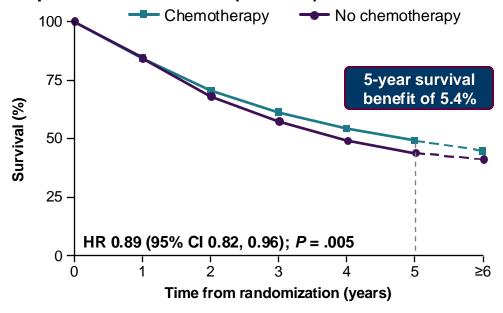


Progress in Targeted Therapies for Early-Stage NSCLC

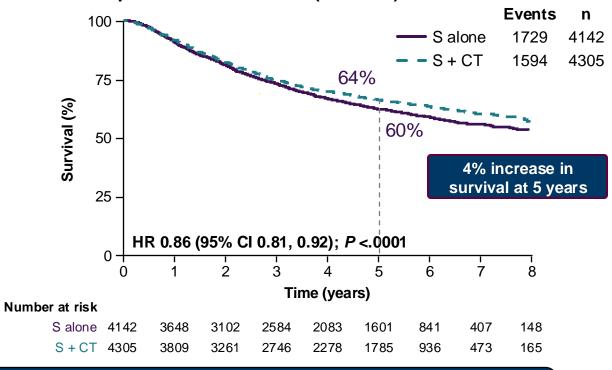
Lyudmila Bazhenova, MD
Professor of Medicine,
Lung Cancer Unit Leader
Director Hematology and
Oncology Training Program

How do we increase survival in early-stage lung cancer?

Lung and Bronchus SEER Relative Survival Rates by Time Since Diagnosis, 2000-2020 By Stage at Diagnosis, Both Sexes, All Races / Ethnicities, All Ages



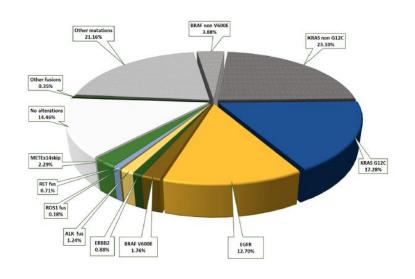
- Increase screening rates
- Improve efficacy of neoadjuvant/adjuvant therapy


SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National Cancer Institute; 2024 Apr 17. [updated: 2024 Nov 5; cited 2024 Nov 14]. Available from: https://seer.cancer.gov/statistics-network/explorer/. Data source(s): SEER Incidence Data, November 2023 Submission (1975-2021), SEER Incidence Data, November 2023 Submission (1975-2021), <a hre

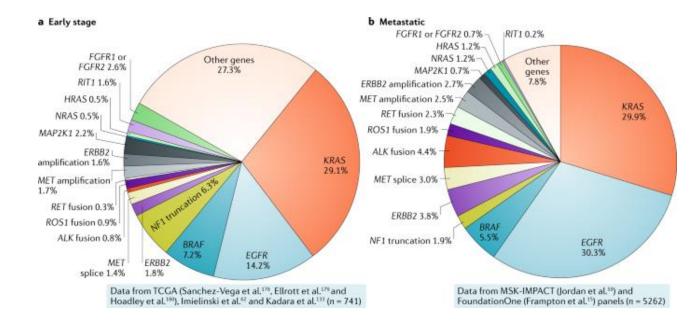
Adjuvant Platinum-Based Doublet Chemotherapy is Standard of Care in Patients with Resected Stage II–III NSCLC and Select Patients with Stage IB Disease¹

LACE pooled analysis of 5 randomized adjuvant cisplatin trials performed since $1995 (n = 4584)^2$

Meta-analysis of randomized adjuvant chemotherapy trials performed since $1965 (n = 8447)^3$

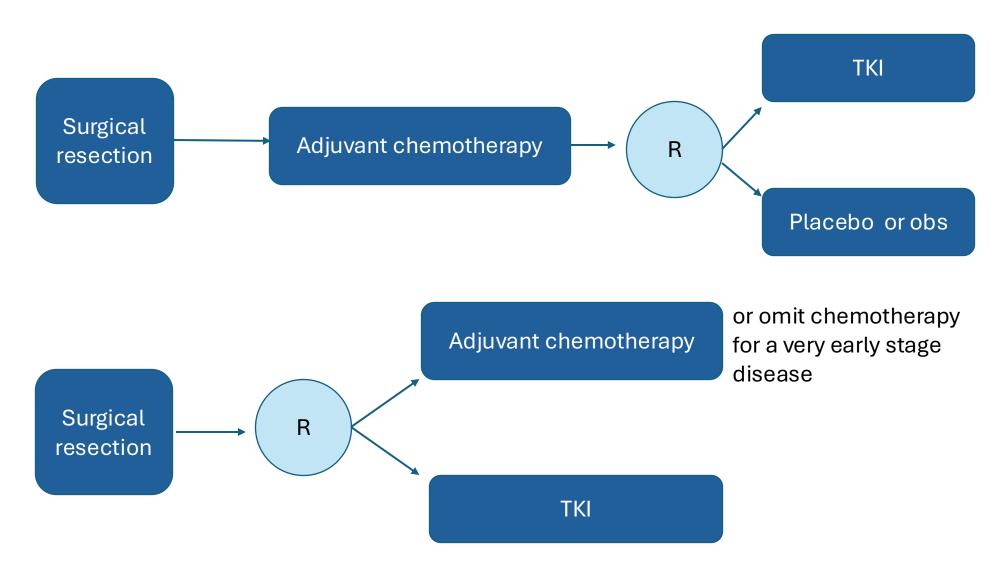


Results from large randomised trials^{4,5} and meta-analyses^{2,3} have shown a statistically significant OS benefit (~5% at 5 years) only in patients with stage II-III disease

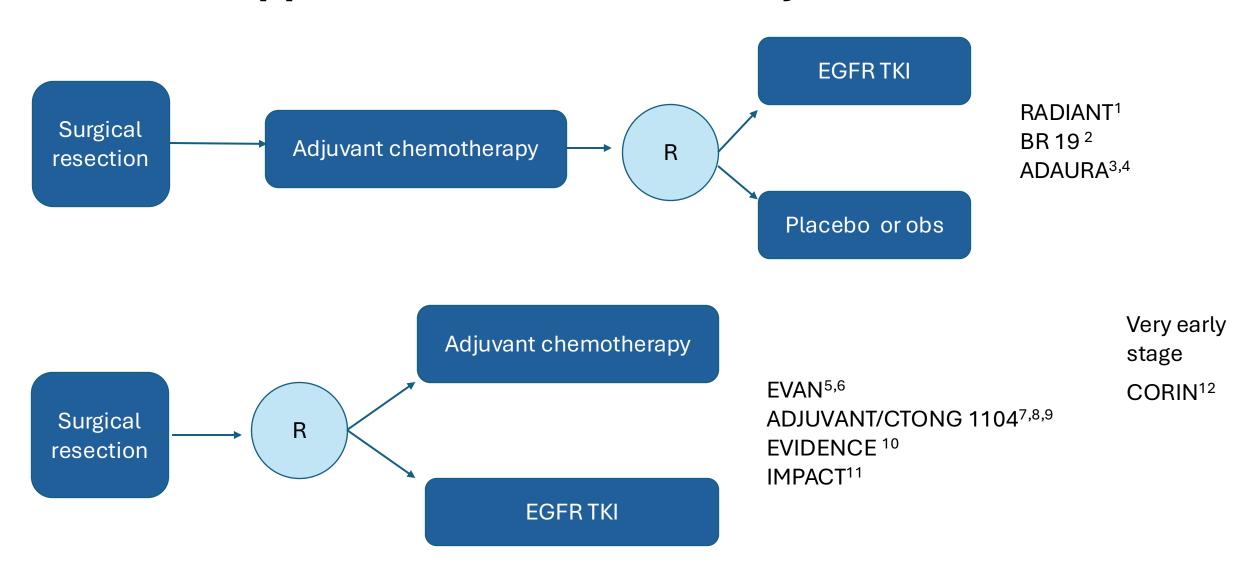

^{1.} Kris MG et al. J Clin Oncol. 2017;35:2960-2974; 2. Pignon JP et al. J Clin Oncol. 2008;26:3552-3559; 3. NSCLC Meta-analyses Collaborative Group. Lancet. 2010;375:1267-1277; 4. Arriagada R et al. N Engl J Med. 2004;350:351-360; 5. Winton T et al. N Engl J Med. 2005;352:2589-2597.

Driver mutation in early-stage lung cancer

Retrospective Single center N=2066. 47% early stage



Combined analysis of whole-exome sequencing data from TCGA and other databases.



Overall similar frequencies between early and advanced stages Prognostic value of each specific alteration is being debated.

Potential approach to randomized adjuvant TKI studies

Potential approach to randomized adjuvant TKI studies

¹ Kelly K et al. J Clin Oncol. 2015;33:4007–4014; ² Goss GD et al. J Clin Oncol 2013;31:3320–3326; ³ Wu Y-L et al. N Engl J Med. 2020; 383:1711-1723 ⁴ Herbst et al JCO 2023 ⁵ Yue D et al. Lancet Respir Med. 2018;6:863–873 ⁶ Yue et al JCO 2022 ⁷ Zhong WZ et al. Lancet Oncol 2018;19:139–148; ⁸ Wu et al, ASCO 2020. ⁹ Zhong et al JCO 2021 ¹⁰ He et all Lancet Resp Medicine 2021; ¹¹ Tada et al. JCO 2021. 12 Ou et al Lancet 2023

DFS but not OS benefit in phase III randomized trials of TKI vs chemotherapy

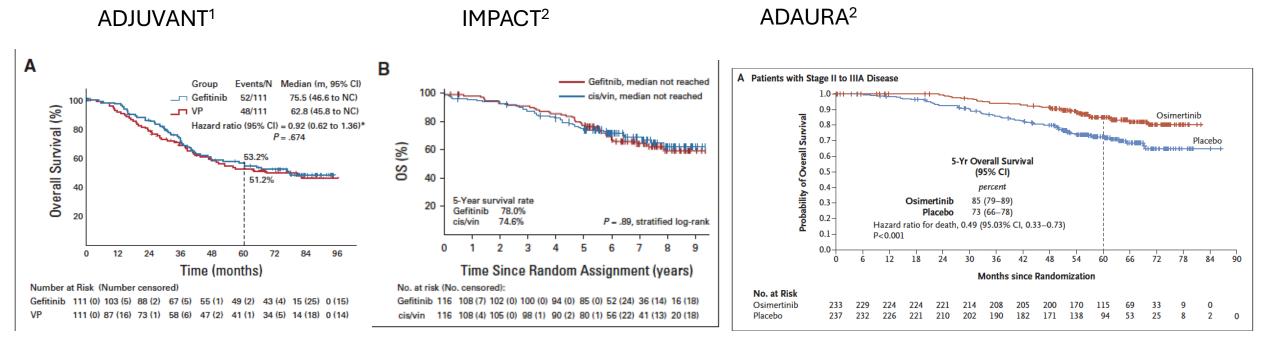
Study (phase) Stage	Study design		Endpoints	Results		
EVAN (II) ^{1,2} N=102	R	Erlotinib x 2y	2Y DFS mDFS,OS	2y DFS 81.4% vs 44.6% RR 1.823, p=0.0054 mDFS 42.4 m vs 21 m, HR 0.268; p<0.0001;		
IIIA		cis/vinorelbine x 4		mOS 84.2 vs 61.1 HR 0.37;p 0.003		
ADJUVANT /CTONG1104 (III) ^{3,4,5} N=222 II-IIIA	R	Gefitinib x 2 y	mDFS OS, 3 and 5y DFS, 5y OS	mDFS 30.8 vs 19.8, HR 0.56 p=0.001 3yDFS 31% vs 28% HR 0.84, p=0.74		
		Cis/vinorelbine x 4		mOS 75.5m and 62.8m, HR 0.92; P 0.674		
EVIDENCE (III) ⁶ N=322 II-IIIA	R	Icotinib x 2 y	mDFS OS, 3 and 5 y	mDFS 47 vs 22.1, HR 0.36, P<0.0001 3y PFS 69.3% vs 32.5%		
		Cis/vinorelbine(peme) x 4	DFS	OS immature. HR 0.91, 5y DFS not reported ?		
IMPACT (III) ⁷ N=232 II-III	R	Gefitinib x 2 y	mDFS OS	mDFS 35.5 vs 25.0 HR 0.92, P .63		
		Cis/vinorelbine x 4		5 Y OS 78%, 75%, HR 1.03, p 0.89		

¹ Yue D et al. Lancet Respir Med. 2018;6:863–873 ² Yue et al JCO 2022 ³ Zhong WZ et al. Lancet Oncol 2018;19:139–148; ⁴. Wu et al, ASCO 2020. ⁵ Zhong et al JCO 2021 ⁶ He et all Lancet Resp Medicine 2021, ⁷ Tada et al. JCO 2021

Randomized trials of TKI vs observation without chemotherapy

Study (phase) Stage	Study design		Endpoints	Results
CORIN (II) ¹ N=102	R	Icotinib x 1y	3Y DFS mDFS,OS	3y DFS 96% vs 84% , p=0.041 mDFS NR
IB (7 th edition)		observation		mOS not mature

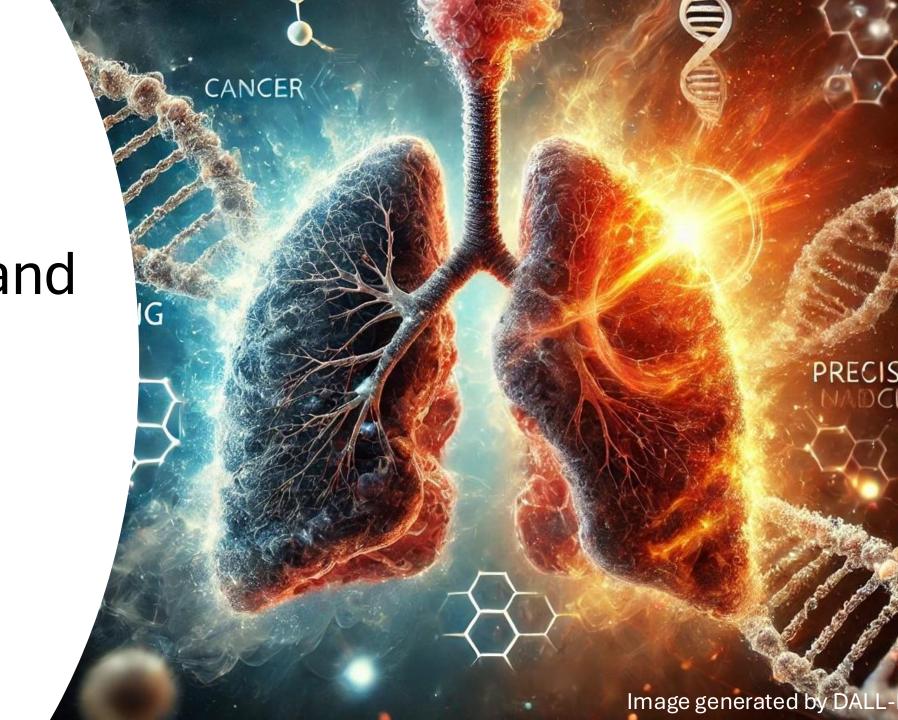
¹ Ou et al Lancet 2023.


Randomized TKI vs observation trials post adjuvant chemotherapy

Study (phase)	Study design		Endpoints	Results
BR 19 (III)* ¹ N=15		Gefitinib x 2 y	mDFS OS, 3 and 5 y DFS	EGFR mt mDFS HR,1.84; p 0.40 favoring placebo
EGFR mt IB-IIIA	R	Placebo		EGFR mt mOS HR, 3.16, p 0.15 favoring placebo
RADIANT (III)** ² N=161		Erlotinib x2y	mDFS OS, DFS and OS EGFR mt	EGFR mt mDFS 46.4 v 28.5 m HR 0.61; 95% 0.38 to 0.98; P .039 (NSS)
EGFR mt IB-IIIA	R	Placebo		mOS not reported
ADAURA (III) ^{3,4,5} N=682 EGFR mt IB- IIIA	R	, Osimertinib x 3 y	mDFS II-IIIA DFS in all, OS	mDFS II-IIIA 65.8 vs 21.9. HR 0.23 (99% CI, 0.11-0.26); <i>P</i> <.001 mDFS all 65.8 vs 28.1 HR 0.27 (99.12% CI, 0.14-0.30); p<0.001
	n	Placebo		5Y OS 85% vs 73% HR 0.49 p <0.001

^{*}phase III unselected. 15 patients with EGFR m ** phase III with EGFR overexpression and amplification, 161 with EGFR mt

¹Goss GD et al. *J Clin Oncol* 2013;31:3320–3326 ² Kelly K et al. *J Clin Oncol*. 2015;33:4007–4014; ³Wu Y-L et al. *N Engl J Med*. 2020; 383:1711-1723; ⁴Herbst et al JCO 2023, ⁵Tsuboi et al NEJM 2023

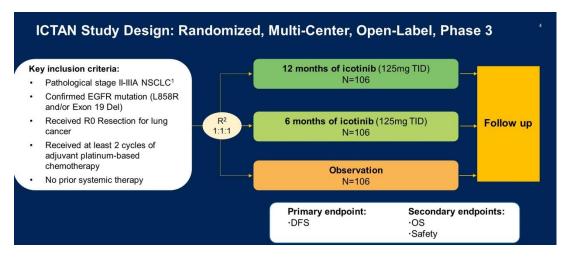

OS in phase III trials

Randomized trials of TKI vs chemotherapy

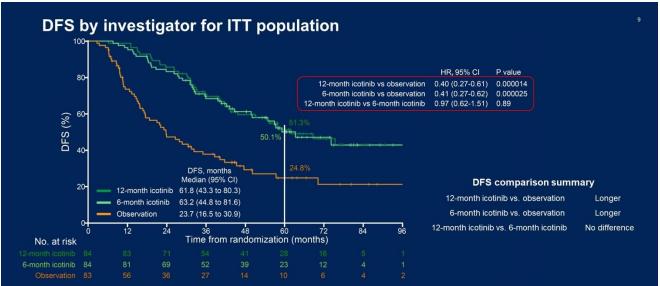
Study (phase) Stage	Study design		Endpoints	Results
ALINA ¹ N=257	R	Alectinib x 2y	DFS II-IIIA, then all	2y DFS II –IIIA 93.8% vs 63% , HR 0.24 p=0.001 2t DFS All 93.6% vs 63.7% HR 0.24 p -0.001
IB- IIIA		Chemotherapy x 4	mOS, CNS DFS	mOS not mature

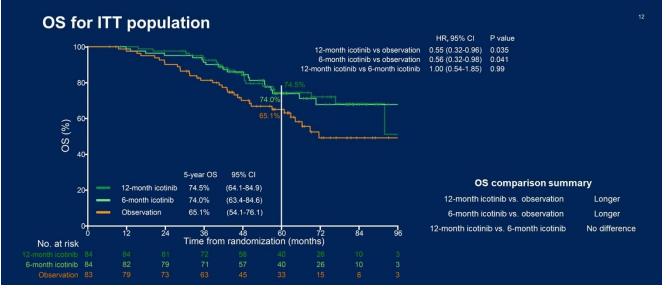
Challenges and future directtions

Questions left post ADAURA and ALINA

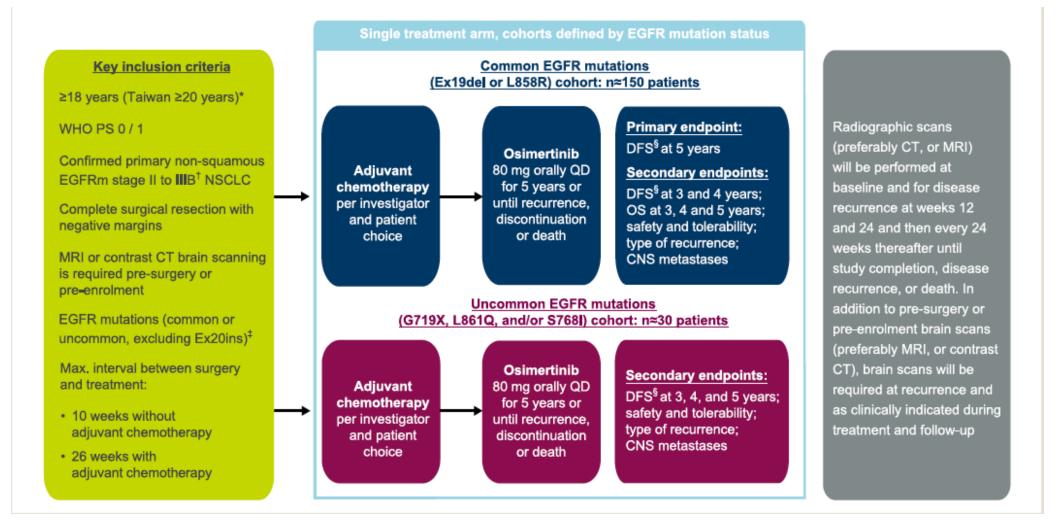

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

Next questions to answer


- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

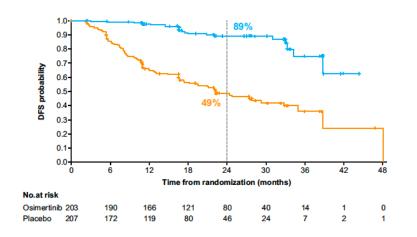

Duration of therapy

ICTAN, GASTO1003

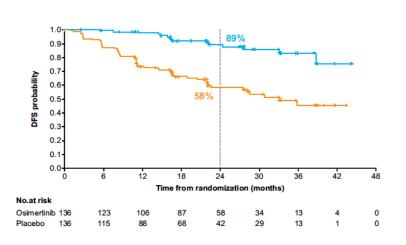


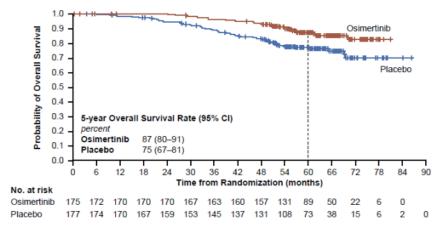
No difference in outcomes between stage II and III

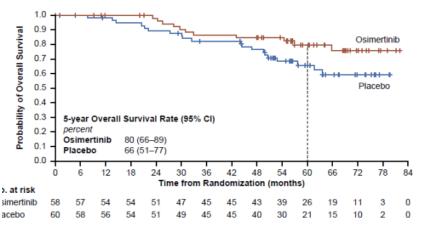
Extending duration. TARGET trial NCT05526755


66% of patients completed adjuvant Osimertinib in ADAURA 41% completed placebo

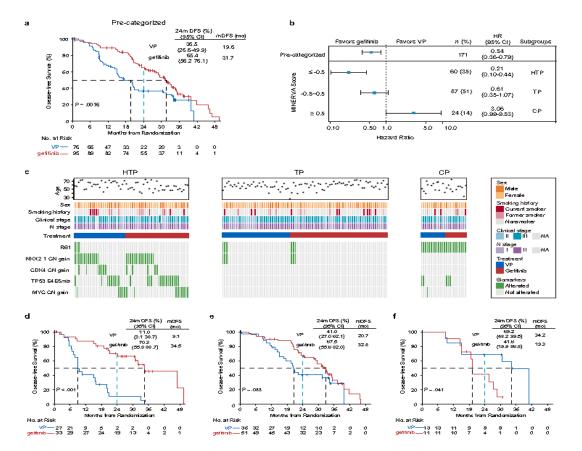
Next questions to answer

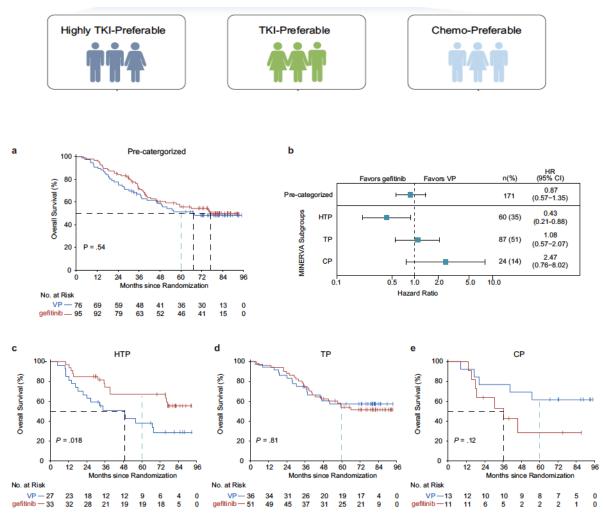

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD


Outcomes by Receipt of Adjuvant Chemotherapy


Received adjuvant chemotherapy

Did not receive adjuvant chemotherapy

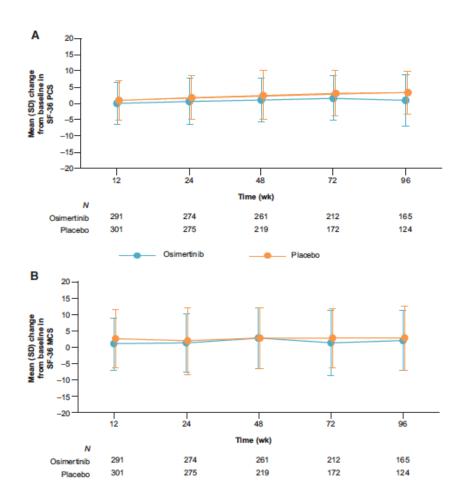

Stage II-IIIA best survival in the group receiving chemotherapy and TKI


Treatment	5Y OS %
No chemotherapy placebo	66
Chemotherapy Placebo	75
No chemotherapy osimertinib	80
Chemotherapy osimertinib	87

DFS patterns were similar by stage.

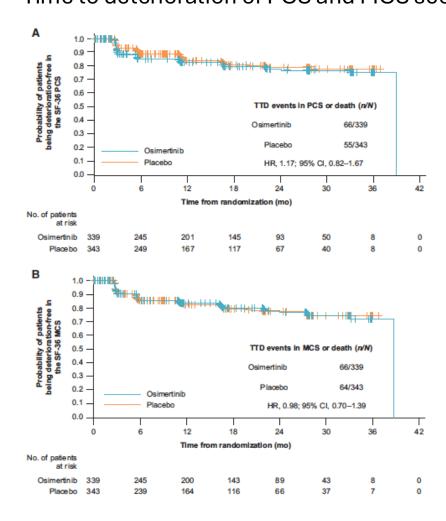
Multiplegene INdex to Evaluate the Relative benefit of Various Adjuvant therapies (MINERVA) score

ADJUVANT trial . 171 patients with genomic profiling

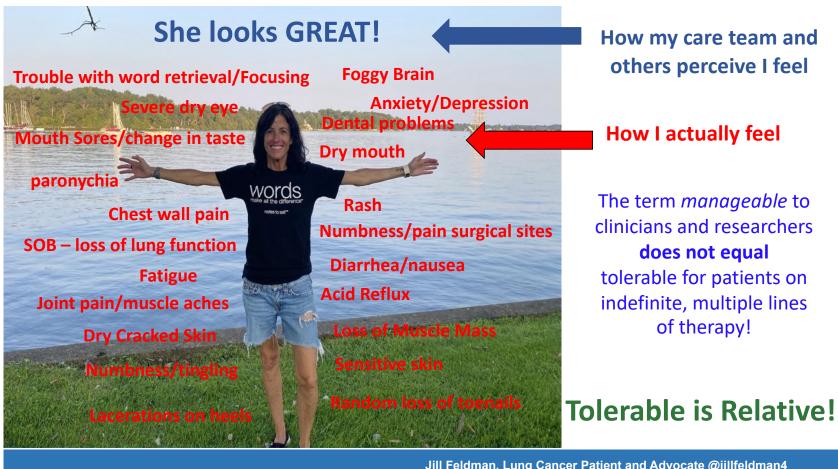

Si-Yang Liu et al Nature Communications 2021

Next questions to answer

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD


HRQ0L SF 36. No meaningful differences

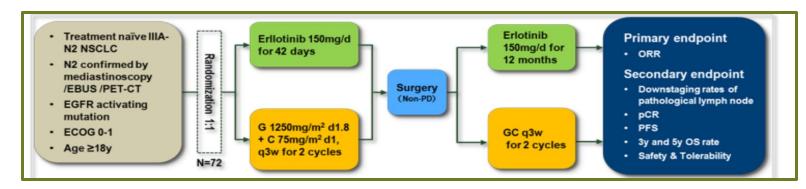
PCS and MCST scores


PCS physical component score MCS mental component score

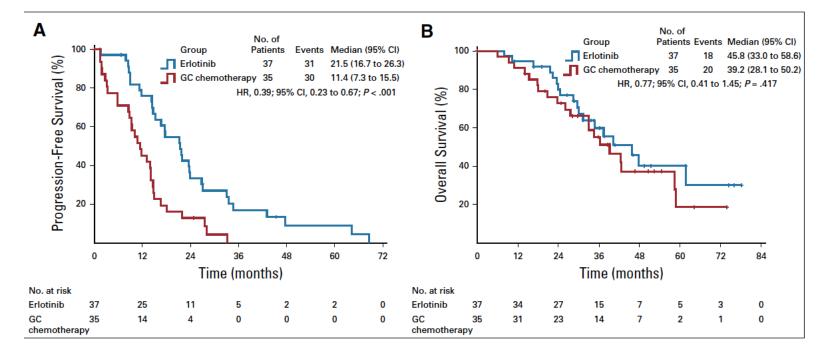
Time to deterioration of PCS and MCS scores

Margarita Majem1 et al Clinical Cancer Research 2022

Do we know how to measure toxicity on the patient level?


While HRQoL was not impaired in a measurable way. This does not mean that our patients do not have side effects

Next questions to answer


- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

Neoadjuvant trials EGFR

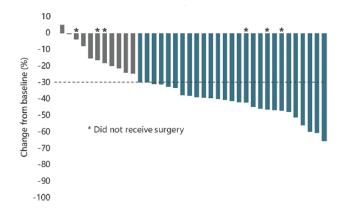
EMERGING –CTONG 1103

N=72 ORR 54.1% vs 34.3% (OR, 2.26; 95% CI, 0.87 to 5.84; P = .092) pCR 0% MPR 9.7% vs 0%

Zhong et al JCO 2018

Neoadjuvant Osimertinib trials

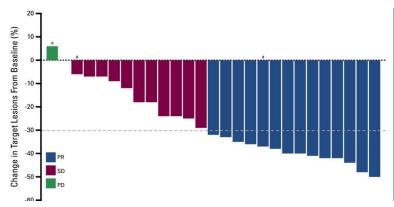
NeOs


N=40 IIA-IIIB

Osimertinib x 6 weeks

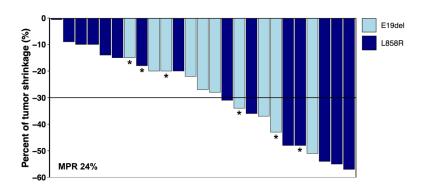
ORR 71.1 %

R0 resection 93.8 %


MPR 10.7% pCR3.6%

LV et al Lung Cancer 2023

Blakely et al


- N=27
- Osimertinib 4-8 weeks
- ORR 51%
- R0 resection 96%
- MPR 16.7%, pCR 0

Blakely et al JCO 2024

NORA

- N=25 I-IIIA
- Osimertinib 8 weeks
- ORR 44%
- R0 resection 100%
- MPR 24%, pCR 0

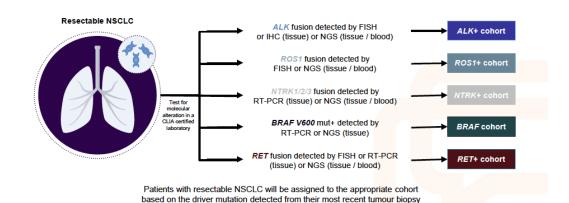
Lee et al JTO 2023

ALK TKI

- Phase II SAKULA trial
- neoadjuvant ceritinib for 12 weeks for ALK-positive stage II-III NSCLC
- Only enrolled 7 patients (stage IIIA) and was closed due to slow accrual
- One patient withdrew from the study (dose limiting toxicity)
- 100% ORR and 6 patients underwent surgical resection of which 57% MPR and 28% pCR

- Phase II
- neoadjuvant crizotinib (28-120 days)
- 11 patients
- ORR 91%
- R0 91%
- 2 patients with pCR (18%)

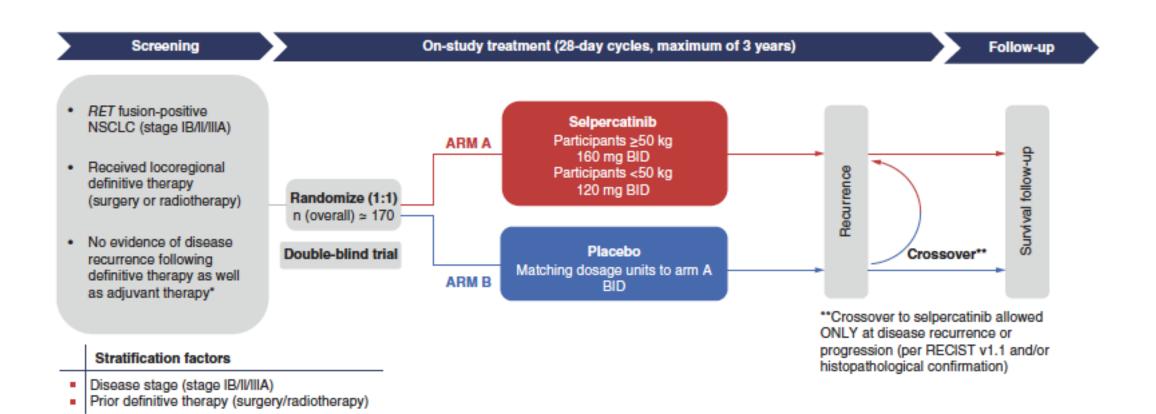
Zenke JTO 2019 Zhang et al JTO 2018


Ongoing neoadjuvant trials

Study	Phase	Stage	Regimen	N	Primary end point
NEOADAURA NCT04351555	III	II-IIIB	Osi vs Osi+chemo vs chemo->investigators choice osimertinib	351	MPR
ANSWER NCT04455594	II	IIIA N2	Almonertinib vs erlotinib +chemotherapy	168	ORR
NEOIPOWER NCT05104788	II	II-IIIB	Icotinib + chemotherapy -> surgery	27	MPR
NCT04201756	II	Ш	Afatinib 16 w-> surgery-> afatinib X 1y	47	ORR
NCT03749213	Ш	IIIA N2	Icotinib 8w-> surgery-> icotinib 2Y	36	ORR
NeolazBAL NCT05469022	II	EGFF mt on BAL	Lazertinib x 9 weeks ->surgery-> laz 3 year		

Ongoing neoadjuvant trials

Study	Phas e	Stage	Regimen	N	Primary end point
NCT05118854	II	IIA-IIIB	Sotorasib + plat doublet	27	MPR
NeoCAN NCT05472623	II	IB-IIIA	Adagrasib + plat doublet	21 21	pCR
Geometry N NCT04926831	II	IB-IIIA	Capmatinib x 8 weeks _> surgery -> capmatinib x 3 years	9 stage 1 42 stage 2	MPR
NAUTIKA1			Multiple drivers		


NAUTIKA-1 (NCT04302025)

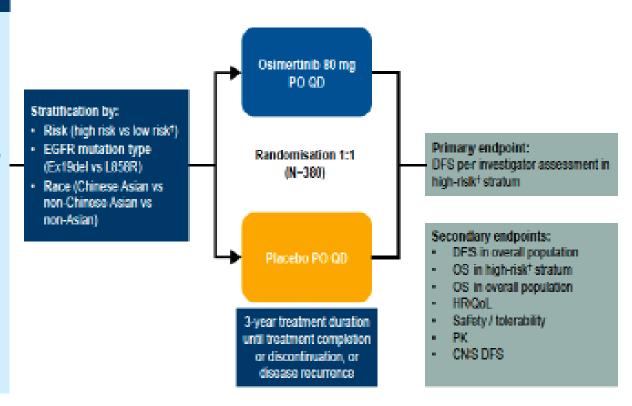
Next questions to answer

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

Libretto 432 NCT04819100

Next questions to answer

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

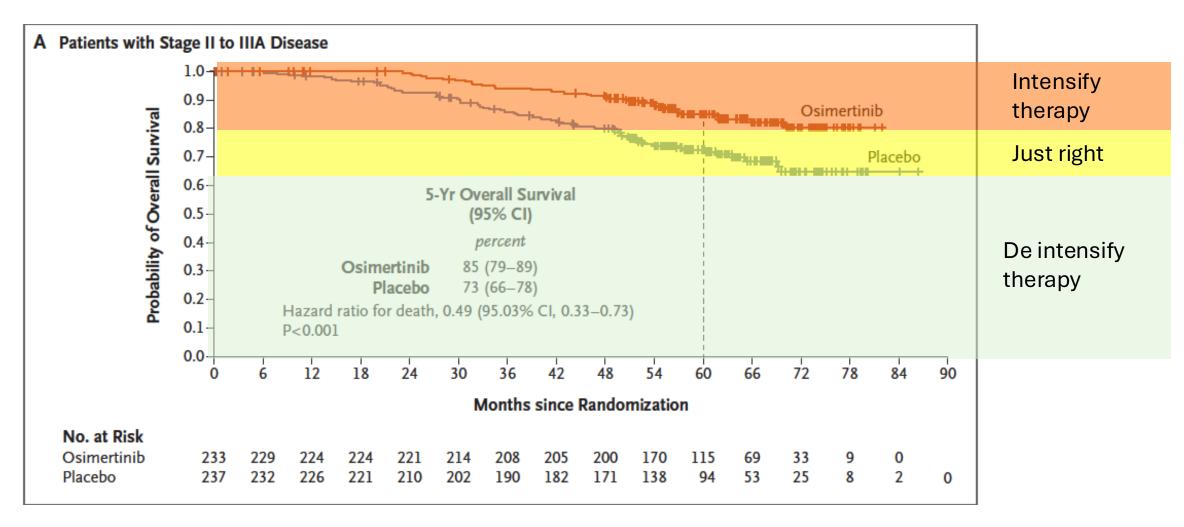

Figure 1. ADAURA2 study design

ADAURA2 (NCT05120349) is a Phase III, global, randomised, double-blind, placebo-controlled study of adjuvant osimertinib in stage IA2-IA3 EGFRm (Ex19del or L858R) NSCLC following complete tumour resection

Adult participants with completely resected stage IA2 or IA3* EGFRm NSCLC

Key inclusion criteria:

- Aged >18 years
- Confirmed primary non-squamous pathological stage IA2 or IA3* NSCLC
- EGFR mutation (Ex19del or L858R) either alone or in combination with other EGFR mutations
- Complete (R0) surgical resection of the primary turnour with negative margins (by lobectomy, segmentectomy or sleeve resection)
- Tumour sample submission for central pathology assessment of:
 - Invasive tumour size
- Presence of lymphovascular invasion
- Tumour histology
- · WHO performance status 0 / 1
- No pre- / post-operative radiotherapy or systemic therapy
- Not eligible for any other local SOC treatment.

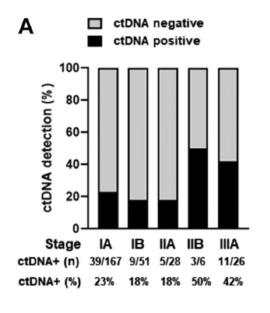

Based on the eighth edition UICC / AJCC TNM staging system. High risk defined as presence of 21 of the following factors: largest diameter of invasive component of primary tumour >2 om, lymphovasoular invasion and / or high-grade histology (>20% micropapillary, solid or complex gland adenocarcinoma). Low risk defined as absence of any high-risk factors.

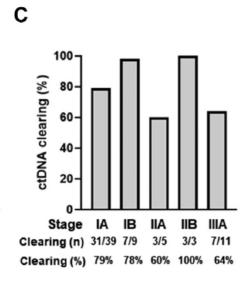
AJCC, American Joint Committee on Cancer; CNS, central nervous system; DFS, disease-free survival; EGFR, epidernal growth faster receptor; Ex18del, exon 19 deletion; HRQoL, health-related quality of life; NSCLC, non-small cell lung cancer; OS, overall survival; PK, pharmacokinetics; PO, orally; QD, once daily; SOC, standard of care; TNM, tumour, nodes and metastases; UICC, Union for International Cancer Control; WHO, World Health Organization.

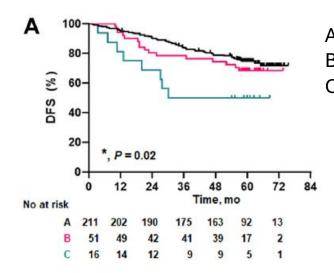
Next questions to answer

- What is an optimal duration of adjuvant targeted therapy
- Is chemotherapy necessary for all patients
- How do we manage long term toxicity of adjuvant targeted therapy
- Is there a benefit in neoadjuvant approach
- What about other rare mutations
- Very early stages (IA1, IA2, IA3, IB)
- MRD

Can we individualize treatment decisions

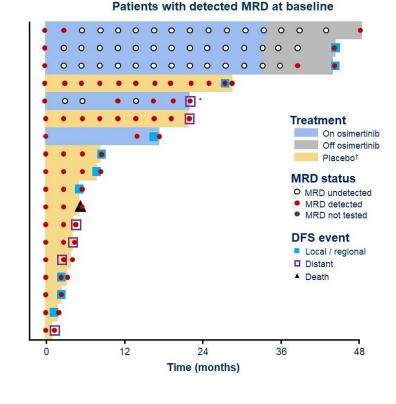


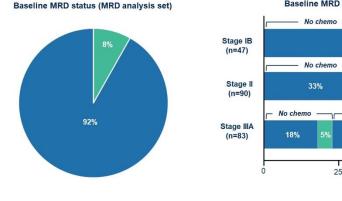

Baseline ctDNA-positive or MRD-positive status is associated with poor DFS in curative resected stages I to IIIA EGFR-M.

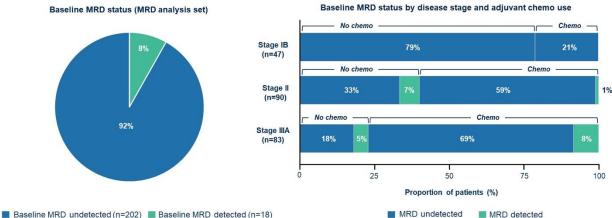

- Prospective cohort, 278 completely resected stage IA to IIII EGFRmutant NSCLC (60% stage IA), longitudinal ctDNA status by ddPCR
- Pre-surgery ctDNA detected in 67 (24.1%) patients
 - ✓ 76% (51 of 67) exhibited ctDNA clearance 4 wks after surgery
- Higher 3-year DFS in patients who were ctDNA negative at baseline:
 - ✓ ctDNA negative at baseline (N=211), 3-yr DFS 83.3%
 - ctDNA positive and MRD negative after surgery (N=51), 3-yr DFS
 78%
 - ctDNA positive and MRD positive after surgery (N=16), 3-yr DFS
 50%

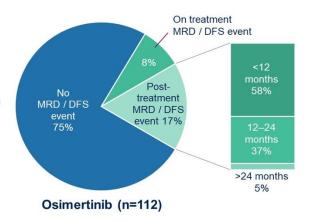
Baseline ctDNA

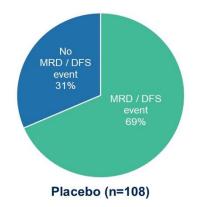
Post surgical clearance

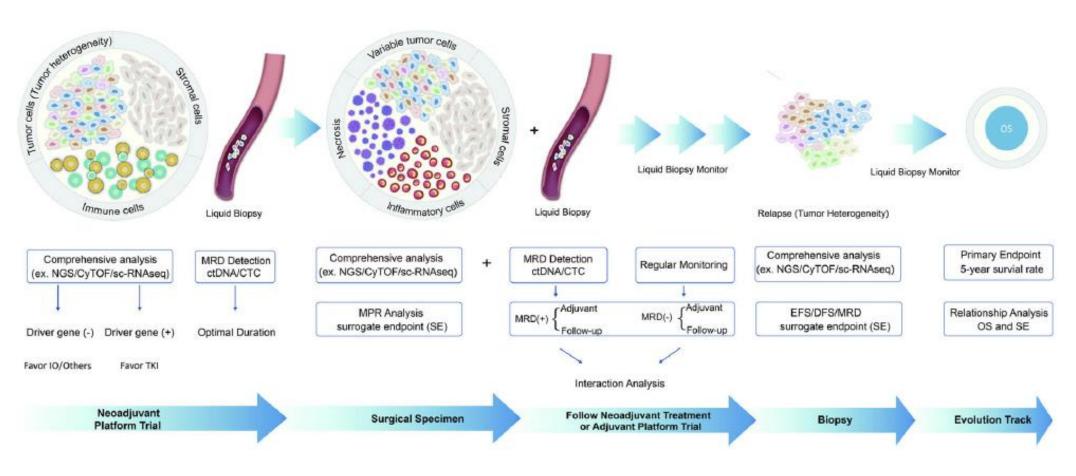




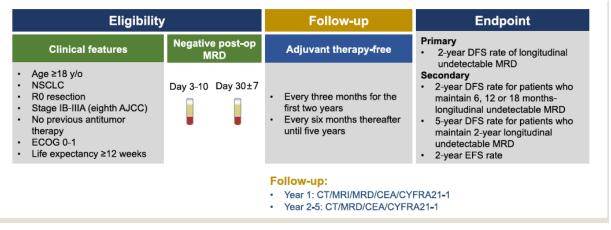

A ctDNA neg B ctDNA pos,MRD neg C ctDNA pos, MRD pos


Tumor Informed MRD in ADAURA


- MRD technology RaDaR
- 220 (112 Osimertinib, 108 Placebo) had MRD assay built
- Majority of patients had undetected MRD at baseline
- MRD detection at baseline was associated with worse outcome
- 18 patients with detected MRD at baseline
 - 4/5 cleared in Osimertinib group
 - 0/13 cleared in Placebo group
- Most MRD/DFS events in Osimertinib arm happened after Osimertinib discontinuation



Perioperative Clinical Trial design



Adjuvant trials based on MRD

CTONG2201/NCT05457049:

Adjuvant Therapy Omission for Resected NSCLC Patients With Longitudinal Undetectable MRD

Patients with stage IB-IIIA s/p curative resection 2 negative MRD (day 3-10, Day 30+/-7) No adjuvant therapy Tumor informed MRD_Navigator, Beijing GenePlus Technology Co., Ltd

FATE/CTONG 2105 (NCT05536505):

Adjuvant Treatment based on MRD for EGFR Mutant NSCLC

Patients with stage IB-IIIA s/p curative resection 2 negative MRD (day 3-10, Day 30+/-7) MRD + icotinib stop and go MRD – observation till MRD + then Osimertinib stop and go

Zhang et al Clinical Lung cancer 2023

MRD, challenges to be addressed

- Best technology for MRD detection
- Development of robust MRD technologies is vital with the aim of minimizing the false-negative rates

Multidisciplinary approach.

MultiD collaborations are important

The adjuvant therapy discussion begins with the surgeon

"But I thought you got it all!"

Summary

- Testing for oncogenic drivers is important for all disease stages
 - FDA approval for adjuvant therapy for EGFR and ALK
 - Opportunity to enroll into clinical trials.
- Chemotherapy is still important and has a small but well proven benefit
- In EGFR mt adjuvant Osimertinib prolongs OS
- Many questions still need to be answered
 - Duration of therapy
 - Very early stage
 - Role of intensification or deintensification of therapy
 - Role of neoadjuvant TKI
- Other less frequent alterations will present a challenge with trial recruitment

Questions

