

YL202⁴

- Suzhou Medilink
- Topo I inhibitor payload


1. xi L et al. Abstract 1884 AACR 2023. 2. Zhany J et al., Abstract PS08-07 SABCS 2023. 3. Zhou Q et al., Abstract 658MO ESMO 2023. 4. Xu J et al., Abstract 563 AACR 2023.

Barnes-Jewish Hospital • Washington University School of Medicine • National Cancer Institute • National Comprehensive Cancer Network

B7-H3 (CD276) an IMMUNE CHECKPOINT molecule

- B7H3 is an immune checkpoint molecule in B7 family that promotes tumorigenesis by suppressing antitumor immunity
- B7H3 inhibits proliferation of CD4+ and CD8+ T cells and inhibits release of interferon γ release via the mTOR pathway
- Overexpressed in multiple tumor types and correlates with poor prognosis¹
- Regulates stem cell enrichment and promotes chemoresistance

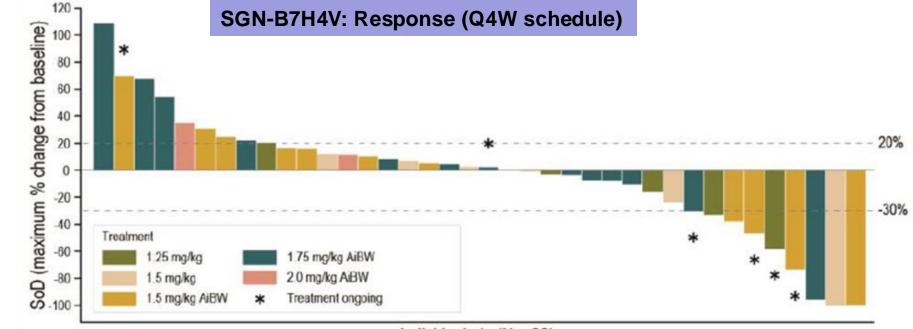
1. Getu AA et al., Mol Cancer 2023; 22(43).

ADCs targeting B7-H3 (CD276)

- ADCs in development for indications in multiple solid tumors, primarily lung and colorectal cancers
- Preclinical data has demonstrated efficacy in breast cancer cell lines

Molecule	Stage	Cohorts
	Preclinical	
ITC-6102RO	Preclinical	
MGC026	Phase I NCT06242470	Multiple solid tumors
HS-20093	Phase II multiple	Multiple solid tumors
Vobramitamab duocarmazine	Phase II multiple	mCPRC, NSLC, SCLC, melanoma, SCCHN, anal
lfinatamab deruxtecan	Phase I/II NCT04145622 NCT05280470	SCLC, sqNSCLC, mCPRC

B7-H4: Suppressor of antitumor immunity


- B7-H4 (VCTN1) is a member of the CD28/B7 family of cell surface proteins that promotes tumorigenesis by suppressing anti-tumor immunity
- Overexpressed in multiple tumor types including breast, endometrial, and ovarian^{1,2}
- B7-H4 can function as a co-inhibitory factor inhibiting CD4+ and CD8+ T- cell proliferation, cytokine production etc.
- ADCs in development for indications in multiple solid tumors, including HR+/HER2- BC and TNBC

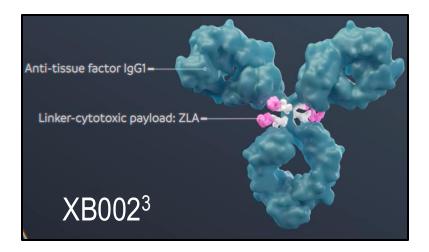
Molecule	Stage	Cohorts
LNCB74	Preclinical	
BG-C9074	Phase I NCT06233942 (planned)	Multiple solid tumors
HS-20089	Phase I NCT05263479	Breast, ovarian, endometrial
XMT-1660	Phase I NCT05377996	Breast, ovarian, endometrial
SGN-B7H4V	Phase I NCT05194072	Multiple solid tumors
AZD8205	Phase I/II NCT05123482	Biliary, ovarian, breast, endometrial

1. Podojil JR and Miller SD. *Immunol Rev* 2017; 276(1): 40-51. 2. Sachdev JS et. Al J Clin Oncol 37, 2019 (suppl; abstr 2529) 3. Prasad DV et al. Immunity 18, 863–873 (2003).

B7-H4 ADCs

SGN-B7H4V comprised of B7-H4 directed MAb conjugated to MMAE via a protease-cleavable linker

Individual pts (N = 38)


- activity across tumor types
- including confirmed responses in 7/28 patients with advanced ER+ and TNBC¹

1. Perez CA et al., ESMO 2023. NCT05194072 2. Mersana Corporate Presentation 2024. NCT05377996

Tissue factor

ADCs targeting Tissue Factor

- High expression in multiple cancers, promoting angiogenesis, invasion, and metastasis¹
- Tisotumab vedotin was recently approved for metastatic cervical cancer²

Molecule	Stage	Cohorts
STRO-004	Preclinical	
XB002	Phase I/II NCT04925284	Multiple solid tumors
XNW28012	Phase I/II CTR20233056	Multiple solid tumors
MRG004A	Phase I/II NCT04843709	Multiple solid tumors
Tisotumab vedotin	Approved for cervical cancer; Phase II for other indications NCT03485209	Multiple solid tumors

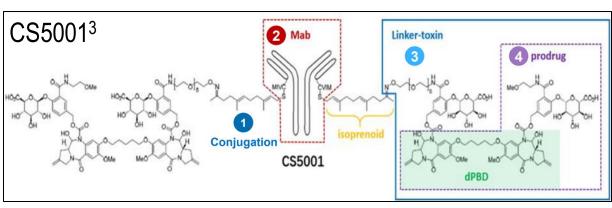
1. Unruh D and Horbinski C. J Hematol Oncol 2020; 13(93). 2. Bogani G et al., Curr Probl Cancer 2023; 47(3). 3. Exelixis Pipeline 2024.

Nectin

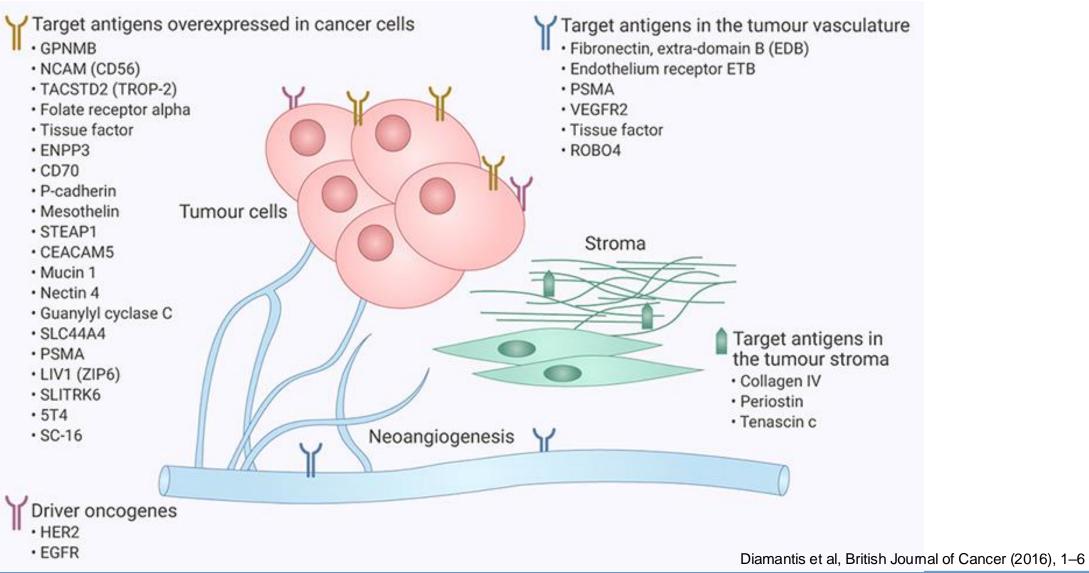
-4

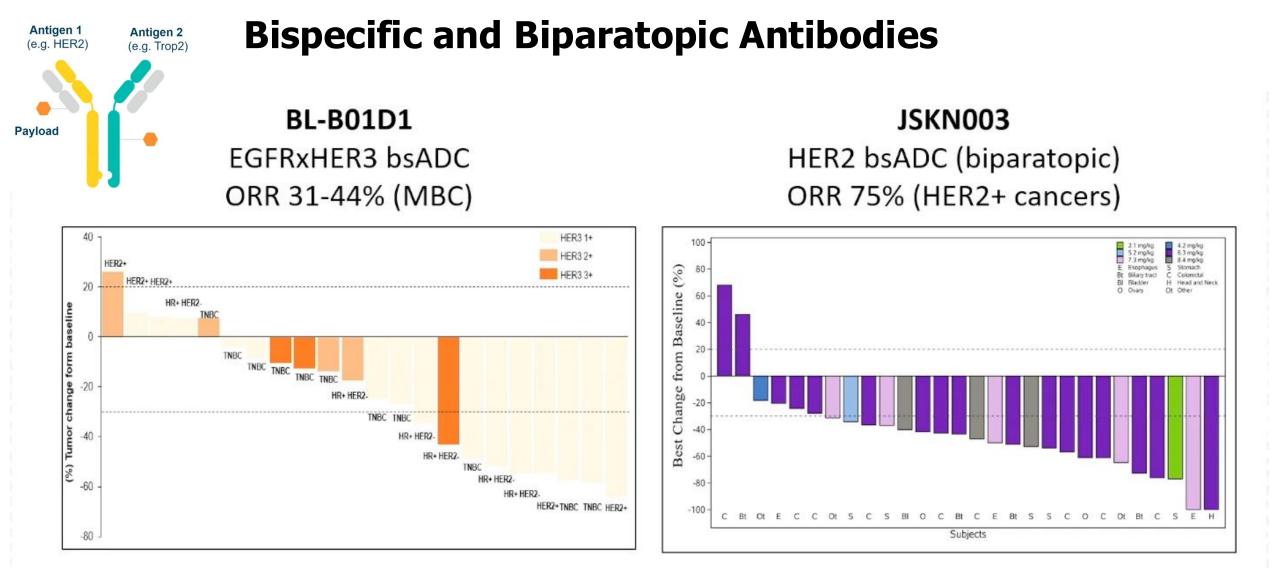
ADCs targeting Nectin-4 (PVRL4)

- Cell adhesion molecule
 - Not expressed in normal adult tissue
- Overexpressed in multiple tumor types including TNBC and basal subtypes of BC¹
- Preclinical data showed efficacy in breast cancer patient-derived xenografts
- Phase I/II trials ongoing

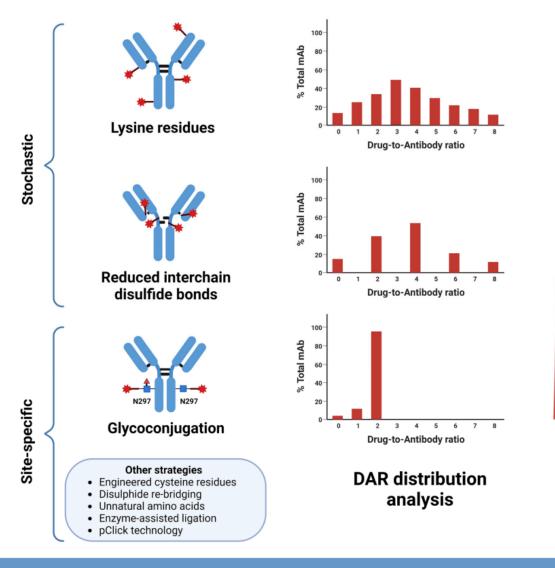

Molecule	Stage	Cohorts
ADRX-0706	Phase I NCT06036121	Multiple solid tumors
LY4101174	Phase I NCT06238479	Multiple solid tumors including TNBC
Enfortumab vedotin	Approved for urothelial cancer; Phase II for other indications NCT04225117 (completed)	Multiple solid tumors including HER2- BC and TNBC

ADCs targeting ROR1 and ROR2


- Receptor tyrosine kinase-like orphan receptors (ROR1 and ROR2) now known to signal through the WNT pathway^{1,2}
- Have roles in cell migration and cell invasiveness
- Highly expressed in development, but normally repressed in adult tissue


Molecule	Stage	Cohorts
STRO-003 (ROR1)	Preclinical	
CS5001 (ROR1)	Phase I NCT05279300	Multiple solid tumors including TNBC
Ozuriftamab vedotin (ROR2)	Phase I/II NCT03504488	Multiple solid tumors including TNBC
Zilovertamab vedotin (ROR1)	Phase II NCT04504916 (completed)	Multiple solid tumors including HER2- BC and TNBC

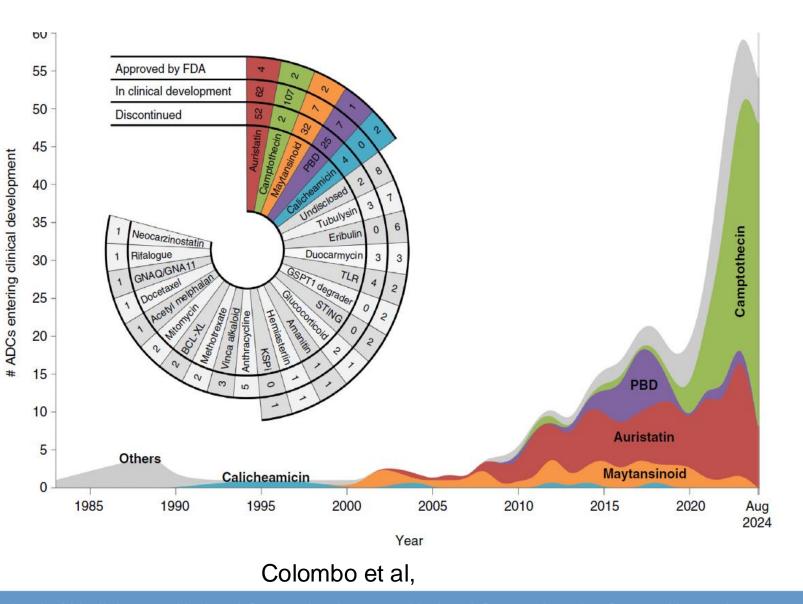
1. Zhao Y et al., Front Oncol 2021; 11. 2. Menck K et al., J Exp Clin Cancer Res 2021: 40(395). 3. CStone Annual Results Presentation 2024.


ADC Novel Targets

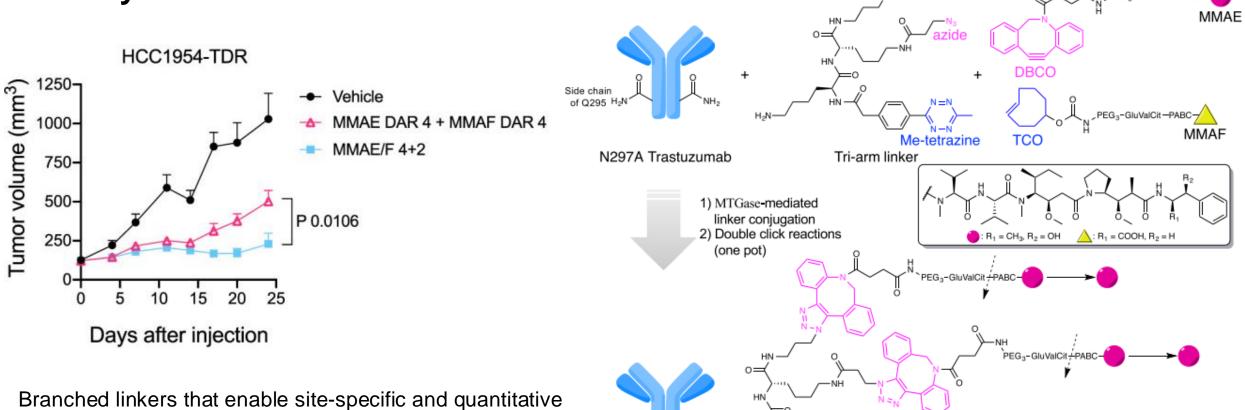
Jiong Wu et al SABCS 2023; Shen L. et al ESMO 2024

Site-specific Linker

- All the currently approved ADCs utilize a stochastic conjugation process
- The random linking of payload leads to high heterogeneity in PK
- Site-specific linking improves homogeneity in drug to antibody ratio, leading to more predictable PK, and efficiency compared to conventionally coupled agents.


Metrangolo V. et al, Cancers 2024, 16, 447

Homogeneity


ADC payload

Of the over 200 ADCs in clinical development

- Vast majority (n=107) have Topo 1 inhibitor payload
- 62 has auristatin payload

Dual Payload ADCs

- Branched linkers that enable site-specific and quantitative installation of payloads
- MMAE: cell membrane permeable, but subject to MDR1 efflux
- MMAF: cell membrane impermeable but can not be pumped out

Yamazaki CM et al, Nat Commun (2021), 12 (1):3528

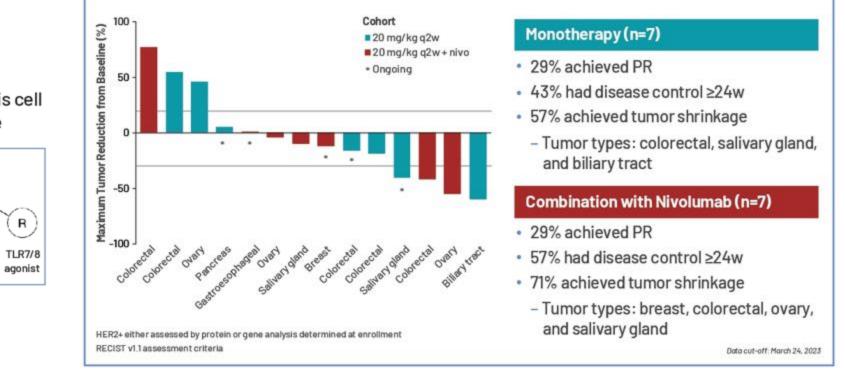
Cathepsins in lysosomes

PEG₃-GluValCit +PABC-

PEG₃-GluValCit-PAB

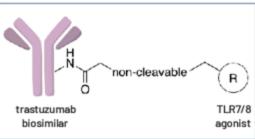
traceless

pavload release

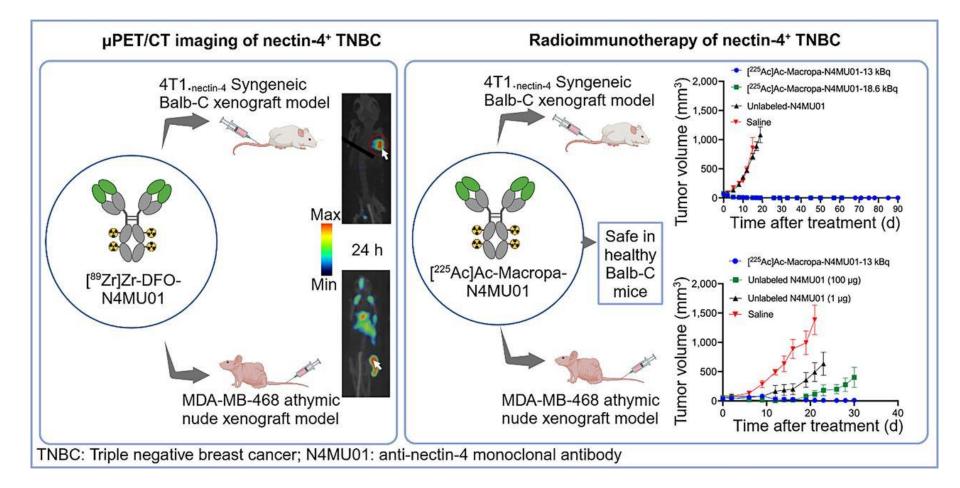

Dual-drug ADC

MMAE/F 4+2

Immune Stimulating Antibody Conjugates (ISACs)

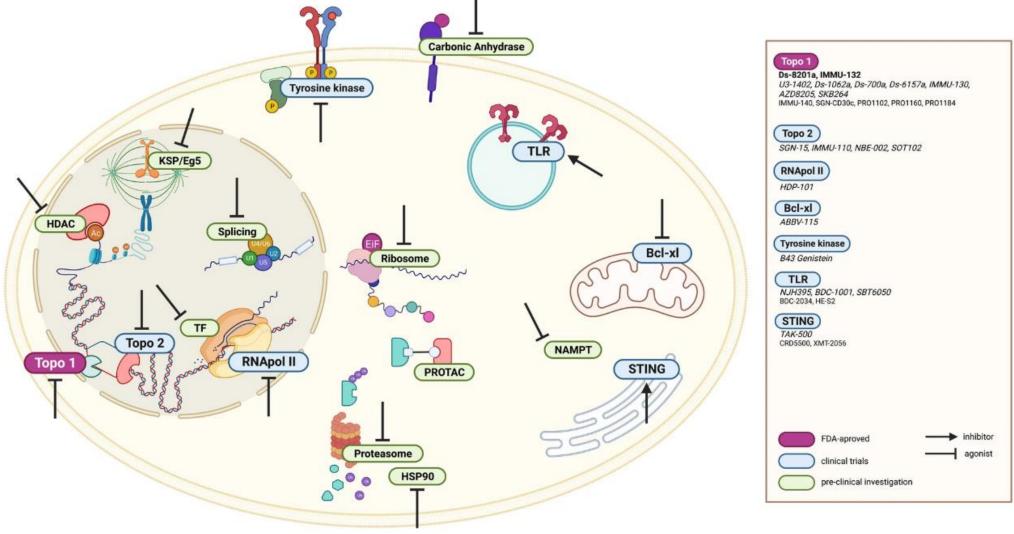

Meaningful Anti-tumor Activity in <u>Evaluable</u> Heterogeneous HER2+ Tumor Population at 20 mg/kg q2w (RP2D)

BDC-1001 Monotherapy and Combination with Nivolumab



Li, B, et al, ASCO 2023

- BDC-1001 consists of
 - Trastuzumab biosimilar
 - Payload: TLR7/8 agonist
 - Linker: non-cleavable
- BDC-1001 linker-payload is cell membrane-impermeable



Radioimmunoconjugates

Hanan Babeker et al. J Nucl Med 2025; jnumed. 124.268387

Conilh et al. Journal of Hematology & Oncology (2023) 16:3

Conclusion

- ADCs are a rapidly evolving class of cancer therapeutics, combining the specificity of monoclonal antibodies with anti-cancer potency of therapeutic payload.
- Advances in linker technology, payload diversity, and antibody engineering have the promise to improve the stability, efficacy and safety profile of ADCs.
- "Most" newer ADCs have antitumor activity irrespective of the levels of target expression (TROP2, HER3)
- Correlative science will be integral to define resistance mechanisms to ADCs and ultimately, how to sequence ADCs for patients

Acknowledgement

- Joyce O'Shaughnessy, MD
- Erika Hamilton, MD
- Paolo Tarantino, MD