Peripheral T-Cell Lymphoma: Incorporating Novel Therapies

Steven M. Horwitz M.D. Nonna's Garden Chair Member and Attending Physician Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College, Cornell University

21st Annual Miami Cancer Meeting January 12, 2025

Population Outcomes in PTCL: Swedish National Registry

PFS

Years

Overall survival mirrors PFS-lack of effective second line+ therapy

Years

14

Fredrik Ellin et al. Blood 2014;124:1570-1577

Proportion Progression-free Survival

0.6

0,2-

0,0-

0

2

PTCL Genetics and Molecular Pathogenesis

Increasing understanding of biology of T-cell Lymphomas

- AITL and TFH (T-Follicular Helper PTCL) develop on a background of epigenic dysregulation
 - TET2, DMNT3A, IDH2, CHiP
- Aberrant TCR signaling is common
 - RHOA, VAV1, SYK
- Other signaling pathways are frequently dysregulated
 - PI3K, JAK/STAT
- Alterations in Tumor suppressor genes are *common*
- Subtype Specific or Subtype Independent
- Aberrant signaling in pathways may converge or be present simultaneously

Adding to a CHOP Backbone in a Targeted or Selective Way

Brentuximab vedotin in PTCL

ECHELON-2 Study Design (NCT01777152)

Horwitz S et al. *Lancet.* 2019; 393:229-240.

PFS per BICR, ASCT or RT consolidation not an event

Echelon-2 Trial 5-Year Results: PFS (INV Assessment) and OS

Horwitz S et al. Lancet. 2019; 393:229-240.

Updated in Horwitz S et al. Ann Oncol 2022 33: 288-298

Adding to a CHOP backbone-BV in untreated PTCL

- ALCL
 - BV-CHP-Overall survival benefit
 - standard of care
- CD30 expressing PTCL-NOS, AITL
 - Part of ITT
 - Smaller subset size precludes statistical conclusions-but unclear *benefit*
 - BV-CHEP-ASCT (T-MAX; Herrera et al. ASH 2021)
 - EATL-BV-CHP-ASCT (EATL-001 Trial; Sibon et al. ASH 2021)

Adding to a CHOP Backbone in a Targeted or Selective Way

Epigenetic Therapies

TFH Phenotype Predicts Response to HDAC Inhibitors in Relapsed/Refractory PTCL

Response	TFH (n = 76)		Non-TFH (n = 5		
	ORR, n/total (%)	CR, n/total (%)	ORR, n/total (%)	CR, n/total (%)	P *
Overall (n = 127)	43/76 (56.5)	22/76 (28.9)	15/51 (29.4)	10/51 (19.6)	.0035

TFH Phenotype Predicts Response to HDAC Inhibitors in Relapsed/Refractory PTCL

Response	TFH (n = 76)		Non-TFH (n = 5		
	ORR, n/total (%)	CR, n/total (%)	ORR, n/total (%)	CR, n/total (%)	P *
Overall (n = 127)	43/76 (56.5)	22/76 (28.9)	15/51 (29.4)	10/51 (19.6)	.0035

Typical AITL/TFH mutations in *TET2*, and/or *DNMT3A*, and/or *RHOA* present in

- Responders 15/18 (83%)
- Non-responders 4/10 (40% (*P* = .034)

Respo	nders to HDACi (n=18)	Non responde	rs to HDACi (n=10))
TET2	67%	TET2	30%	
DNMT3A	44%	DNMT3A	20%	
RHOA	33%	KMT2D	20%	
TP53	22%	CARD11	20%	
KMT2D	6%	PTEN	20%	
CARD11	6%	CTNNB1	20%	
PTEN	6%	KDM6A	20%	
STAT5B	6%	NOTCH1	20%	
CREBBP	6%	DDX3X	25%	
BRCA1	6%	RHOA	10%	
RUNX1	6%	STAT5B	10%	
TET1	6%	CREBBP	10%	
ATM	6%	CTCF	10%	
CCND3	6%	SETD2	10%	
NCOR1	6%	MAP2K1	10%	
JAK1	67%	ARID1A	10%	
IDH2	67%	JAK3	10%	
CTNNB1	0%	ARID5B	10%	Inframe Mutation (putative driver)
KDM6A	0%	TP53	0%	Missense Mutation (putative driver)
NOTCH1	0%	BRCA1	0%	Missense Mutation (unknown significance)
DDX3X	0%	RUNX1	0%	Truncating Mutation (putative driver)
CTCF	0%	TET1	0%	Fusion
SETD2	0%	ATM	0%	Amplification
MAP2K1	0%	CCND3	0%	Deep Deletion
ARID1A	0%	NCOR1	0%	No alterations
JAK3	0%	JAK1	0%	 Not profiled
ARID5B	0%	IDH2	0%	

Ro-CHOP: Study Design

Key Inclusion Criteria

- Aged 18-80 y
- Histologically proven PTCL according to WHO classification: PTCL-NOS, AITL, ALK-neg ALCL, EATCL, HSTCL, SPTCL
 Key Exclusion Criteria
- Autologous or allogeneic transplant planned as consolidation

Primary end point: PFS by RAC assessment according to IWG 1999

 Median PFS of 12 mo (control) vs 16.8 mo Secondary end points: OS, response rate, DOR, TTP, TTF, safety, QOL

Romidepsin Plus CHOP vs CHOP in Previously Untreated PTCL *Efficacy*

Ro-CHOP: Response at End of Treatment

Romidepsin Plus CHOP vs CHOP in Previously Untreated PTCL *Efficacy*

Ro-CHOP: Response at End of Treatment

Dose Reductions and Interruptions

≥ 1 TEAE Dose Modification, n (%)	Ro-CHOP (n = 210)	CHOP (n = 208)
Romi red	77 (37)	NA
Romi interrupt	132 (63)	NA
Romi DC	17 (8)	NA
CHOP red	54 (26)	31 (15)
CHOP interrupt	75 (36)	42 (20)
Completed All 6 Cycles w/o Red or Inter, n (%)	Ro-CHOP (n = 210)	CHOP (n = 208)
Romi	62 (30)	NA
СНОР	112 (53)	125 (60)

Romidepsin Plus CHOP vs CHOP in Previously Untreated PTCL *Efficacy*

Ro-CHOP: PFS by independent RAC (ITT Population)* **Ro-CHOP: OS (ITT Population)**

PFS in patients with PTCL-TFH (centrally reviewed) and patients with confirmed non-TFH diagnosis

PTCL-TFH

Other therapies in PTCL

- Hypomethylating agents
- EZH inhibitors
- Jak/STAT
- Pi₃K

5-Azacitidine in T-Cell Lymphoma

• Treatment with 5-azacytidine induces a sustained response in patients with AITL

	Ν	CR	PR	ORR
PTCL	7	0	1	1/7 (14%)
AITL*	12	5	4	9/12 (75%)

• Lemonnier F, et al. *Blood.* 2018;132:2305-2309;

5-Azacitidine in T-Cell Lymphoma

Treatment with 5-azacytidine induces a sustained response in patients with AITL

 N
 CR
 PR
 ORR

 PTCL
 7
 0
 1
 1/7 (14%)

 AITL*
 12
 5
 4
 9/12 (75%)

Oracle Study Oral AZA vs Investigators Choice

	CC-486 N=42
3 months (or PTD cycle 1-3)	
Overall response rate	14 (33%) [19.6%-49.5%]
Complete response rate	5 (11.9%) [4%-25.6%]
6 months (or PTD cycle 4-6)	
Overall response rate	13 (31%) [17.6-47.1%]
Complete response rate	5 (11.9%) [4%-25.6%]

• Lemonnier F, et al. Blood. 2018;132:2305-2309; Dupuis J, et al ASH 2022

Oral Azacitidine (CC486) Plus CHOP Efficacy and Safety

Objective Responses

Response	Interim*			nterim* EOT*		
	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)
ORR	17	85%	94%	15	75%	88%
CR	11	55%	59%	15	75%	88%
PR	6	30%	35%	0	0	0
SD	2	10%	0	1	5%	0
PD	1	5%	6%	2	10%	6%

14% (N = 3)

- Grade 3-4 toxicities in > 10% :
 - Neutropenia 71% (N =15)
 - Febrile Neutropenia 14% (N = 3)
 - Anemia 14% (N = 3)
 - Thrombocytopenia 10% (N = 2)
 - Fatigue
 - Hyponatremia 14% (N = 3)

Oral Azacitidine (CC486) Plus CHOP Efficacy and Safety

Objective Responses

Response	Interim*			EOT*		
	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)	No. Pt	Evaluable (n=20)	PTCL- ^{TFH} (n=17)
ORR	17	85%	94%	15	75%	88%
CR	11	55%	59%	15	75%	88%
PR	6	30%	35%	0	0	0
SD	2	10%	0	1	5%	0
PD	1	5%	6%	2	10%	6%

- Grade 3-4 toxicities in > 10% :
 - Neutropenia 71% (N =15)
 - Febrile Neutropenia 14% (N = 3)
 - Anemia 14% (N = 3)
 - Thrombocytopenia
 - Fatigue

14% (N = 3)

10% (N = 2)

Hyponatremia 14% (N = 3)

Ruan J, et al. ASH 2021.

Oral Azacitidine (CC486) Plus CHOP *Mutational Status*

Genomic Mutational Analysis by NGS

Impact of Mutational Status on Survival

• Ruan J, et al. ASH 2020. Abstract 40.

Variation in EZH2 Expression Across PTCL Subtypes

- EZH2 is overexpressed in PTCL
- Expression of EZH2 correlates with a high tumor proliferation rate
- Can be associated with more aggressive disease and poor prognosis
- Gain if function mutations in TCL rare/not seen

EZH2 Expression in PTCL Subtypes by Immunohistochemistry

VALENTINE-PTCL01: global, multicenter, open-label, single-arm, phase 2 trial of valemetostat in R/R PTCLs

• ECOG PS score ≤ 2

• \geq 18 years

- \geq 1 prior line of systemic therapy
 - Patients with ALCL received prior ٠ brentuximab vedotin treatment

Key secondary endpoints: DOR, DOCR, CR rate, PR rate, PFS (CT-based BICR

assessment and investigator assessment), OS, safety and tolerability

Key exploratory endpoint: PET-CT–based clinical response (BICR)

Lugano 2014 response criteria²

^a PTCL subtypes included AITL, FTL, PTCL-TFH, PTCL-NOS, ALCL (ALK^{+/-}), EATL, MEITL, HSTL, PCGTL, or CD8⁺ PCAECyTCL; subtypes were determined prior to the initiation of study drug according to 2016 WHO classification. ^b Primary analysis was planned at least 10 months after the first dose of the last enrolled patient.

AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; BICR, blinded independent central review; CD, cluster of differentiation; CD8⁺ PCAECTCL, primary cutaneous CD8⁺ aggressive epidermotropic cytotoxic T-cell lymphoma; CR, complete response; CT, computed tomography; DOCR, duration of complete response; DOR, duration of response; EATL, enteropathy-associated T-cell lymphoma; ECOG, Eastern Cooperative Oncology Group; FTL, follicular T-cell lymphoma; HSTL, hepatosplenic T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T-cell lymphoma; NOS, not otherwise specified; ORR, objective response rate; PCGTL, primary cutaneous gamma delta T-cell lymphoma; PD, progressive disease; PET, positron emission tomography; PR, partial response; PS, performance status; TCL, T-cell lymphoma; TFH, T follicular helper; WHO, World Health Organization 1. Swerdlow SH, et al. Blood 2016;127:2375-2390. 2. Cheson BD, et al. J Clin Oncol 2014;32:3059-3068.

Responses were observed across all PTCL subtypes

PET-CT-based assessment

Data cutoff: May 5, 2023.

^a Other TCLs include 3 patients with FTL, 1 with PCGTL, 1 with CD8⁺ PCAECTCL, 1 with MEITL, and 13 with other eligible, but undetermined PTCL subtypes.

CT-based assessment

Other therapies in PTCL

- Hypomethylating agents
- EZH inhibitors
- Jak/STAT
- Pi₃K

Ruxolitinib: Phase 2 Multicenter Biomarker-Driven Study Targeting JAK1/2 Inhibition in R/R T-Cell Lymphomas

Ruxolitinib Efficacy: Phase 2 Multicenter Biomarker-Driven Study Targeting JAK1/2 Inhibition in R/RT-Cell Lymphomas

Response by Cohort

		Total evaluable		
Cohorts	Total treated, n	for response, n	ORR n (%)	CBR n (%)
Cohort 1	21	21	7 (33%)	10 (48%)
Cohort 2	15	14	4 (29%)	5 (36%)
Cohort 3	17	17	2 (12%)	3 (18%)
Total	53	52	13 (25%)	18 (35%)
P (cohorts 1 & 2 versus 3)			P=0.2	P=0.073
Total <i>P</i> (cohorts 1 & 2 versus 3)	53	52	13 (25%) P=0.2	18 (35 <i>P</i> =0.0

Response by Subtype

Subtype	Evaluable for response, n	ORR n (%)	CBR n (%)
PTCL-NOS	11	2 (18%)	2 (18%)
T-PLL	8	3 (38%)	4 (50%)
AITL/TFH	9	3 (33%)	4 (44%)
T-LGL	5	2 (40%)	4 (80%)
ALCL	4	1 (25%)	1 (25%)
ATLL	3	0	0
CTCL	7	1 (14%)	1 (14%)
G/D TCLs	4	1 (25%)	1 (25%)
SPTCL	1	0	1 (100%)

Golidocitinib Efficacy in JAKPOTo8 A Non-Randomized, Single Arm, Multinational, Phase 2 Trial for R/R PTCL

	n=88		
Tumor response	By IRC	By investigator	
ORR, n (%)	39 (44.3)	33 (37.5)	
Overall response, n (%)			
Complete response	21 (23.9)	11 (12.5)	
Partial response	18 (20.5)	22 (25.0)	
Stable disease	17 (19.3)	17 (19.3)	
Progressive disease	20 (22.7)	27 (30.7)	
Not evaluable	12 (13.6)	11 (12.5)	

Data cut-off date: August 31, 2023

Golidocitinib Efficacy in JAKPOTo8 A Non-Randomized, Single Arm, Multinational, Phase 2 Trial for R/R PTCL

	n=	=88
Tumor response	By IRC	By investigator
ORR, n (%)	39 (44.3)	33 (37.5)
Overall response, n (%)		
Complete response	21 (23.9)	11 (12.5)
Partial response	18 (20.5)	22 (25.0)
Stable disease	17 (19.3)	17 (19.3)
Progressive disease	20 (22.7)	27 (30.7)
Not evaluable	12 (13.6)	11 (12.5)

Histology subtypes*	Total number of subjects, n** (%)	ORR*** n (%)	CRR*** n (%)
PTCI-NOS	50 (56.8)	23 (46.0)	14 (28.0)
AITL	16 (18.2)	9 (56.3)	4 (25.0)
ALCL	10 (11.4)	1 (10.0)	0
NKTCL	3 (3.4)	2 (66.7)	1 (33.3)
Others	9 (10.2)	4 (44.4)	2 (22.2)

Data cut-off date: August 31, 2023

Duvelisib Phase 2:

Outcome by Subtype	PRIMO-EP (N=101)*		
ORR by IRC <i>,</i> n (%) [95% CI]	49 (48.5) [38.8–58.3]		
PTCL, NOS	25/52 (48.1)		
AITL	20/30 (66.7)		
ALCL	2/15 (13.3)		
Other [#]	2/4 (50.0)		

Duvelisib Phase 2:

Outcome by Subtype	PRIMO-EP (N=101)*		
ORR by IRC, n (%) [95% CI]	49 (48.5) [38.8–58.3]		
PTCL, NOS	25/52 (48.1)		
AITL	20/30 (66.7)		
ALCL	2/15 (13.3)		
Other [#]	2/4 (50.0)		

CR by Subtype	PRIMO-EP (N=101)*		
Complete response (CR)	34 (33.7)		
PTCL, NOS	14/52 (26.9)		
AITL	16/30 (53.3)		
ALCL	2/15 (13.3)		
Other [#]	2/4 (50.0)		

Dual-targeted therapy with ruxolitinib plus duvelisib for T cell lymphoma

Efficacy

Histology	n	ORR (n)	CRR (n)	PRR (n)
All patients	49	45% (22)	22% (11)	22% (11)
PTCL-NOS	13	31% (4)	15% (2)	15% (2)
AITL/TFH	14	79% (11)	64% (9)	14% (2)
ALK- ALCL	4	0%	-	-
ALK+ ALCL	1	0%	-	-
T-PLL	5	60% (3)	-	60% (3)
T-LGL	3	67% (2)	-	67% (2)
ATLL	1	0%	-	-
MEITL	1	0%	-	-
CTCL	7	29% (2)	-	29% (2)

Memorial Sloan Kettering

Moskowitz et al ASH 2024

Ruxolitinib plus duvelisib: Efficacy by JAK/STAT activation

			1	
Cohort	n	ORR (n)	CRR (n)	PRR (n)
Cohort 1: JAK/STAT activation	32	53% (17)	25% (8)	28% (9)
Cohort 2: No JAK/STAT activation	17	29% (5)	18% (3)	12% (2)
		p=0.14		
			1	
TFH lymphomas (n=12 assessed for pSTAT3)	n	ORR (n)	CRR (n)	PRR (n)
pSTAT3 overexpression	8	100% (8)	75% (6)	25% (2)
No pSTAT3 overexpression	4	25% (1)	25% (1)	0
		p=0.02		

T-PLL (ORR 60%)

JAK3 mutations present in all 5 patients Additionally: JAK2 fusion (n=1) and TYK2 fusion (n=1)

Incorporation into Upfront Trial

Alliance

•

- Phase II study of adding duvelisib or CC-486 to SOC for PTCL. NCT04803201

PI: Mehta -Shah

Immune Therapies in PTCL

- Allogeneic SCT is potentially curative in relapsed setting
- Many strategies with safety, efficacy, role TBD
- T-cell Checkpoint inhibitors
 - Subtype specific responses
 - NK, MF/SS
 - Risk of hyper-progression and lack of predictors precludes wider use
- CD47 Strategies
 - Combination Studies ongoing (Magrolimab + Mogamulizumab in CTCL)
- CAR
 - CART-Early studies CD5, 7, 30, 37, 4, CCR4, TCRB1, others
 - ? Need for allo backup
 - Other cell types/sources
 - Allo-T, NK, Myeloid
- Bi-specifics
 - CD30, PD-1

Peripheral T-cell lymphoma

- PTCL remains heterogeneous and poor prognosis, however:
 - Cures for some with combination chemotherapy
 - Prognostic factors can impact decision making/individualizing therapy
 - Pretreatment-Subtype, Mutational profile?
 - On treatment-interim response
- Attempts to incorporate into combination/upfront/curative therapy
 - Active agents
 - Enriched population + minimize toxicity
 - Subtype specific strategies: Disease subtypes, molecular subtypes, other vulnerabilities
- Newer Approaches
 - Epigenetic therapies, signaling targets, immune therapy
 - Likely also need subtype specific approaches

Treatment of the common nodal peripheral T-cell lymphomas (PTCLs) is evolving

