

University of California San Francisco

#### Masters in Therapeutic Oncology Summit | Breast Edition March 28, 2025



## A primer on circulating tumor DNA technologies: The message is in the method

Mark Jesus M. Magbanua PhD Helen Diller Family Comprehensive Cancer Center University of California San Francisco

## Outline

- I. ctDNA 101: A historical perspective
- II. Technologies to optimize preanalytical conditions
- III. Technologies for ctDNA detection
- IV. Challenges in ctDNA detection
- V. Future directions
- VI. Summary

#### Circulating tumor DNA (ctDNA) is a subset of cell-free DNA shed from tumors



The fraction of ctDNA depends on many factors, including tumor characteristics (e.g., subtype and size).

-99%

#### The story of cell-free DNA and circulating tumor DNA (ctDNA)



#### Circulating tumor DNA analysis is a fast-growing area of research

## Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer

Sarah-Jane Dawson, F.R.A.C.P., Ph.D., Dana W.Y. Tsui, Ph.D., Muhammed Murtaza, M.B., B.S., Heather Biggs, M.A., Oscar M. Rueda, Ph.D., Suet-Feung Chin, Ph.D., Mark J. Dunning, Ph.D., Davina Gale, B.Sc., Tim Forshew, Ph.D., Betania Mahler-Araujo, M.D., Sabrina Rajan, M.D., Sean Humphray, B.Sc., Jennifer Becq, Ph.D., David Halsall, M.R.C.Path., Ph.D., Matthew Wallis, M.B., Ch.B., David Bentley, D.Phil., Carlos Caldas, M.D., F.Med.Sci., and Nitzan Rosenfeld, Ph.D.



National Library of Medicine

"circulating tumor DNA"

Advanced Create alert Create RSS

National Center for Biotechnology Information

Pub Med<sup>®</sup>

#### ctDNA carries genetic information (e.g., mutations) found in the tumor of origin



Where's Waldo? Paperback – Picture Book, November 12, 2019 by <u>Martin Handford</u>

https://waldo.candlewick.com/

#### **Preprocessing for ctDNA analysis**



| Plasma Collection                 |                     |                                                 |                             |                                                   |                                                         |  |  |
|-----------------------------------|---------------------|-------------------------------------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------------|--|--|
|                                   | Vendor 1            | Vendor 2                                        | Vendor 3                    | Vendor 4                                          | Vendor 5                                                |  |  |
| Tubes for<br>plasma<br>collection |                     |                                                 |                             |                                                   |                                                         |  |  |
| Cost                              | \$                  | \$\$                                            | \$\$\$                      | \$\$\$\$                                          | \$\$\$\$                                                |  |  |
| Blood draw<br>volume (mL)         | 4, 9                | 10                                              | 2, 10                       | 8.3                                               | 8.5                                                     |  |  |
| Stability                         | 4-6 h at RT or 4 °C | 7 days at RT (15-<br>25 °C) or 24 h at<br>35 °C | 14 days at RT (6-<br>37 °C) | 30 days at RT (15-<br>25 °C) or 8 days at<br>37°C | 7 days at RT (18-<br>25 °C) or 16 h at<br>RT (15-30 °C) |  |  |

RT, room temperature; h, hours

### **Extraction and Purification**

| Kits for<br>extraction and<br>purification | Vendor<br>1 | Vendor<br>2 | Vendor<br>3 | Vendor<br>4 | F Vendor<br>5<br>s | Vendor<br>6 |
|--------------------------------------------|-------------|-------------|-------------|-------------|--------------------|-------------|
| Type of separation                         |             |             |             |             | Ţ                  |             |
| Cost                                       | \$          | \$\$        | \$\$\$      | \$\$\$\$    | \$\$\$\$           | \$\$\$\$\$  |
| Reactions per<br>kit                       | 10, 250     | 50          | 25, 50      | 50          | 50                 | 10, 20, 50  |
| Input volume of<br>plasma (mL)             | 0.2–0.72    | 0.1–1       | 0.5–10      | 1-5         | 0.2–10             | 0.010-10    |
| Elution volume<br>(µL)                     | 5-30        | 20          | 15-50       | 20-150      | ≥50                | 25-100      |

#### Methods for ctDNA detection

| _                                                             |                                                             |                                                   |                                                                           | / Mo         | lolecular techniques for ctDNA assessment |
|---------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|--------------|-------------------------------------------|
| Method                                                        | Technology                                                  | Sensitivity                                       | Type of Alteration                                                        |              |                                           |
| qPCR                                                          | ARMS-Scorpions PCR                                          | 0.05-0.1%                                         | Known point mutation                                                      | ddPCR        |                                           |
|                                                               | Clamping PCR                                                | 0.1–1%                                            |                                                                           |              |                                           |
|                                                               | TaqMan                                                      | 0.1–1%                                            |                                                                           | /            |                                           |
| Digital PCR                                                   | Beaming                                                     | 0.01%                                             |                                                                           |              | l 🔋 l                                     |
|                                                               | ddPCR                                                       | 0.001%                                            |                                                                           | BEAMing      |                                           |
| Target sequencing                                             | TAm-Seq                                                     | >2%                                               | Point mutations in gene                                                   | $\mathbb{N}$ | Laser — Detector                          |
|                                                               | SAFE-SeqS                                                   | 0.1%                                              | regions; structural alterations                                           |              | * *                                       |
|                                                               | CAPP-Seq                                                    | 0.01%                                             | in gene regions                                                           |              |                                           |
| Whole genome sequencing                                       | Digital karyotyping                                         | 0.001%                                            | Genome-wide copy-number changes; personalized                             |              |                                           |
|                                                               | PARE                                                        | 0.001%                                            | genome-wide rearrangements                                                | 10102120     |                                           |
| ARMS, amplification refracto<br>personalized profiling by dee | bry mutation system; BEAMing, ep sequencing; ddPCR, droplet | beads, emulsion, amplifi<br>digital PCR; PARE, pa | cation, magnetics; CAPP-Seq, cancer<br>rallel analysis of RNA ends; qPCR, | . NGS        |                                           |

quantitative PCR; SAFE-SeqS, safe-sequencing system; TAm-Seq, tagged-amplicon deep sequencing.

#### Two types of NGS-based ctDNA detection platform

| Tumor-agnostic                                                                    | Tumor-informed                                                                   |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>No need for primary tumor</li></ul>                                      | <ul> <li>More sensitive and specific</li> <li>Better validation during</li></ul> |
| analysis <li>Fragmentomics and methylation</li>                                   | neadjuvant chemotherapy and                                                      |
| analysis possible <li>Available for screening</li> <li>Detection of emergent</li> | minimal residual disease                                                         |
| mutation(s)                                                                       | monitoring                                                                       |
| <ul> <li>Usually less sensitive and</li></ul>                                     | <ul> <li>Time consuming to sequence</li></ul>                                    |
| specific                                                                          | the tumor and generate an assay                                                  |



#### **Sample Patient Report**



1. Binary test result: ctDNA+ or ctDNA-

### 2. ctDNA concentration:

- Mean tumor molecules per mL (MTM/mL)
- Variant allele frequency (VAF) or Mutant allele frequency (MAF)
- 3. List of mutations detected

#### Sensitivity and information from ctDNA detection methods



## Challenges faced: Heterogeneity in the sensitivity of ctDNA assays

| Review | of 57 | studies,                              | including | 5779 | patients |
|--------|-------|---------------------------------------|-----------|------|----------|
|        |       | · · · · · · · · · · · · · · · · · · · |           |      |          |

| Study                                     | ΤР | FP | FN | TN  | Sensitivity<br>(95% CI) | Specificity<br>(95% CI) | Sensitivity<br>(95% CI) | Specificity<br>(95% CI) |
|-------------------------------------------|----|----|----|-----|-------------------------|-------------------------|-------------------------|-------------------------|
| Castaneda et al. 2022 <sup>47</sup>       | 9  | 40 | 8  | 95  | 0.53 (0.28-0.77)        | 0.70 (0.62-0.78)        |                         |                         |
| Chen et al. 2017 <sup>42</sup>            | 4  | 0  | 9  | 25  | 0.31 (0.09-0.61)        | 1.00 (0.86-1.00)        |                         |                         |
| Daidone et al. 2018 <sup>48</sup>         | 7  | 1  | 3  | 16  | 0.70 (0.35-0.93)        | 0.94 (0.71-1.00)        |                         |                         |
| Garcia-Murillas et al. 2019 <sup>10</sup> | 23 | 0  | 6  | 115 | 0.79 (0.60-0.92)        | 1.00 (0.97-1.00)        |                         |                         |
| Garcia-Murillas et al. 2022 <sup>43</sup> | 11 | 4  | 2  | 45  | 0.85 (0.55-0.98)        | 0.92 (0.80-0.98)        |                         | -#-                     |
| Liu et al. 2022 <sup>44</sup>             | 11 | 97 | 4  | 222 | 0.73 (0.45-0.92)        | 0.70 (0.64-0.75)        |                         | +                       |
| Medford et al. 2022 <sup>49</sup>         | 2  | 0  | 0  | 40  | 1.00 (0.16-1.00)        | 1.00 (0.91-1.00)        |                         | -                       |
| Olsson et al. 2015 <sup>45</sup>          | 12 | 0  | 2  | 6   | 0.86 (0.57-0.98)        | 1.00 (0.54-1.00)        |                         |                         |
| Shaw et al. 2022 <sup>35</sup>            | 30 | 5  | 4  | 117 | 0.88 (0.73-0.97)        | 0.96 (0.91-0.99)        |                         | -                       |
| Shimazaki et al. 2022 <sup>50</sup>       | 2  | 3  | 2  | 24  | 0.50 (0.07-0.93)        | 0.89 (0.71-0.98)        |                         |                         |
| Turner et al. 2017 <sup>39</sup>          | 14 | 0  | 4  | 25  | 0.78 (0.52-0.94)        | 1.00 (0.86-1.00)        |                         | ┝─┼─┼─┼─┦               |
|                                           |    |    |    |     |                         |                         | 0 0.2 0.4 0.6 0.8 1     | 0 0.2 0.4 0.6 0.8 1     |

**Figure 4. Sensitivity and specificity of circulating tumor DNA (ctDNA) detection for the diagnosis of overt recurrent disease.**<sup>47-50</sup> CI, confidence interval; FN, false negative; FP, false positive; TN, true negative; TP, true positive.

#### The sensitivity of ctDNA for diagnosis of overt recurrent disease ranged from 0.31 to 1.00.

#### Integrating ctDNA with other liquid biopsy-based biomarkers from other bodily fluids



### Challenges faced: ctDNA testing beyond blood

ctDNA analysis using the cerebrospinal fluid (CSF) in patients with brain metastasis and/or leptomeningeal disease







Fig. 2 Challenges for liquid biopsy development in patients with central nervous system metastasis from breast cancer. Created with BioRender.com. BBB blood-brain barrier, BTB blood-tumor barrier.

### Challenges : Technical and biological barriers to ctDNA detection



#### Challenges : Commercially available ctDNA assays come in many flavors

#### Lack of standardization and validation across platforms

| Assay   | Assay Type         | Clinical Utility                                           | Disease Stage (early v metastatic) |  |
|---------|--------------------|------------------------------------------------------------|------------------------------------|--|
| Assay 1 | Tumor-             | MRD detection                                              | Early-stage breast cancer          |  |
| Assay 2 | informed           |                                                            |                                    |  |
| Assay 3 |                    |                                                            |                                    |  |
| Assay 4 |                    |                                                            |                                    |  |
| Assay 5 |                    |                                                            |                                    |  |
| Assay 6 | Tumor-agnostic     |                                                            |                                    |  |
| Assay 1 | Tumor-agnostic     | 300-gene liquid biopsy                                     | Metastatic breast cancer           |  |
| Assay 2 |                    | 74-gene liquid biopsy                                      |                                    |  |
| Assay 3 |                    | 105-gene liquid biopsy                                     |                                    |  |
| Assay 4 |                    | 44-gene liquid biopsy for solid tumors                     |                                    |  |
| Assay 5 | Tumor-<br>informed | Circulating nucleic acid sequencing of up to 23,000+ genes | _                                  |  |

Abbreviation: MRD, minimal residual disease.

#### The story of circulating tumor DNA (ctDNA): And the plot thickens!





v. Future directions

#### Enter machine learning and artificial intelligence in liquid biopsy research



# **Summary: The message is in the method**

- ctDNA testing is a fast-growing area of research.
- Optimized preanalytical parameters have led to clinical trials using ctDNA as an endpoint or a correlative biomarker.
- ctDNA assays using PCR and/or NGS have allowed higher sensitivity and coverage (number of loci tested).
- Numerous technical and biological challenges need to be overcome.
- Machine learning and AI may help identify optimal liquid biopsy biomarker combinations for predicting outcomes.
- There is a lack of standardization and cross-platform validation for ctDNA testing.