Targeted Therapies and Resistance, New Agents are Coming

PRIMO- February 7, 2025

Misako Nagasaka, MD PhD

Associate Clinical Professor University of California Irvine School of Medicine Division of Hematology and Oncology

Actionable driver mutation	Approved drugs
EGFR del19/L858R	Gefitinib, Erlotinib, Erlotlinib/Ramcirumab, Afatinib, Daco, Osimertinib
EGFR del19/L858R + T790M	Osi, <mark>Osi-chemo (2/16/24), Ami-Laz (8/19/24), Ami-chemo (9/19/24)</mark>
EGFR uncommon mutations (G719X, S768I, L861Q)	Afatinib
EGFR exon20 insertion	Amivantamab-vmjm (5/21/2021), <mark>Ami-Chemo (3/1/24),</mark> Mobocertinib (September 15, 2021)
ALK	Crizotinib, Ceritinib, Alectinib, Brigatinib, Lorlatinib, adjuvant Alectinib (4/18/24)
ROS1	Crizotinib, Entrectinib, Repotrectinib (November 15, 2023)
RET	Selpercatinib (May 8, 2020), Pralsetinib (September 4, 2020)
NTRK	Larotrectinib (November 26, 2018), Entrectinib (August 15, 2019), <mark>Repotrectinib (7/13/24)</mark>
BRAF V600E	Dabra + Trametinib (6/22/2017), Encorafenib + binimetinib (10/11/23)
MET ex14 splice site mutation	Capmatinib (May 6, 2020), Tepotinib (February 3, 2021)
KRAS G12C	Sotorasib (May 28, 2021), Adagrasib (December 12, 2022)
HER2 mutation	Fam-trastuzumab deruxtecan-nxki /T-DXd (August 11, 2022)
NRG1 fusion	Zenocutuzumab (12/ 4/24)

Table of contents

- ALK: NVL-655
- ROS1: NVL-520, taletrectinib
- HER2: zongertinib, BAY 2927088

ALK

Crizotinib		Alectinib, Ensartinib	Lork	atinib
1G ALKTKI	2G AI	LKTKI	3G Al	<mark>, К Т КІ</mark>
ļ				
Inhibit ALK WT	Inhibit	ALK WT	Inhibit	ALK WT
		ingle <i>ALK</i> tation	Inhibit si mut	ingle ALK ation
	CNS pe	netration	CNS per	netration
Figure adapted from: Lee and Ou, Lur	ng Cancer (Aucki) 20	324, in press.	Inhibit ALKs muta	

- ALK fusions are oncogenic drivers in 3-5% of NSCLC and various cancers¹
- ~30-40% of patients with ALK+ NSCLC present with CNS metastases²
- ~50% of patients develop single mutations (e.g., G1202R, I1171X, F1174X) after progression on 1G and 2G ALK TKIs^{3,4}

¹ Kwak, E. et al. N Engl J Med. 2010; ² Gainor, J. et al. JCO Precis Oncol. 2017; ³ Dagogo-Jack, I. et al. Clin Cancer Res. 2019; ⁴ Gainor, J. et al. Cancer Discov. 2016;

Misako Nagasaka, MD, PhD, ES07:02: Existing and Next Generation ALK Inhibitors; TTLC 2024

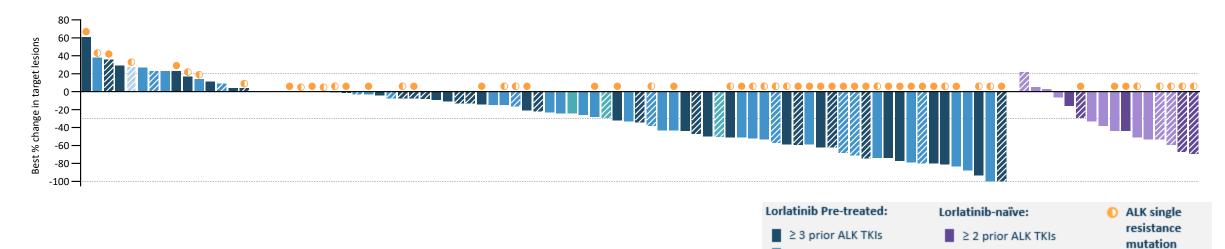
ALK

Crizotinib	Ceritinib, Alectinib, Brigatinib, Ensartinib	Lorlatinib	NVL-655
1G ALK TKI	2G ALK TKI	3G AĻK TKI	4G ALK TKI
			ļ
Inhibit ALK WT	Inhibit ALK WT	Inhibit ALK WT	Inhibit ALK WT
	Inhibit single ALK mutation	Inhibit single ALK mutation	Inhibit single ALK mutation
	CNS penetration	CNS penetration	CNS penetration
Figure adapted from: Lee and Ou, Lun	g Cancer (Auckl) 2024, in press.	Inhibit ALK solvent-front mutation	Inhibit ALK solvent-front mutation
	patients develop co ., G1202R/L1196N		Inhibit ALK dual cis- mutations

progression on sequential 2G to 3G TKIs^{1,2}

 TRK inhibition in the brain is linked to neurologic adverse events and dose-limiting toxicities^{3,4}

¹ Dagogo-Jack, I. et al. Clin Cancer Res. 2019; ² Shiba-Ishii et al., Nature Cancer 2022; ³ Cocco, E. et al. Nat Rev Clin Oncol. 2018; ⁴ Shaw, A. et al. N Engl J Med. 2020.


Misako Nagasaka, MD, PhD, ES07:02: Existing and Next Generation ALK Inhibitors; TTLC 2024

UCI Health

Avoiding TRK

NVL-655

RECIST 1.1 ORR, % (n/N)	NSCLC Response-E	valuable (Any Prior A	LK TKI, range 1 – 5)	Prie	or Lorlatinib (≥2 ALK ⁻	TKIs)	Lorlatinib-naiv	re (≥1 2G ± 1G)
All patients ± chemotherapy	All	Any ALK mutation ^a	G1202R ^b	All	Any ALK mutation	Compound ALK mutation c	All	Any ALK mutation
All Doses	38% (39/103)	52% (30/58)	69% (22/32) ^d	35% (30/85)	47% (23/49)	54% (15/28)	53% (9/17)	88% (7/8)
RP2D	38% (15/39)	55% (12/22)	71% (10/14)	35% (11/31)	50% (8/16)	64% (7/11)	57% (4/7)	80% (4/5)

Alex Drilon, et al. Phase 1/ 2 ALKOVE-1 study of NVL-655 in ALK-positive (ALK+) solid tumors, ESMO 2024

UCI Health

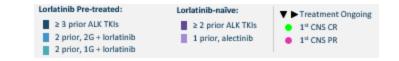
ALK compound

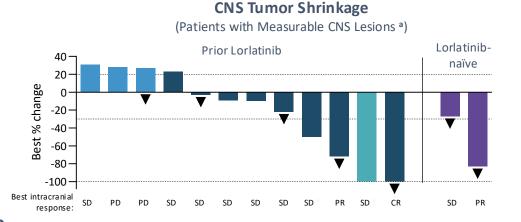
(≥2) resistance

mutation

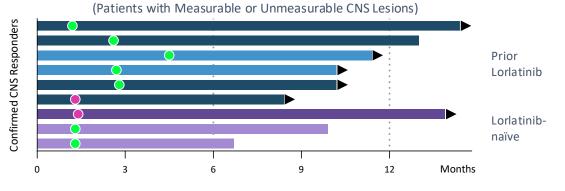
1 prior, alectinib

Patient treated at RP2D


2 prior, 2G + lorlatinib


2 prior, 1G + lorlatinib

1 prior (lorlatinib only)


NVL-655

- **IC-ORR** (patients with measurable CNS lesions):
 - Lorlatinib-naïve: 50% (1/2)
 - **Prior lorlatinib:** 15% (2/13)
 - 31% (4/13) including 2 CNS uPRs not confirmed due to discontinuation of treatment in absence of CNS progression
- No CNS progression among confirmed CNS responders, including in patients who previously received the brain-penetrant TKI lorlatinib (measurable or unmeasurable CNS lesions)
 - Treatment duration: 6.7 14.4+ months

Duration of Treatment for all Confirmed CNS Responders

Alex Drilon, et al. Phase 1/ 2 ALKOVE-1 study of NVL-655 in ALK-positive (ALK+) solid tumors, ESMO 2024

NVL-655

- Discontinuation due to TRAE: 2% (3/133) ^a
- Dose reduction due to TRAE: 15% (20/133)
- Preliminary overall safety profile consistent with avoiding TRK-related neurotoxicities

Treatment-Related Adverse Events (TRAEs) in \ge 10% of Patients All Treated (N = 133)

Preferred Term	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Any Grade n (%)
ALT increased	21 (16%)	6 (5%)	17 (13%)	1 (1%)	45 (34%)
AST increased	21 (16%)	7 (5%)	12 (9%)	-	40 (30%)
Constipation	15 (11%)	6 (5%)	-	-	21 (16%)
Dysgeusia	15 (11%)	2 (2%)	-	-	17 (13%)
Nausea	15 (11%)	1 (1%)	-	-	16 (12%)

RP2D selected as 150 mg QD MTD not reached through 200 mg QD

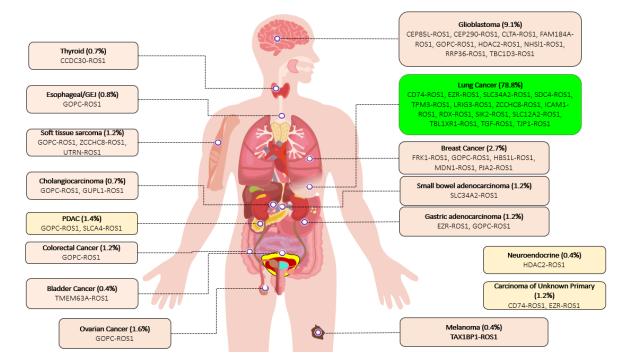
No clear dose-toxicity relationship through 150 mg QD dose level

150 mg QD maintained steady state plasma levels at or above the target efficacy thresholds (ALK fusions + ALK single/compound mutations in periphery and in the CNS)

Alex Drilon, et al. Phase 1/ 2 ALKOVE-1 study of NVL-655 in ALK-positive (ALK+) solid tumors, ESMO 2024

ALK

Crizotinib	Ceritinib, Alectinib, Brigatinib, Ensartinib	Lorlatinib	NVL-655	mm
1G ALK TKI	2G ALK TKI	3G AĻK TKI	4G ALK TKI	5G ALK TKI
			-	
Inhibit ALK WT	Inhibit ALK WT	Inhibit ALK WT	Inhibit ALK WT	Inhibit ALK WT
	Inhibit single ALK mutation	Inhibit single ALK mutation	Inhibit single ALK mutation	Inhibit single ALK mutation
	CNS penetration	CNS penetration	CNS penetration	CNS penetration
		Inhibit ALK solvent-front mutation	Inhibit ALK solvent-front mutation	Inhibit ALK solvent-front mutation
			Inhibit <i>ALK</i> dual cis- mutations	Inhibit <i>ALK</i> dual cis- mutations
Figure adapted from: Lee and Ou, Lun	g Cancer (Auckl) 2024, in press.		Avoiding TRK	Avoiding TRK
				Target <i>EML4-ALK</i> v3 a/b
				Inhibit 7P53 mutations
				Inhibit ALK CB6 mutation


Misako Nagasaka, MD, PhD, ES07:02: Existing and Next Generation ALK Inhibitors; TTLC 2024

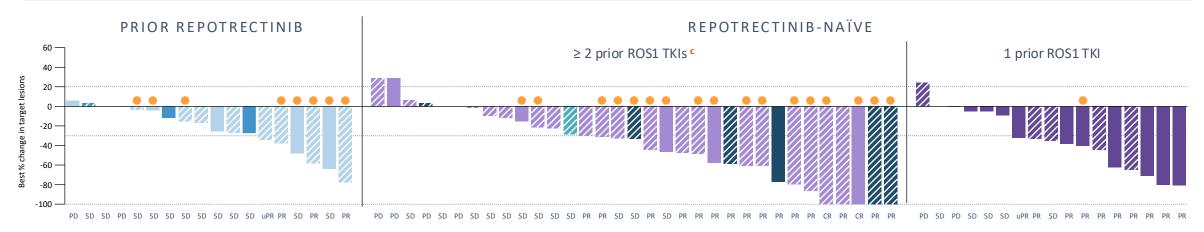
ROS1

- ROS1 oncogenic-driver gene fusions have been identified in up to 2% of NSCLC¹
 - Standard-of-care ROS1 TKIs, such as crizotinib and entrectinib,² result
 - in limited durability of response due to acquired *ROS1* resistance
 - mutations (e.g., G2032R)^{3,4}; there is also a need for further

improvement in intracranial activity^{5,6}

Bergethon K, et al. *J Clin Oncol* 2012;30:863–870. 2. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) for Non-Small Cell Lung Cancer. V.3.2023. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed June 12, 2023.
 Dziadziuszko R, et al. *Mol Oncol* 2022;16:2000–2014. 4. Lin JJ, et al. *Clin Cancer Res* 2021;27:2899–2909. 5. Landi L, et al. *Clin Cancer Res* 2019;25:7312–7319. 6. Patil T, et al. *J Thorac Oncol* 2018;13:1717–1726. 7. Nagasaka M, et al. *BMC Cancer* 2023; 23(1):1000.

NVL-520 (zidesamtinib)

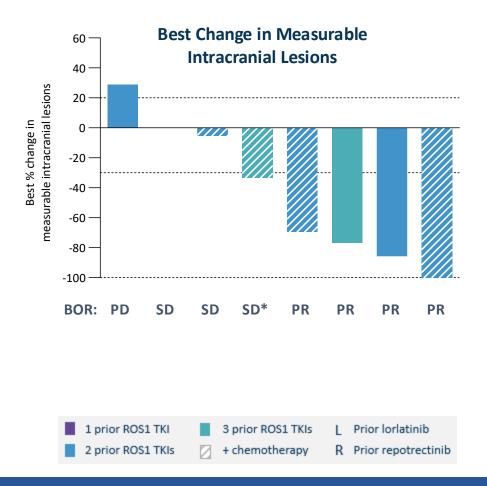

 Prior Repotrectinib:
 Repotrectinib-naive:

 ≥ 2 prior ROS1 TKIs
 4 prior ROS1 TKIs
 2 prior ROS1 TKIs

 1 prior ROS1 TKI
 3 prior ROS1 TKIs
 1 prior ROS1 TKI

All NSCLC Response	Any Prior ROS	S1 TKI (range 1-4)		≥ 2 prior ROS1 TKI	;	ROS1 G2032R Res	sistance Mutation ^b	1 prior
Evaluable Patients ± chemotherapy	All	Repotrectinib- naive	All	Prior Lorlatinib	Repotrectinib- naive	Prior Repotrectinib	Repotrectinib- naive	ROS1 TKI (crizotinib)
RECIST 1.1 ORR % (n/n) ^a	44% (31/71)	51% (27/53)	41% (21/51)	44% (17/39)	47% (17/36)	38% (3/8)	72% (13/18)	73% (8/11)
CR*	2	2	2	2	2	-	2	-

* 2 confirmed CRs ongoing with DOR 19.3+ and 26.3+ months. 5 additional CRs observed among patients without measurable disease (2 prior ROS1 TKIs [n=2], 1 prior ROS1 TKI (crizotinib [n=1], entrectinib [n=2]), all ongoing with DOR 3.6+, 3.7+, 13.8+, 13.9+, and 18.5+ months.



B Besse, et al. Phase 1/ 2 ARROS-1 study in zidesamtinib (NVL-520) in ROS1 fusion-positive solid tumors, ESMO 2024

NVL-520 (zidesamtinib)

Among IC-response evaluable patients with measurable intracranial lesions (≥ 10 mm) at baseline:

- IC-ORR: 50% (4/8)
 - Nearly all (7/8) patients previously received ≥ 2
 ROS1 TKIs, including the brain-penetrant ROS1 TKIs
 lorlatinib and/or repotrectinib
- mDOR: NR
 - All IC responses are censored without ICprogression, with IC DORs of 21.0+, 17.4+, 5.6+, and 1.9+ months

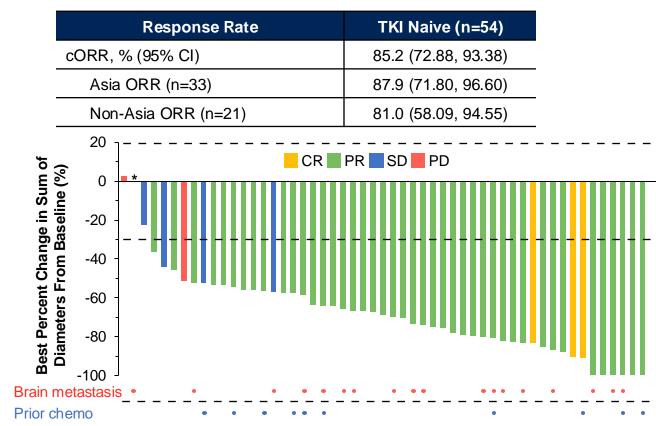
B Besse, et al. Phase 1/ 2 ARROS-1 study in zidesamtinib (NVL-520) in ROS1 fusion-positive solid tumors, ESMO 2024

NVL-520 (zidesamtinib)

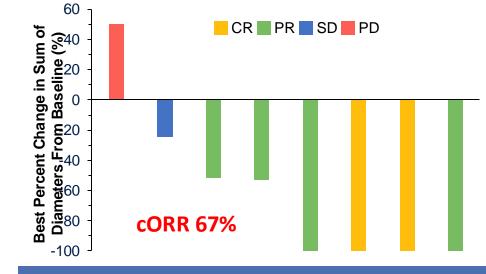
- No TRAEs leading to discontinuation
- Dose reduction due to TRAE: 8% (8/104) ^a
- Preliminary overall safety profile consistent with avoiding TRK-related neurotoxicities

Treatment-Related Adverse Events (TRAEs) in ≥ 10% of Patients^b All Treated (N = 104)

Preferred Term	Any Grade n (%)	Grade ≥3 n (%)
Oedema peripheral	20 (19%)	-
ALT increased	11 (11%)	-
AST increased	11 (11%)	-
Weight increased	11 (11%)	1 (1%)


RP2D selected as 100 mg QD

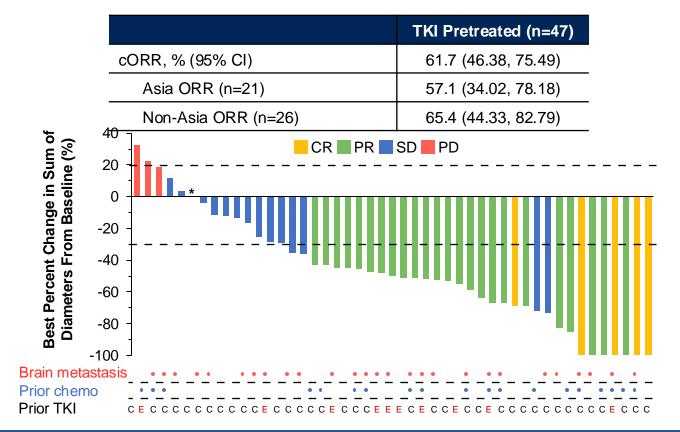
MTD not reached through 150 mg QD No clinically significant exposureresponse relationships for safety and efficacy were observed 100 mg QD maintained steady state plasma levels at or above the target efficacy thresholds (ROS1 fusions + ROS1 mutations in periphery and in the CNS)


B Besse, et al. Phase 1/ 2 ARROS-1 study in zidesamtinib (NVL-520) in ROS1 fusion-positive solid tumors, ESMO 2024

Taletrectinib

TKI-naive

Measurable baseline brain metastases	TKI Naive (n=9)
IC-ORR, % (95% CI)	66.7 (29.93, 92.51)
CR, n (%)	2 (22.2)
PR, n (%)	4 (44.4)



Median follow-up: 15.8 mo (range: 3.6–29.8)

Geoffrey Liu, et al Efficacy and safety of taletrectinib in patients with ROS1+ Non-Small Cell Lung Cancer: The global TRUST-II study; WCLC 2024

Taletrectinib

TKI-pretreated

Measurable baseline brain metastases	TKI Pretreated (n=16)
IC-ORR, % (95% CI)	56.3 (29.88, 80.25)
CR, n (%)	1 (6.3)
PR, n (%)	8 (50.0)
CR PR SI CR PR SI CR PR SI CR PR SI COR S6%	D PD

Prior TKI c

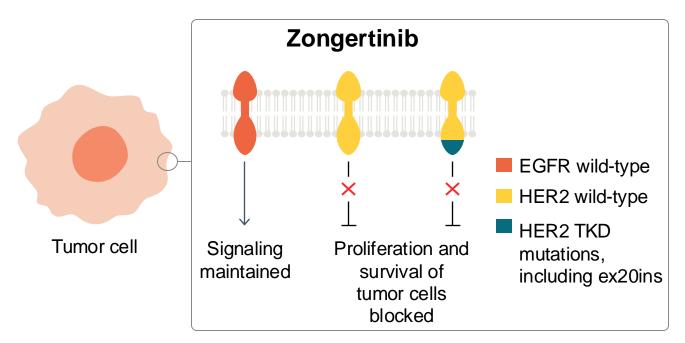
Median follow-up: 15.7 mo (range: 3.9–29.8)

Geoffrey Liu, et al Efficacy and safety of taletrectinib in patients with ROS1+ Non-Small Cell Lung Cancer: The global TRUST-II study; WCLC 2024

UCI Health

С

Taletrectinib


	Any grade, n (%)	Grade ≥3, n (%)
Increased ALT	108 (67.9)	24 (15.1)
Increased AST	107 (67.3)	11 (6.9)
Diarrhea	90 (56.6)	1 (0.6)
Nausea	82 (51.6)	3 (1.9)
Vomiting	53 (33.3)	2 (1.3)
Constipation	40 (25.2)	0 (0)
Anemia	32 (20.1)	7 (4.4)
Dysgeusia	31 (19.5)	0 (0)
Increased blood CPK	29 (18.2)	6 (3.8)
Dizziness	27 (17.0)	0 (0)
Prolonged QT	24 (15.1)	5 (3.1)

- Median exposure of taletrectinib was 8.4 months (range: 0.1–28.9)
- 37.1% of patients had a TEAE leading to a dose reduction
 - The most common events leading to dose reduction were elevated liver enzymes (16.4%)
- 7.5% of patients had a TEAE leading to treatment discontinuation; 1.3% were treatment-related
- Rates of neurologic TEAEs were low (dysgeusia: 19.5%; dizziness: 17.0%); none were grade ≥3
- No treatment-related AE led to death

Geoffrey Liu, et al Efficacy and safety of taletrectinib in patients with ROS1+ Non-Small Cell Lung Cancer: The global TRUST-II study; WCLC 2024

HER2

HER2 mutations occur in approximately 2–4% of NSCLC cases, and are associated with a poor prognosis and higher incidence of brain metastases^{1,2}

1. Baraibar I, et al. Crit Rev Oncol Hematol 2020;148:102906; 2. Li BT, et al. N Engl J Med 2022;386:241–51

EGFR, epidermal growth factor receptor; ex20ins, exon 20 insertions; HER2, human epidermal growth factor receptor 2; NSCLC, non-small cell lung cancer; TKD, tyrosine kinase domain; TKI, tyrosine kinase inhibitor

Gerrina Ruiter | Phase Ib Analysis of Beamion LUNG-1: Zongertinib (BI 1810631) in Patients with *HER2*-Mutant NSCLC; WCLC 2024

Zongertinib

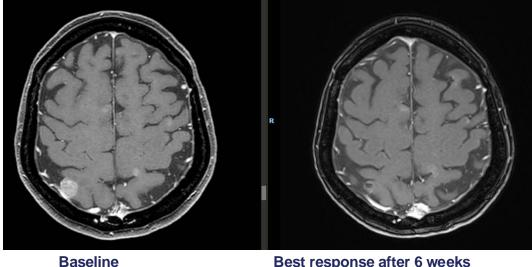
The primary endpoint, confirmed response by BICR, was met for all treated patients at 120 mg (n = 75) in Phase Ib Cohort 1

- ORR by central review for 120 mg (n = 75): 66.7% (97.5% CI 53.8–77.5), p<0.0001*
- Ongoing patients could still achieve response

Tumor shrinkage of any magnitude was observed in 94% of patients (124/132), per investigator assessment[†]

DoR and PFS data are currently immature, two-thirds of patients remained on treatment at data cut-off

Table below represents patient recruitment when 1:1 randomization occurred for both doses to allow for proper comparison


Confirmed Best Overall Response by Central Review, n (%)	120 mg n = 58	240 mg n = 55
ORR	42 (72.4)	43 (78.2)
CR	1 (1.7)	2 (3.6)
PR	41 (70.7)	41 (74.5)
DCR	55 (94.8)	55 (100.0)
SD	13 (22.4)	12 (21.8)
PD	3 (5.2)	0
NE	0	0

Gerrina Ruiter | Phase Ib Analysis of Beamion LUNG-1: Zongertinib (BI 1810631) in Patients with *HER2*-Mutant NSCLC; WCLC 2024

Zongertinib

These data show encouraging preliminary intracranial activity with zongertinib

Confirmed BOR (RANO-BM) by BICR	120 mg n = 27	240 mg n = 25
ORR, n (%) 95% Cl	9 (33) 19–52	10 (40) 23–59
CR, n (%)	4 (15)	5 (20)
PR, n (%)	5 (19)	5 (20)
DCR, n (%) 95% Cl	20 (74) 55–87	23 (92) 75–98
SD, n (%)	11 (41)	13 (52)
PD, n (%)	2 (7)	1 (4)
NE, n (%)	5 (19)	1 (4)

Best response after 6 weeks

UCI Health

- 63-year-old female
- Diagnosed in 2022 with Stage IV NSCLC HER2 Y772_A775dup
- PD after 6 months of carboplatin-pemetrexed-pembrolizumab
- Received second-line treatment with zongertinib 240 mg
- Duration of response in brain (RANO-BM): 6 months (since discontinued treatment due to PD)

Gerrina Ruiter | Phase Ib Analysis of Beamion LUNG-1: Zongertinib (BI 1810631) in Patients with HER2-Mutant NSCLC; WCLC 2024

Zongertinib

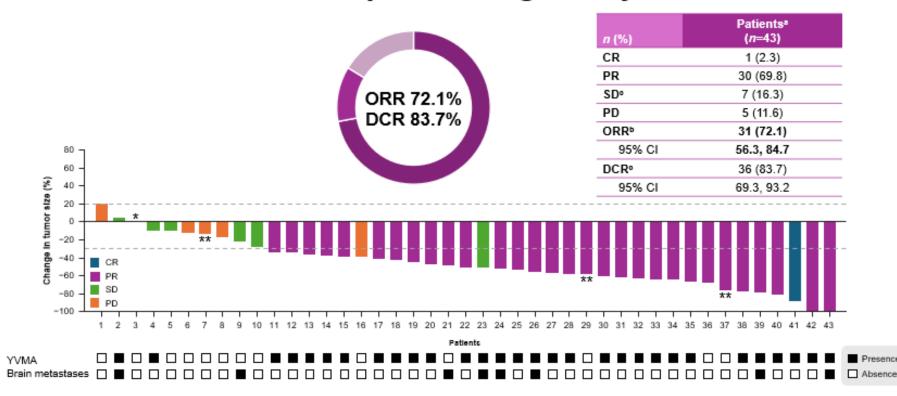
Majority of TRAEs were mild and manageable

Most cases of diarrhea and rash were mild

- Diarrhea: 43% grade 1, 11% grade 2
- Rash: 19% grade 1, 8% grade 2

No fatal TRAEs occurred

AEs leading to **dose reduction** occurred in 14 (11%) patients


Only 4 patients (3%) had AEs leading to **treatment discontinuation**

TRAEs, n (%)	120 mg n = 75		240 mg n = 57	
	All	Grade ≥3	All	Grade ≥3
Any TRAE*	69 (92)	13 (17)	57 (100)	11 (19)
Diarrhea	36 (48)	1 (1)	37 (65)	1 (2)
Rash [†]	18 (24)	0	17 (30)	0
ALT increased	14 (19)	6 (8)	16 (28)	6 (11)
AST increased	16 (21)	4 (5)	14 (25)	4 (7)
Anemia	8 (11)	0	10 (18)	0
Nausea	10 (13)	0	4 (7)	0
Neutrophil count decreased	7 (9)	1 (1)	7 (12)	3 (5)
Pruritus	6 (8)	0	8 (14)	0
Serious TRAE	3 (4)	3 (4)	7 (12)	5 (9)

Gerrina Ruiter | Phase Ib Analysis of Beamion LUNG-1: Zongertinib (BI 1810631) in Patients with *HER2*-Mutant NSCLC; WCLC 2024

BAY 2927088

SOHO-01 Cohort D: ORR per investigator by RECIST v1.1

^aAll evaluable patients; ^bPatients with confirmed CR or PR; ^cPatients with confirmed CR or confirmed PR or SD for ≥12 weeks; *0%, SD; ** *HER*2 point mutations CI, confidence interval; CR, complete response; DCR, disease control rate; NR, no response; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease

Xiuning Le, MD, PhD | SOHO-01 trial: BAY 2927088 in HER2-mutant NSCLC; WCLC 2024

BAY 2927088

n (%)	All grades (<i>N</i> =44)	Grade ≥3 (<i>N</i> =44)
Any TRAE	42 (95.5)	19 (43.2)
Most common TRAEs occurring in ≥10% of patients	6	
Diarrhea	38 (86.4)	11 (25.0)
Rash	19 (43.2)	0
Paronychia	11 (25.0)	0
Nausea	11 (25.0)	1 (2.3)
Vomiting	9 (20.5)	2 (4.5)
Dermatitis acneiform	8 (18.2)	0
Stomatitis	8 (18.2)	1 (2.3)
Dry skin	7 (15.9)	0
Increased aspartate aminotransferase	6 (13.6)	1 (2.3)
Decreased appetite	6 (13.6)	2 (4.5)
Increased amylase	5 (11.4)	0
Anemia	5 (11.4)	0
Increased lipase	5 (11.4)	0
Decreased weight	5 (11.4)	0
Pruritis	5 (11.4)	1 (2.3)

- Diarrhea was the most common TRAE, experienced by 38 patients (86.4%); principally grade 1 or 2
- 3 patients (6.8%) had TRAEs leading to treatment discontinuation
 - Included corneal epithelial microcysts (n=1), reduced visual acuity (n=1), abnormal hepatic function (n=1), and dyspnea (n=1)
- 14 patients (31.8%) had dose reductions due to TRAEs^a
- 5 patients (11.4%) had serious TRAEs
 - Included diarrhea (n=1), duodenitis (n=1), vomiting (n=1), and abnormal hepatic function (n=2)
- There were no grade 4 TRAEs and one grade 5 event (dyspnea); no reports of ILD/pneumonitis

^a≥2 patients: diarrhea (*n*=6), hepatic function abnormal (*n*=2), ALT increase (*n*=2), decreased appetite (*n*=2) ILD, interstitial lung disease; TRAE, treatment-related adverse event

Xiuning Le, MD, PhD | SOHO-01 trial: BAY 2927088 in HER2-mutant NSCLC; WCLC 2024

Thank you

Acknowledgements: Dr. Ignatius Ou

Email: nagasakm@hs.uci.edu