

Squamous Cell Carcinoma of Head and Neck

Robert I. Haddad, MD Division Chief, Head and Neck Oncology McGraw Chair, Head and Neck Oncology Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School

HEAD AND NECK CANCER

- Introduction: Epidemiology, Clinical Features, HPV, <u>New</u> <u>Staging System</u>, Treatment Modalities
- Concurrent Chemoradiotherapy
- Sequential Chemoradiotherapy
- Adjuvant Chemoradiotherapy
- Recurrent/Metastatic disease

HUMAN PAPILLOMAVIRUS (HPV)-POSITIVE HEAD AND NECK CANCER

- HPV 16 is the viral subtype in the vast majority of patients.
- Half of oropharynx cancers will have HPV 16 DNA.
- Often occurs in nonsmokers, nondrinkers
- Median age younger than HPV-negative patients; incidence increasing
- Favorable prognosis
- In situ hybridization, p16 IHC, PCR

Fakhry C, et al. J Clin Oncol. 2006:24(17):2606-2617 3 Chaturvedi AK, et al. J Clin Oncol. 2008;26(4):612-619

PHASE III TRIAL OF RADIOTHERAPY PLUS CETUXIMAB VERSUS CHEMORADIOTHERAPY IN HPV-RELATED OROPHARYNX CANCER

R E G I S T E R	Mandatory p16 testing	S T R A T I F Y	T Stage 1. T1-2 2. T3-4 N Stage 1. N0-2a 2. N2b-3 Zubrod Performance Status 1. 0 2. 1 Smoking History 1. ≤ 10 pack-years 2. > 10 pack-years	R A N D O M I Z E	Arm 1 (Control): Accelerated IMRT, 70 Gy for 6 weeks + high dose DDP (100 mg/m²) Days 1 and 22 (Total: 200 mg/m²) Arm 2: Accelerated IMRT, 70 Gy for 6 weeks + cetuximab (400 mg/m²) loading dose pre-IMRT, then 250 mg/m² weekly during IMRT, + 1 week after IMRT for a total of 8 doses of cetuximab

Dana-Farber Cancer Institute

Advancing Research. Improving Lives.TM

Interim Futility Results of NRG-HN005, A Randomized, Phase II/III Non-Inferiority Trial for Non-Smoking p16+ Oropharyngeal Cancer Patients

Sue S Yom¹, Jonathan Harris², Jimmy J Caudell³, Jessica L Geiger⁴, John Waldron⁵, Maura Gillison⁶, Rathan M Subramanim⁷, Min Yao⁸, Canhua Xiao⁹, Nataliya Kovalchuk¹⁰, Rosemary Martino¹¹, Richard Jordan¹, Christina Henson¹², Michelle Echevarria³, Christopher Lominska¹³, Jennifer A Dorth¹⁴, William A Stokes⁹, Jason W Chan¹, Michael F Gensheimer¹⁰, Quynh-Thu Le¹⁰

¹University of California San Francisco ²NRG Oncology Statistics and Data Management Center ³Moffitt Cancer Center ⁴Cleveland Clinic ⁵Princess Margaret Hospital ⁶MD Anderson Cancer Center ⁷Dunedin School of Medicine ⁸Penn State Health Cancer Institute ⁹Emory University ¹⁰Stanford University ¹¹University of Toronto ¹²University of Oklahoma ¹³University of Kansas ¹⁴University Hospitals Seidman Cancer Center and Case Western Reserve University

> Annual Meeting of the American Society for Radiation Oncology September 30, 2024

🔰 🞯 @NRGOnc 🛛 🗗 🚺

NRG-HN005 Phase II Schema

- Oropharyngeal squamous cell carcinoma, p16-positive
- ≤ 10 pack-year history of smoking
- 8th ed. clinical stages T1-2N1M0 or T3N0-N1M0 (8th ed. stage I-II excluding T0, T1-2N0, or any N2)

Stratified by Zubrod performance status and randomized (1:1:1) to 70 Gy IMRT over 6 weeks + Cisplatin at 100 mg/m² every 3 weeks (Arm 1) vs 60 Gy IMRT over 6 weeks + Cisplatin at 100 mg/m² every 3 weeks (Arm 2) vs 60 Gy IMRT over 5 weeks with nivolumab (Arm 3)

2-Year Progression-Free Survival

At median follow-up of 2.2 years, 2-year PFS estimates are:

- Arm 1: 98.1% (95%Cl 95.4, 100)
- Arm 2: 88.6% (95%Cl 82.4, 94.7)
- Arm 3: 90.3% (95%Cl 84.5, 96.1)

NRG

NRG-HN005 Phase II

2-Year Locoregional Failure

2-year LRF estimates are:

- Arm 1:0%
- Arm 2: 6.5% (95%Cl 2.8, 12.2)
- Arm 3: 5.0% (95%Cl 1.8, 10.6)

Plasma Circulating Tumor HPV DNA

Two consecutive positive tests for cfHPV had a PPV of 94% (95%CI, 70-90%) for disease recurrence

Consecutive negative tests NPV 100%

Median lead time between ctHPVDNA positivity and biopsyproven recurrence was 3.9 month

Chera B et al, J Clin Oncol 2020 Apr 1;38(10)

TREATMENT APPROACH

Disease Extent	Treatment
T_1N_{0-1} or T_2N_0	Surgery or RT
T_2N_1 or T_{3-4} or N_{2-3}	Combined modality
	Surgery and/or RT
Recurrent or M ₁	Combined modality
	Chemotherapy

CONCURRENT CHEMORADIOTHERAPY

CONCURRENT THERAPY: STANDARD OF CARE

- Cisplatin 100 mg/m² days 1, 22, and 43 of RT
- RT standard fractionation, 70 Gy over 7 weeks (2-Gy fractions)
- Alternative Chemotherapy regimens:
 - 1- Weekly cisplatin 40mg/m²
 - 2- Weekly Cetuximab
 - 3- Weekly carboplatin auc 1.5-2+Paclitaxel 30-45mg/m²

SEQUENTIAL CHEMORADIOTHERAPY

TAX 324: <u>SEQUENTIAL</u> COMBINED MODALITY THERAPY TPF VS PF FOLLOWED BY CHEMORADIOTHERAPY

TPF: Docetaxel 75_{D1} + Cisplatin 100_{D1} + 5-FU 1000 _{CI-D1-4} Q 3 weeks x3 PF: Cisplatin 100 _{D1} + 5-FU 1000 _{CI-D1-5} Q 3 weeks x 3

TPF significantly improves survival and PFS compared with PF in an ICT regimen followed by CRT

Posner MR, et al. N Engl J Med. 2007;357(17):1705-1715 15

CLINICAL SCENARIOS TO CONSIDER INDUCTION THERAPY

- 1. Potential distant metastasis
- 2. Delay in radiation simulation
- 3. Impending local issue (eg, airway)
- 4. Markedly advanced disease (eg, bulky, N_{2c} , N_{2b} , N_3 , low neck, dermal infiltration)
- 5. Organ preservation strategy in patients with markedly advanced disease

Rationale for Neoadjuvant Immunotherapy

- Need to Improve OS in High-Risk SCC (HPV neg, Larynx, Oral cavity, HP)
- Clear activity in R/M setting
- Neoadjuvant approach may help induce immune response to deliver durable benefit
- Neoadjuvant setting ideal : Untreated patients, lower burden of disease, intact tumor to allow for immune response
- "Immuno-reduction"- may alter surgery
- Reduced need for adjuvant approaches: Less RT, Less ChemoRT

Dose/ Timing in Neoadjuvant Pembrolizumab Studies

Cohort 1- pembrolizumab X 1 doses Cohort 2- pembrolizumab X 2 doses

Exploratory analysis

- 1 dose pembro before surgery 22% pTR2
- 2 doses pembro before surgery 45% pTR2

% patients with any pTR similar Cohort 1 and 2

- Pathologic response scale
 - **pTR0** < 10%
 - **pTR1** ≥ 10% and <50%
 - **pTR2** ≥ 50%

Uppaluri et al., CCR, 2020 Oliveira et al., Sci. Immunol, 2023

Cohort 1 versus 2

- Concernent	

Characteristic	Coho	rt 2 (N=28)	Cohort 1 (N=36)		p-value	Diff (95% CI)
pTR Category						
pTR-0	14	50.0%	20	55.6%	0.11	-5.6 (-28.4 to 18.0)
pTR-1	2	7.1%	8	22.2%		-15.1 (-31.8 to 3.6)
pTR-2	12	42.9%	8	22.2%		20.6 (-2.1 to 41.5)
Pathologic risk categ (positive margins/EN	ory E)					
High risk	5	17.9%	18	50.0%	0.008	
Intermediate/low r	isk 23	82.1%	18	50.0%		32.1 (8.6 to 50.6)
Pathologic disease Stage, N (%)						
1-11	5	17.9%	3	8.3%	0.54	9.5 (-7.3 to 28.1)
Ш	5	17.9%	6	16.7%		1.2 (-17.0 to 21.0)
IVA-IVB	18	64.3%	27	75.0%		-10.7 (-32.3 to 11.3)

	Cohort	2 (N=28)	Cohort	1 (N=36)	p-value*	Diff (95% CI)
Downstaged (Clinical Stage > Pathologic Stage)	8	28.6%	7	19.4%	0.15	9.1 (-11.4 to 30.0)
Upstaged (Clinical Stage < Pathologic Stage)	2	7.1%	0	0.0%		7.1 (-3.8 to 22.6)
Stage unchanged (Clinical Stage = Pathologic Stage)	18	64.3%	29	80.6%		-16.3 (-37.1 to 5.4)
						Uppaluri et a

Oliveira et al., Sci. Immunol, 2023

KEYNOTE-689: Phase 3 Study of Neoadjuvant and Adjuvant Pembrolizumab Combined With Standard of Care in Patients With Resectable, Locally Advanced Head and Neck Squamous Cell Carcinoma

2024-10-08

PRESS RELEASE

KEYNOTE-689 is the first Phase 3 trial to demonstrate statistically significant and clinically meaningful improvement in EFS in the intent-to-treat population in the neoadjuvant and adjuvant setting for an anti-PD-1 therapy in earlier stages of head and neck squamous cell carcinoma

JAVELIN HEAD & NECK 100: STUDY DESIGN

DOR, duration of response; HPV, human papilomavirus; IMRT, intensity-modulated radiation therapy; IV, intravenously; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; Q2W, every 2 weeks; R, randomized; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

* High-risk LA SCCHN (oral cavity, oropharynx, larynx, or hypopharynx): HPV-negative disease stage III, IVa, IVb; nonoropharyngeal HPV-positive disease stage III, IVa, IVb; HPV-positive disease stag

PRIMARY ENDPOINT: PFS BY INVESTIGATOR PER MODIFIED RECIST 1.1

KEYNOTE-412 Study Design (NCT03040999)

Patients

- Newly diagnosed, pathologically proven, treatment-naive unresected LA HNSCC
- T3-T4 [N0-N3] or any N2a-3 [T1-T4] larynx/hypopharynx/oral cavity/ p16-negative oropharynx cancers
- T4 or N3 p16-positive oropharynx cancer
- Evaluable tumor burden per RECIST v1.1
- ECOG PS 0 or 1
- Candidates for definitive high-dose cisplatin-based CRT

Stratification Factors

- Radiotherapy regimen (AFX vs SFX)
- Tumor site/p16 status (oropharynx [p16+ vs p16-] or larynx/hypopharynx/oral cavity)
- Disease stage (III vs IV)

· Event-free survival (EFS)

Secondary endpoints included:

- OS
- Safety/tolerability

Post-treatment follow-up to assess

- Safety
- Disease status
- Survival

^aCRT included cisplatin (100 mg/m², Q3W) and accelerated fractionation (AFX) (70 Gy, 6 fractions/week for 5 weeks and then 5 fractions for the 6th week, 35 fractions in total) or standard fractionation (SFX) (70 Gy, 5 fractions/week for 7 weeks, 35 fractions in total). A pembrolizumab/placebo priming dose was given 1 week before CRT, followed by 2 doses during CRT and 14 doses of maintenance therapy after CRT, for a total of 17 doses.

Overall Survival, ITT Population

PALLIATIVE CHEMOTHERAPY

MANAGEMENT OF RECURRENT/METASTATIC SCCHN

CHECKMATE 141 STUDY DESIGN NIVOLUMAB VS. CHEMOTHERAPY

Randomized, global, phase 3 trial of the efficacy and safety of nivolumab versus investigator's choice in patients with R/M S CCHN

Ferris et al : NEJM 2016 27

ystem; DOR, duration of response; ECOG PS, Eastem Cooperative Oncology Group performance status; HPV, human papillomavirus; O

OVERALL SURVIVAL

Ferris et al : NEJM 2016 ²⁸

KEYNOTE-048

Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study

Barbara Burtness, Kevin J Harrington, Richard Greil, Denis Soulières, Makoto Tahara, Gilberto de Castro Jr, Amanda Psyrri, Neus Basté, Prakash Neupane, Åse Bratland, Thorsten Fuereder, Brett G M Hughes, Ricard Mesía, Nuttapong Ngamphaiboon, Tamara Rordorf, Wan Zamaniah Wan Ishak, Ruey-Long Hong, René González Mendoza, Ananya Roy, Yayan Zhang, Burak Gumuscu, Jonathan D Cheng, Fan Jin, Danny Rischin, on behalf of the KEYNOTE-048 Investigators^{*}

KEYNOTE-048 Study Design (NCT02358031)

^aAssessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. ^bAssessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. ^cFollowing a loading dose of 400 mg/m².

Baseline Characteristics, ITT Population

	Pembro Alone	e vs EXTREME	Pembro + Chemo vs EXTREME		
Characteristic, n (%)	Pembro N = 301	EXTREME N = 300	Pembro + Chemo N = 281	EXTREME N = 278 ^a	
Age, median (range), yrs	62 (22-94)	61 (24-84)	61 (20-85)	61 (24-84)	
Male	250 (83.1)	261 (87.0)	224 (79.7)	242 (87.1)	
ECOG PS 1	183 (60.8)	183 (61.0)	171 (60.9)	170 (61.2)	
Current/former smoker	239 (79.4)	234 (78.0)	224 (79.7)	215 (77.3)	
p16 positive (oropharynx)	63 (20.9)	67 (22.3)	60 (21.4)	61 (21.9)	
PD-L1 status					
TPS ≥50%	67 (22.3)	66 (22.0)	66 (23.5)	62 (22.3)	
CPS ≥20	133 (44.2)	122 (40.7)	126 (44.8)	110 (39.6)	
CPS ≥1	257 (85.4)	255 (85.0)	242 (86.1)	235 (84.5)	
Disease status ^b					
Metastatic	216 (71.8)	203 (67.7)	201 (71.5)	187 (67.3)	
Locoregional recurrence only	82 (27.2)	94 (31.3)	76 (27.0)	88 (31.7)	

^aPatients randomized to EXTREME during the pembro + chemo enrollment hold were excluded from all pembro + chemo vs EXTREME efficacy comparisons. ^b3 patients in the pembro arm, 3 patients in the EXTREME arm, and 4 patients in the pembro + chemo arm had neither metastatic nor recurrent disease. FA (data cutoff date: Feb 25, 2019).

Pembrolizumab vs Extreme

(number censored)

Pembrolizumab alone 133 (0) 106 (1) 85 (1) 65 (2) 47 (12) 24 (29) 11 (40) 2 (49) 0 (51) 0 (51) 0 (51) 257 (0) 196 (2) 152 (2) 110 (4) 74 (22) 34 (50) 17 (64) 2 (78) 0 (80) 0 (80) 0 (80) 0 (80) 0 (80) 0 (80) 0 (80) 0 (90

CPS 20

HR 0.61 (95% CI 0.45–0.83, p=0.0007) Median OS 14.9 months versus 10.7 months

CPS 1

HR 0.78 (95% CI 0.64–0.96, p=0.0086); Median OS 12.3 months versus 10.3 months

Pembrolizumab/Chemotherapy vs EXTREME

 126 (0) 102 (0) 77 (0) 60 (1) 50 (1) 44 (1) 36 (8) 21 (22) 4 (38) 0 (42) 0 (42)

 110 (0) 91 (0) 60 (1) 40 (1) 26 (1) 19 (2) 11 (4) 4 (8) 1 (11) 0 (12) 0 (12)

CPS 20

HR 0.60 (95% CI 0.45–0.82, p=0.0004) Median OS 14.7 m versus 11.0 m

CPS 1

HR 0.65 (95% CI 0.53–0.80, p<0.0001), Median OS 13.6 months versus 10.4 months

Total Population

HR 0·77 [95% CI 0·63–0·93], p=0·0034

Median OS 13.0 months versus 10.7 months

KEYNOTE-048: Subgroup Analysis by CPS

KEYNOTE-048: Subgroup Analysis by CPS

Burtness B et al: J Clin Oncol. 2022 ³⁶

Pembrolizumab+Cetuximab Recurrent Head and Neck Cancer

Sacco et al June 2021 , Lancet Oncology

20

15

20

2 (10)

25

0(11)

25

0(20)

15

4(9)

Petosemtamab (MCLA-158) with pembrolizumab as first-line (1L) treatment of recurrent/metastatic (r/m) head and neck squamous cell carcinoma (HNSCC): Phase 2 study

Jérôme Fayette,¹ Florian Clatot,² Irene Braña,³ Esma Saada,⁴ Carla M. L. van Herpen,⁵ Thibault Mazard,⁶ Cesar A. Perez,⁷ Josep Tabernero,⁸ Christophe Le Tourneau,⁹ Antoine Hollebecque,¹⁰ Virginia Arrazubi,¹¹ Elisa Fontana,¹² Shumei Kato,¹³ Assuntina G. Sacco,¹³ Amir Harandi,¹⁴ Jan Paul de Boer,¹⁵ Jessica Ann Hellyer,¹⁶ Eduardo Pennella,¹⁷ Andrew K. Joe,¹⁷ Amaury Daste¹⁸

¹Department of Medical Oncology, Léon Bérard Center, University of Lyon, Lyon, France; ²Department of Medical Oncology, Henri Becquerel Cancer Institute, Rouen, France; ³Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France; ⁵Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands; ⁶Institut Régional du Cancer de Montpellier (ICM), Montpellier, France; ⁷Sarah Cannon Research Institute at Florida Cancer Specialists, Orlando, FL, USA; ⁸Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quirón, UVic-UCC, Barcelona, Spain; ⁹Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France; ¹⁰Gustave Roussy, University of Paris-Saclay, Villejuif, France; ¹¹Servicio de Oncología Médica, Hospital Universitario de Navarra, Pamplona, Spain; ¹²Sarah Cannon Research Institute, London, UK; ¹³Department of Medicine, Division of Hematology-Oncology, University of California San Diego Health, Moores Cancer Center, La Jolla, CA, USA; ¹⁴Florida Cancer Specialists and Research Institute, Lakewood Ranch, FL, USA; ¹⁵Department of Medical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands; ¹⁶Cancer Care Northwest (Tempus), Spokane, WA, USA; ¹⁷Merus N.V., Utrecht, Netherlands; ¹⁸Oncology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.

2024 ASCO ANNUAL MEETING

Overall response rate (RECIST 1.1, per investigator)

Best percent change in sum of target lesions from baseline (n=24)

*All 3 uPR were confirmed as PR after data cutoff date; †Response values for p16 and PD-L1 CPS subgroups include CR, PR, and uPR. Cl, confidence interval; CR, complete response; PR, partial response; SD, stable disease; uPR, unconfirmed partial response.

#ASCO24 PRESENTED BY: Dr. Jérôme Fayette Presentation is property of the author and ASCO. Permission required for reuse: contact permissions@asco.org ASCO[®] AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

Overview of Results for Petosemtamab Monotherapy from the Phase 1/2 Trial

Overall Clinical Efficacy					
ORR	37.2% [16/43; 95% CI: 23.0 - 53.3]				
DCR (CR+PR+SD)	72.1% [31/43; 95% CI: 56.3 - 84.7]				
Median time to response	1.8 months [range, 0.8 - 3.5]				
On treatment at data cutoff date	12/43 (28%) patients				
Median DOR	6.0 months [95% CI: 3.7 - NC] 10/16 (63%) responders had response ongoing at cutoff date				
Median PFS	5.3 months [95% CI: 3.7 - 6.8] 29/43 patients progressed, 14/43 censored				
Median OS	11.5 months [95% CI: 7.2 - 20.6] 29/49 patients still alive at data cutoff date				

BCA101 + pembrolizumab in CPS≥1 R/M HNSCC (1L)

Preliminary Efficacy - Total population (N=31 evaluable)

ASCO^{*} AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

Source: Open clinical database, as of 22-May-2023

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PRESENTED BY: Glenn J. Hanna, MD

#ASCO23

Cabozantinib and Pembrolizumab : Phase II

Patient Characteristic	N=36 n (%)		
Age, median (range), years	62 (54-67)		
Gender	Male Female	30 (83) 6 (17)	
ECOG performance status, %	0 1	18 (50) 18 (50)	
Primary site	Oropharynx Oral cavity Hypopharynx Larynx Nasopharynx	22 (61) 2 (6) 2 (6) 4 (11) 6 (16)	
HPV (p16)	Positive Negative Unknown	17 (47) 12 (33) 7 (20)	
Prior therapy	Radiation Cisplatin Cetuximab	31 (89) 36 (100) 3 (8)	
PD-L1 CPS score (total of 34)	CPS <1 CPS 1-19 CPS ≥20	2 (6) 15 (44) 17 (50)	

Saba et al, Nat Med 2023

Head and Neck Cancer 2025 and Beyond

ChemoRT with or without surgery

HPV: New Staging, New treatment, New disease, De-escalation

Non-HPV: Is there room for Intensification?

Immunotherapy incorporated into all Phases of the treatment: Neo-adjuvant to palliative therapy

EGFR/IO and VEGF/IO in phase III

K689 likely practice changing

Head and Neck Cancer is a complex set of diseases with various nuances in treatment, treatment delivery and outcomes

ONE SIZE does not fit all patients: Multi-D care

