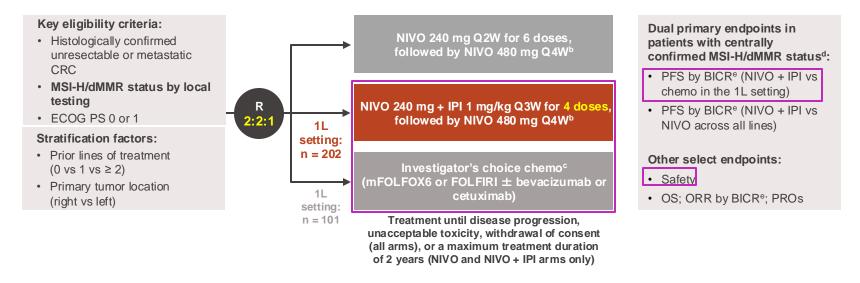


Novel Advances in Colon and Rectal Carcinomas

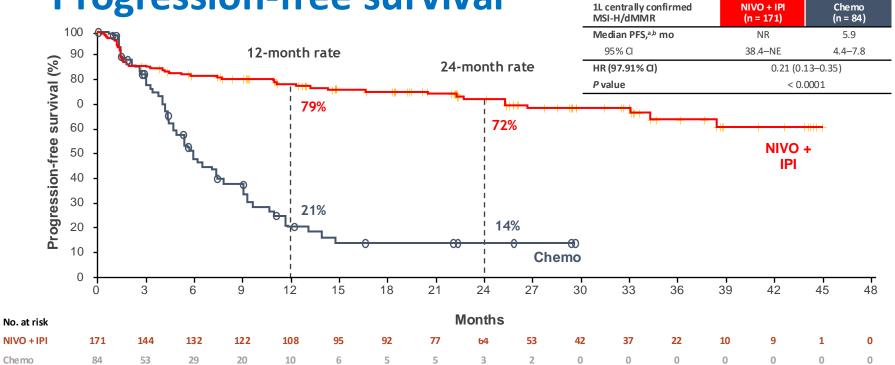

Axel Grothey, MD Director, GI Cancer Research Chair, Molecular Tumor Board West Cancer Center and Research Institute Germantown, TN, USA

Overview of Precision Medicine Approaches in GI Cancers

GI Cancer	Negative predictive markers	Positive predictive markers	Cancer-agnostic markers
Gastroesophageal		HER-2 PD-L1 CLDN18.2 FGFR2b	
CRC	RAS mutations BRAF V600E Sidedness HER-2?	HER-2 BRAF V600E MSI-H/ MMR-D KRAS G12C	MSI-H/ MMR-D POLe/d TMB? NTRK fusions RET fusions
Biliary cancers (IHCC!)		IDH-1 FGFR fusions HER-2 BRAF V600E mut	KRAS G12C BRAF V600E NRG1 fusions ARGHAP-CLDN fusions?
Pancreas cancer		BRCA (-like) NRG-1 fusions	
НСС		(AFP high)	

CheckMate 8HW study design

• CheckMate 8HW is a randomized, multicenter, open-label phase 3 study^a

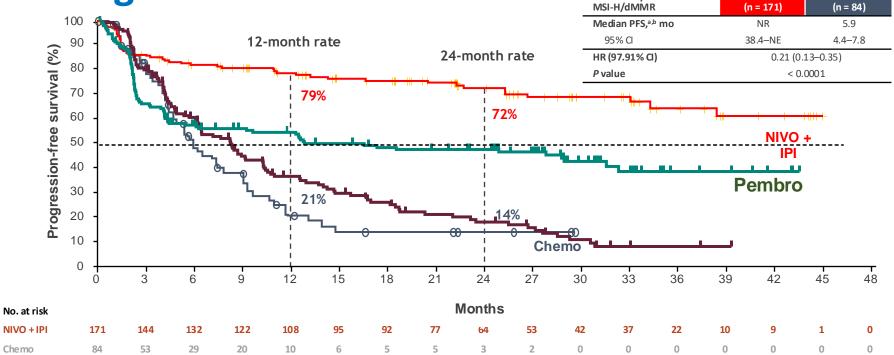

• At data cutoff (October 12, 2023), the median follow-up^f was 24.3 months

^aClinicalTrials.gov. NCT04008030. ^bPatients with ≥ 2 prior lines are randomized only to the NIVO or NIVO + IPI arms. ^cPatients receiving investigator's choice of chemotherapy are eligible to receive NIVO + IPI upon progression (crossover treatment). ^dConfirmed using either immunohistochemistry and/or polymerase chain reaction-based tests. ^eEvaluated using RECIST v1.1. ¹Time between randomization and last known date alive or death.

NIVO + IPI

Chemo

Progression-free survival


PFS benefit with NIVO + IPI vs chemo was robust and consistent across the sensitivity analyses, including PFS by BICR in 1L all randomized patients (HR, ٠ 0.32; 95% CI, 0.23-0.46)

NIVO + IPI

Chemo

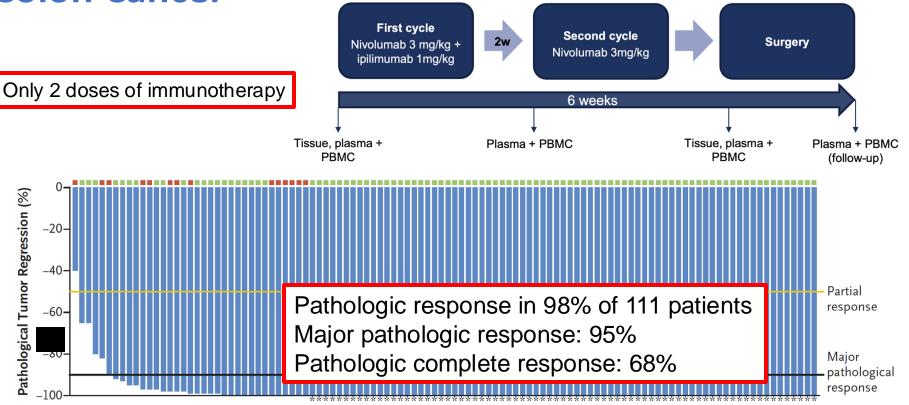
1L centrally confirmed

Progression-free survival

PFS benefit with NIVO + IPI vs chemo was robust and consistent across the sensitivity analyses, including PFS by BICR in 1L all randomized patients (HR, 0.32; 95% CI, 0.23–0.46)

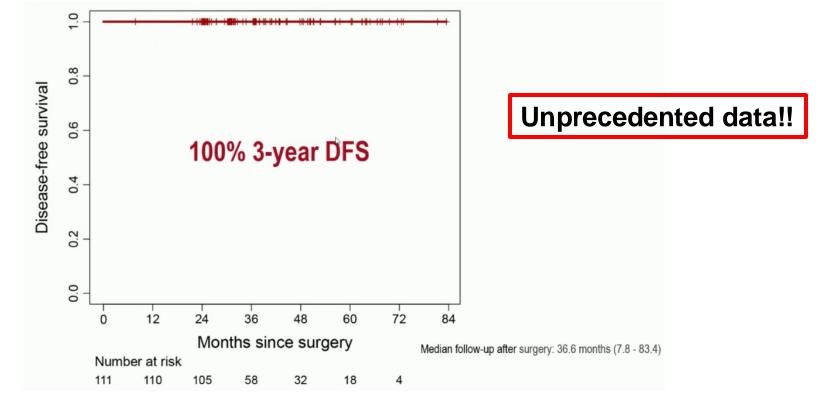
CheckMate 8HW: first results of 1L NIVO + IPI vs chemo

Progression-free survival subgroup analysis


Category (1L centrally		Median PFS, ^a mo		Unstratified			
confirmed MSI-H/dMMR)	Subgroup	NIVO + IPI	Chemo	HR	Unstratified HR (95% CI)		
Overall (N = 255)		NR	5.9	0.21			
Age, years	< 65 (n = 138)	NR	5.7	0.19			
	≥ 65 (n = 117)	NR	5.9	0.24			
Sex	Male (n = 117)	NR	5.9	0.19			
	Female (n = 138)	NR	6.2	0.22			
Region	US/Canada/Europe (n = 167)	NR	5.7	0.27			
	Asia (n = 28)	NR	7.4	0.03			
	Rest of world (n = 60)	NR	6.2	0.16			
ECOG PS	0 (n = 142)	NR	9.0	0.22			
	≥ 1 (n = 113)	NR	4.2	0.20			
Tumor sidedness	Left (n = 70)	NR	4.4	0.22	i		
	Right (n = 185)	NR	7.1	0.21			
Liver metastases ^a	Yes (n = 87)	NR	5.9	0.11			
	No (n = 166)	NR	5.4	0.28			
Lung metastases ^a	Yes (n = 53)	13.2	4.9	0.40			
	No (n = 200)	NR	6.2	0.16			
Peritoneal metastases ^a	Yes (n = 115)	NR	4.4	0.19			
	No (n = 138)	NR	7.4	0.23			
Tumor cell PD-L1 expression	≥ 1% (n = 55)	NR	3.4	0.11			
	< 1% (n = 191)	NR	6.5	0.22	• i		
BRAF/KRAS/NRAS mutation	BRAF/KRAS/NRAS all wild type (n = 58)	34.3	5.4	0.08			
status	BRAF mutant (n = 72)	NR	9.2	0.37	· i		
	 KRAS or NRAS mutant (n = 45) 	NR	5.7	0.24	<u> </u>		
	Unknown (n = 74)	NR	4.9	0.17	i		
Lynch syndrome	Yes (n = 31)	NR	7.4	0.28	!		
	No (n = 152)	NR	6.2	0.25	i		
er BICR.	Unknown (n = 66)	NR	5.5	0.13			
Prior surgery related to	Yes (n = 222)	NR	7.1	0.21	_		
current cancer	No (n = 33)	NR	3.0	0.19			

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00

My Conclusions on first-line IO in MSI-H CRC


- Testing for MMR/ MSI status in mCRC is mandatory!
- We now have two options for IO therapy n this patient population:
 - Pembrolizumab single agent see KN 177
 - Nivolumab/ Ipilimumab see CM 8HW
- In cross-trial comparison Nivo/Ipi seems to be more active and avoid the early crossing of PFS curves
 - No data available yet on OS, cross-over to IO from chemo
 - All subgroups appear to benefit
- Data allow for individualized selection of first-line IO

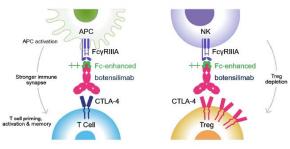
Neoadjuvant Immunotherapy in dMMR/ MSI-H Colon Cancer

Chalabi et al., NEJM 2024

Neoadjuvant Nivo/Ipi in dMMR early stage colon cancer 3-Year DFR results

1 dose of Nivo/Ipi -> 1 dose of Nivo -> surgery

Chalabi et al., ESMO 2024


My Thoughts on Neoadjuvant IO Therapy in MSI-H/ dMMR colorectal cancer

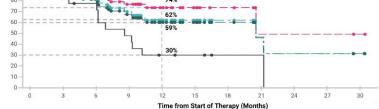
- Upfront, definitive IO therapy has emerged as SOC in MSI-H/ dMMR rectal cancer (see Cercek et al. NEJM 2022)
 - Hard to beat 100% cCR in rectal cancer, hard to beat NICHE-2
 - Conventional chemo does not work well in these patients
 - Results better than in advanced disease! Why?
- In colon cancer NICHE-2 provides us with unprecedented data
 - Emphasizes the need to test every CRC for MMR status
 - Will surgeons listen and send patients to Med Onc before surgery?
 - Which patients need to be treated pre-op?
- In locally advanced MSI-H/ dMMR colon cancer, I favor IO therapy as neoadjuvant or definitive treatment

Botensilimab + Balstilimab, N=87

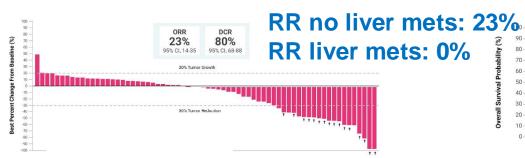
Botensilimab (FC-enhanced Anti-CTLA-4)

A Multifunctional Fc-enhanced Anti-CTLA-4

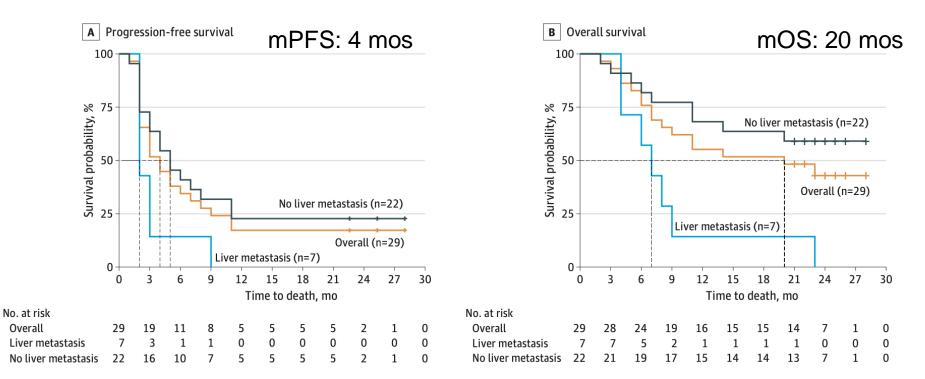
- Enhanced T cell priming, expansion, memory^{5,6}
- Enhanced frequency of APCs
- Enhanced Trea depletion
- Reduced complement mediated toxicity


ō

Ž

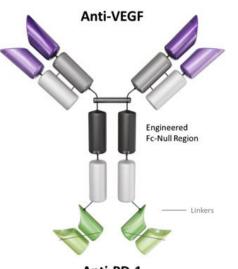

Botensilimab + Anti-PD-1 (Balstilimab) **Chemorefractory MSS mCRC**

	All EE n=87*	No Active Liver Mets EE n=69 ⁺	Active Liver Mets EE n=18 [‡]
Confirmed ORR, n % (95% CI)	18% (11-28)	23% (14-35)	0% (0-19)
BOR, n (%)			
CR	1 (1)	1 (1)	0
PR	15 (17)	15 (22)	0
SD	45 (52)	39 (57)	6 (33)
PD	26 (30)	14 (20)	12 (67)
DCR (CR + PR + SD), % (95% CI)	70% (59-80)	80% (68-88)	33% (13-59)
12-month OS, % (95% CI)	62% (49-73)	74% (59-84)	30% (11-52)
Ongoing responses§	1	0	



Bullock, ESMO GI 2023

Phase 1 study Rego/Nivo/Ipi in MSS mCRC


RR: No liver mets (22): 36%, Liver mets (7): 0%

Fakih et al., JAMA Oncol 2023

My Thoughts on B&B study

- BAL-BOT shows interesting activity in metastatic MSS/pMMR CRC without liver metastases
 - Reminiscent of data generated with Rego/Nivo (+/- Ipi) and Pembro/Lenvatinib (Note: Phase 3 LEAP-17 negative!
 - Observed activity attenuated in updated analysis, now <20% RR, however durability of response >9 months
- More data and randomized comparison needed to see if time-related endpoints can be met
- We need to find a way to make CRC liver metastases respond to IO therapy -> high unmet need!

Ivonescimab: Bispecific Antibody

Anti-PD-1

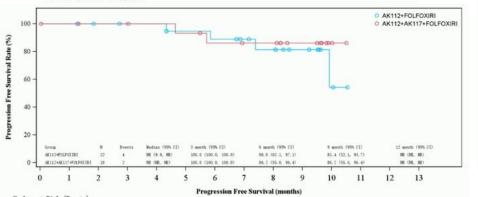
• Simultaneous interaction of PD-1 & VEGF blockades can drive synergistic anti-tumor activity Inhibiting VEGF can help improve the effect of immunotherapy by modulating the tumor microenvironment Enhancing the PD-1 blockade helps activate T cells

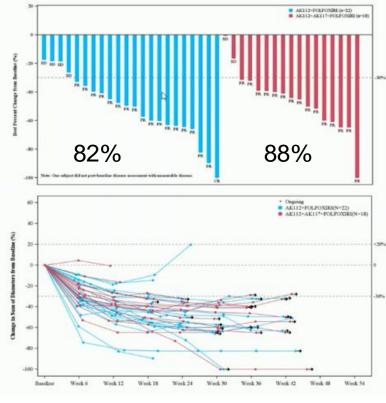
• Cooperative Binding

Increased Binding Strength (Affinity)

Presence of VEGF increases PD-1 binding strength by >18X Presence of PD-1 increases VEGF binding strength by >4X

• Increased Binding of T Cells

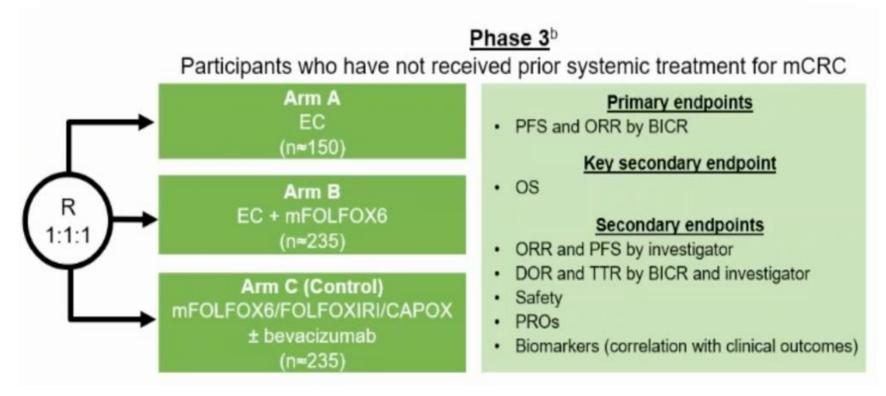

VEGF dimer leads to potential interconnection or daisy chaining of multiple ivonescimab molecules, which may lead to increased binding of T cells


Ivonescimab: First-Line Combination Trial

	Ivonescimab + FOLFOXIRI n = 22	Ivonescimab + Ligufalimab + FOLFOXIRI n = 17 ^a
Investigator-assessed obj	ective response rate	
n	18	15
ORR (95% CI), %	81.8 (59.7-94.8)	88.2 (63.6-98.5)
Investigator-assessed dise	ase control rate	
n	22	17
DCR (95% CI), %	100 (84.6-100)	100 (80.5-100)

* One patient had no post-baseline tumor assessment.

Abbreviation: CI, confidence interval; CR, complete response; DCR, disease control rate; ORR, objective response rate; PR, partial response; SD, stable response. Data cutoff date: Feb 29, 2024



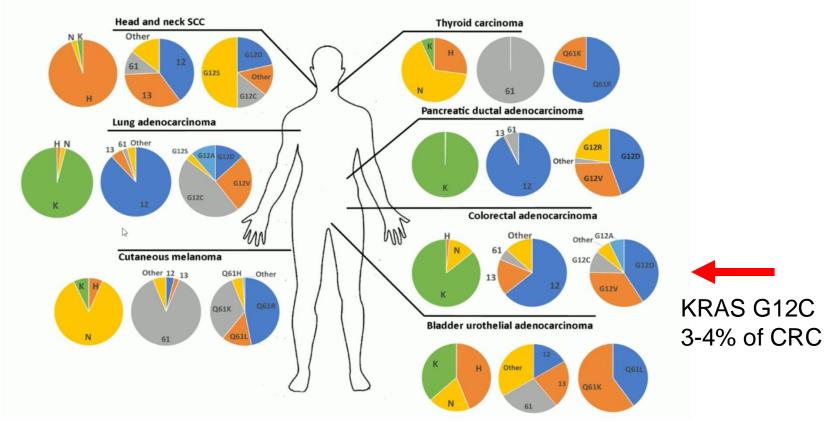
Ligufalimab: IgG4 anti-CD47 antibody

Deng et al., ESMO 2024

BREAKWATER: First-line Encorafenib+ Cetuximab+ Chemo in BRAF V600E mut CRC

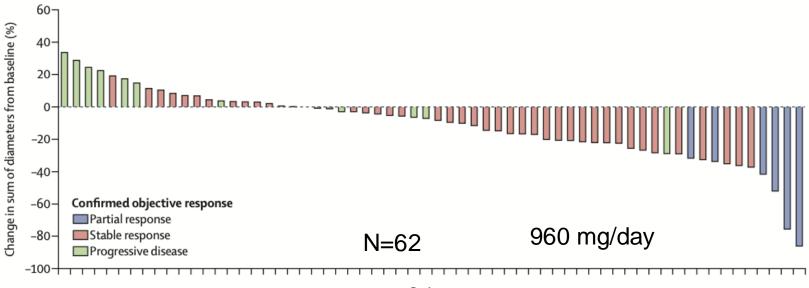
BREAKWATER: First-line Encorafenib + Cetuximab + FOLFOX in BRAF V600E mut CRC

- Accelerated FDA approval on December 20, 2024 for mFOLFOX6 + encorafenib + cetuximab
- Only 47% of patients per arm reported (110/235)
- No data on time-related endpoints (PFS/OS) yet!


	N	RR	mDOR (mos)	
FOLFOX +/- BEV	110	61 (52-70)		13.9
Chemo* + encorafenib + cetuximab	110	40 (31-49)	P=0.0008	11.1

*FOLFOX, FOLFOXIRI or CAPOX

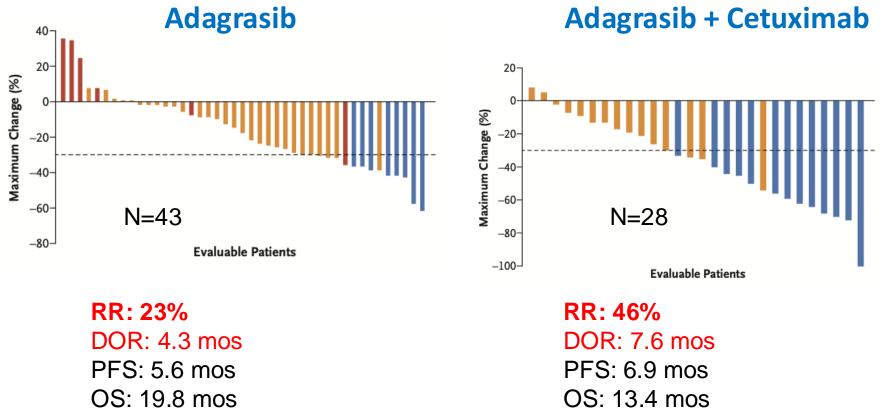
FDA. December 20, 2024. Accessed December 20, 2024.


https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-encorafenib-cetuximab-and-mfolfox6-metastatic-colorectal-cancer-braf

RAS mutation in various cancers

Dunnett-Kane et al., Ann Oncol 2020

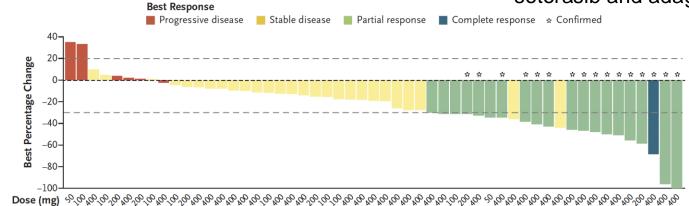
Sotorasib single agent in mCRC – CodeBreak 100

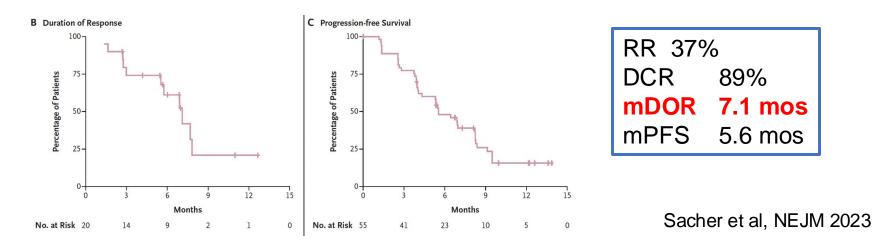


Patients

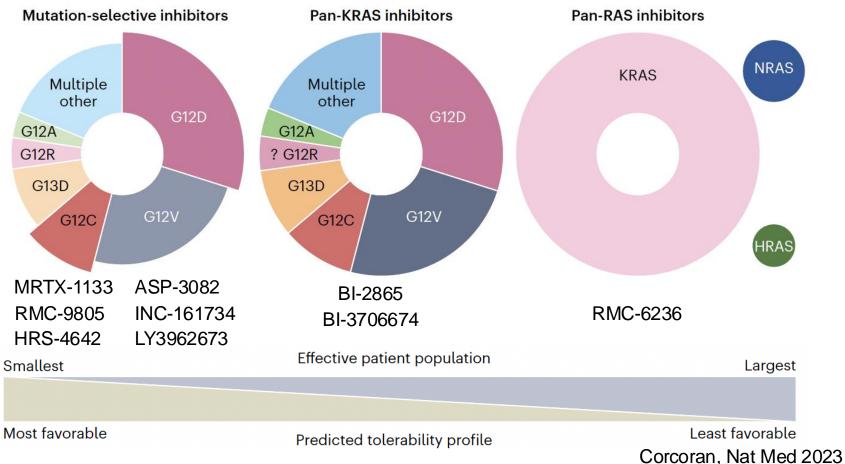
RR: 9.7% (6 pts) PFS: 4.0 mos OS: 10.6 mos

Fakih et al. Lancet Oncol 2021


KRYSTAL-1:



Yaeger et al. NEJM 2022


Divarasib in CRC, N=50

In vitro: 5 to 20 times as potent and up to 50 times as selective in vitro as sotorasib and adagrasib

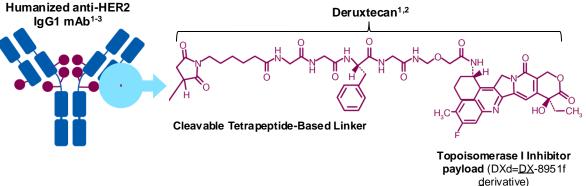
RAS Inhibitors

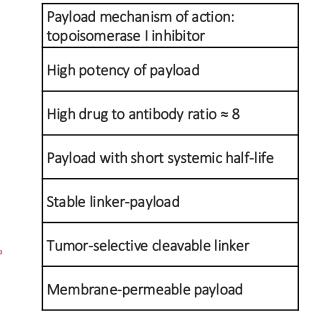
Key Clinical Trials in *HER2*+ mCRC

Trial	Regimen	Ν	ORR, %	Median PFS, mo	Median OS, mo
HERACLES-A ¹	Trastuzumab + lapatinibª	27	30 (14-50)	4.8 (3.7-7.4)	10.6 (7.6-15.6)
MyPathway (<i>KRAS</i> wt subgroup) ²	Trastuzumab + pertuzumab ^a	43	40 (25-56)	5.3 (2.7-6.1)	14 (8-NE)
TRIUMPH ³	Trastuzumab + pertuzumab ^a	17 (tissue)	35 (14-62)	4 (1.4-5.6)	—
TAPUR⁴ (no <i>RAS</i> data)	Trastuzumab + pertuzumab ^a	28	25 (11-45)	4 (2.6-6.3)	25 (6-NE)
MOUNTAINEER⁵ (Cohorts A + B)	Trastuzumab + tucatinibª	86	38 (28-39)	8.2 (4.2-10.3)	24.1 (20.3-36.7)
DESTINY-CRC01 ^{6,b} (Cohort A)	T-DXd ^a	54	45 (32-60)	6.9 (4.1-8.7)	15.5 (8.8-20.8)
HERACLES-B ^{7, c}	T-DM1 + pertuzumab	30	10 (0-28)	4.8 (3.6-5.8)	_

^a In NCCN guidelines. ^b ORR in subgroup with prior HER2 rx 43.8% (19.8-70.1); without prior HER2 rx 45.9% (29.5-63.1). ^c Did not meet primary endpoint. T-DM1 had 0% response rate in MATCH Arm Q⁸ and MSKCC Basket Trial.⁹

1. Sartore-Bianchi A et al. Lancet Oncol. 2016;17:738-746. 2. Meric-Bernstam F et al. Lancet Oncol. 2019;20:518-530. 3. Nakamura Y et al. ESMO 2019. Abstract 1057. 4. Gupta R et al.

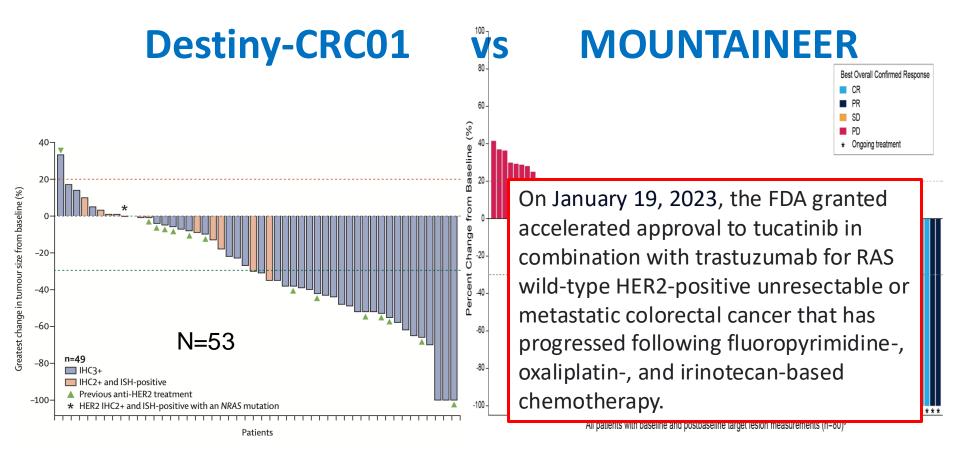

ASCO GI 2020. Abstract 132. 5. Strickler J et al. ESMO GI 2022. Abstract LBA 2. 6. Yoshino T et al. Nat Com 2023 in press


7. Sartore-Bianchi A. ESMO 2019. Abstract 3857. 8. Jhaveri KL et al. Ann Oncol. 2019;30:1821-1830. 9. Li BT et al. J Clin Oncol. 2018;36:2532-2537.

Structure and Mechanism of Action of T-DXd

T-DXd is an ADC with 3 components:

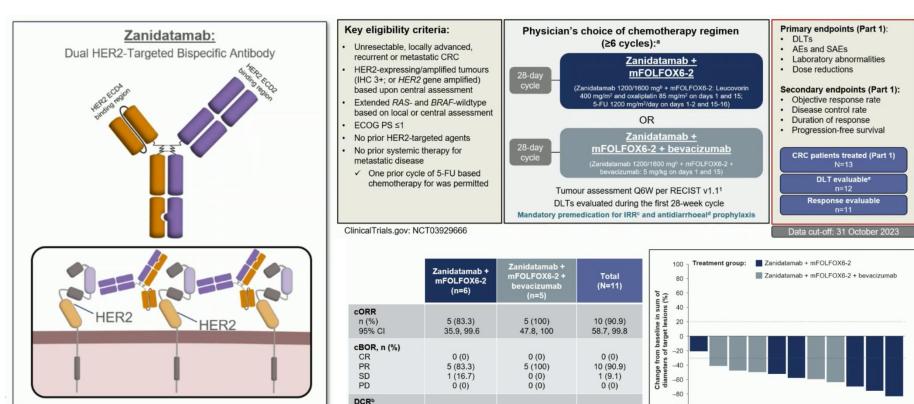
- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab
- A topoisomerase I inhibitor payload, an exatecan derivative
- A tetrapeptide-based cleavable linker



The clinical relevance of these features is under investigation.

ADC, antibody-drug conjugate; HER2, human epidermal growth factor receptor 2; mAb, monoclonal antibody.

1. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 2. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 3. Trail PA, et al. Pharmacol Ther. 2018;181:126-142.


Median # of prior lines: Destiny: 4, MOUNTAINEER: 2 Prior anti-HER-2 therapy: Destiny: 30%, MOUNTAINEER: 0%

Siena et al., Lancet Oncol 2021 Strickler et al., ESMO GI 2022

Zanidatamab – bispecific antibody

n (%)

95% CI

Rha et al., ESMO 2024

Median (range) duration of response: Not reached (2.9+-16.7+) months

5 (100)

47.8, 100

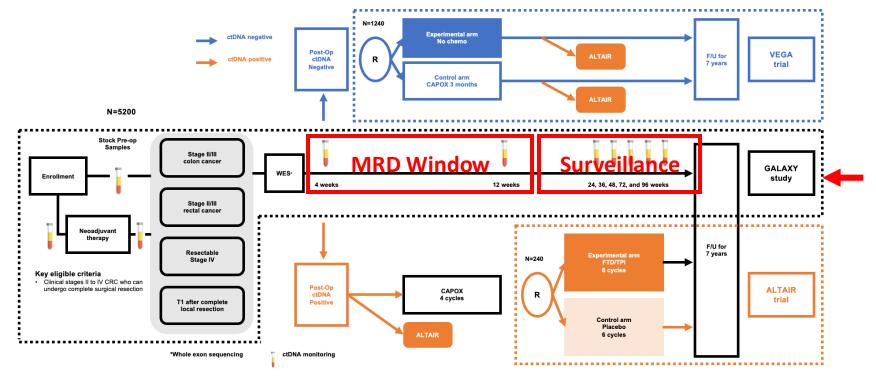
6 (100)

54.1, 100

Dotted lines indicate 20% increase or 30% decrease in sum of diameters of target tumours.

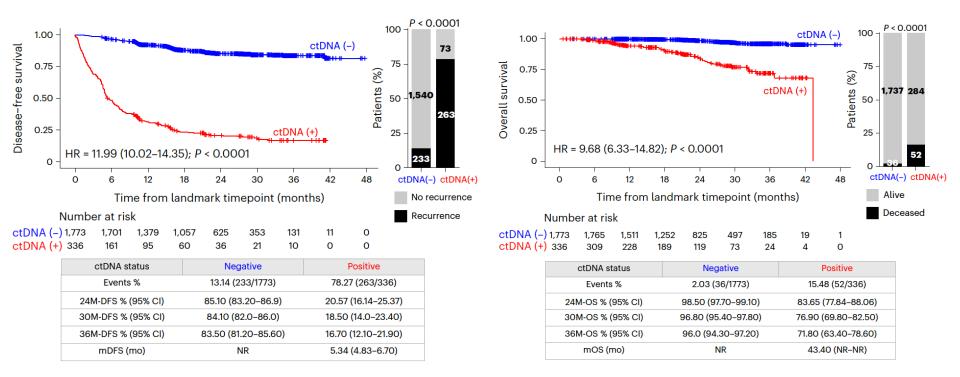
3+

-100


IHC

FISH

11 (100)


71.5, 100

CIRCULATE Japan: Comprehensive Analysis of Role of ctDNA in Management of CRC

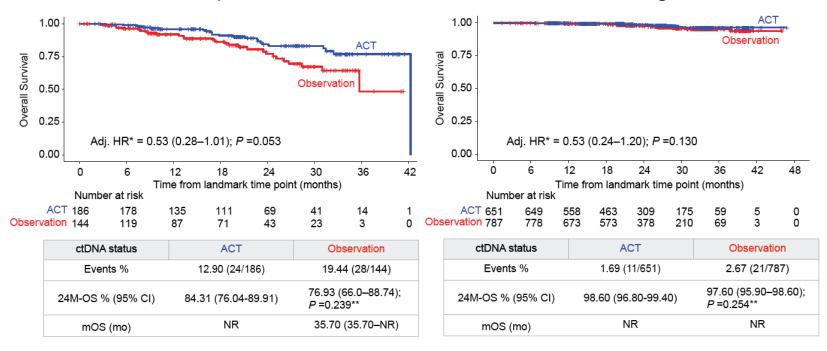
Kotaka et al., ASCO GI 2022

DFS and OS by ctDNA in MRD window

Nakamura et al., Nat Med 2024

Multifactorial Regression Model for DFS

Parameters for multivari	iate analysis	HR (95% Cl)						P value
tDNA in the MRD window	Negative (N = 1,773)	Reference Group			÷.			
	Positive (N = 336)	12.08 (9.561 – 15.27)					(⊢∎	⊣<0.001 ***
ex	Female (N = 1,016)	Reference Group						
	Male (N = 1,093)	1.17 (0.939 – 1.46)			ı ⊢ ∎⊸ı			0.16
ge	<70 (N = 1,105)	Reference Group			÷.			
	>70 (N = 1,004)	0.86 (0.686 – 1.07)		-	₩ ¦			0.18
umor location	Left-sided colon (N = 1,296)	Reference Group						
	Right-sided colon (N = 813)	1.23 (0.973 – 1.55)			⊨∎⊣			0.084
erformance status	0 (N = 1,921)	Reference Group						
	1 (N = 188)	1.21 (0.843 – 1.74)						0.3
athological T stage	T1 - T2 (N = 301)	Reference Group						
	T3 - T4 (N = 1,524)	1.67 (1.047 – 2.65)						0.031 *
athological N stage	NO (N = 893)	Reference Group			÷.			
	N1 - N2 (<i>N</i> = 932)	1.56 (1.194 – 2.03)			⊢∎-	•		0.001 **
ISI	MSS (<i>N</i> = 1,907)	Reference Group						
	MSI - high (N = 202)	0.21 (0.096 - 0.47)	-					<0.001 ***
RAF	Wild Type (N = 1,946)	Reference Group						
	V600E (N = 163)	2.03 (1.191 – 3.45)			·			0.009 **
AS	Wild Type (N = 1,220)	Reference Group			H			
	Mutant (N = 889)	1.43 (1.136 – 1.80)			⊢∎⊣			0.002 **
o. of events: 337; globa 241 × 10 ⁻¹¹⁹	al P value (log-ra	nk): 0.1	0.2	0.5	1 3	2 5	10	20


AIC: 4328.95; concordance index 0.84

Nakamura et al., Nat Med 2024

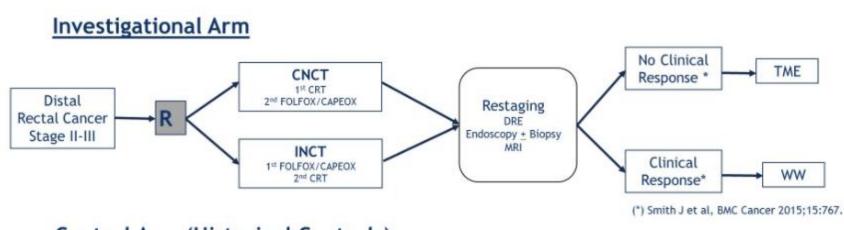
Benefit of Adjuvant Therapy?

MRD-positive

MRD-negative

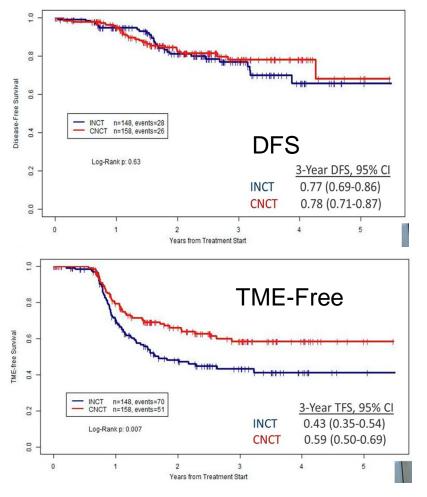
Nagata et al., ESMO 2024

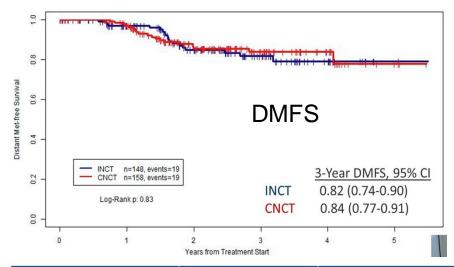
My Conclusions on ctDNA in early stage CRC


- The detection of ctDNA-MRD after surgery is the strongest prognostic indicator to date, more important than TNM tumor stage!
- Conversion from positive to negative ctDNA post-op can be achieved with systemic chemotherapy and has DFS benefit
 - Sustained clearance is associated with better outcome than transient clearance
 - ctDNA positivity can help make decision FOR adjuvant therapy in settings where conventional staging would suggest no therapy
 - Withholding adjuvant therapy based on negative ctDNA tests is being tested in prospective trials (see CIRCULATE trials)
- Lung metastases are the "blind spot" of current ctDNA tests
 - There is still room for improvements, new tests to come to the market

Recent Trial Data in Rectal Cancer

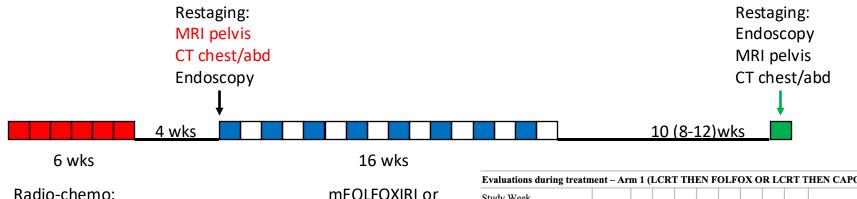
Study	Intervention	Eligibility	Median age [range]	PS	Results
PRODIGE3 (N=461)	Folfirinox \rightarrow chemoXRT \rightarrow Sx \rightarrow chemo Vs. chemoXRT \rightarrow Sx \rightarrow chemo	cT3/T4, any N,	62 [26-75]	0-1	7Y DFS: 67.6% TNT arm vs. 62.5% SOC arm (p=0.048) 7y mets free survival:TNT arm 73.6% vs. 65.4% SOC arm (p=0.011)
RAPIDO (N=920)	LC-CRT → Sx→ adj chemo vs. SC-RT→ Chemo→ Sx→ Adj Chemo	High risk: cT4a/b , TN	62 [55- 68]	0-1	5y OS: 81.7% for TNT vs. 80.3% for SOC (P=0.5) 5y DrTF: 27.8% for TNT vs. 34% for SOC (p=0.048)
OPRA (N=324)	Induction chemo \rightarrow CRT vs. CRT \rightarrow Consolidation chemotherapy	Stage II or III T3-4, any N	59 [51-68]	0-1	5y DFS: 72% for induction vs. 71% for Consolidation. 5y TME-free was 39% in induction vs. 54% for consolidation
PROSPECT (N=1100)	CRT vs. FOLFOX with selective CRT followed by Sx	T2N+, T3N-/+	57 [19-91]	0-2	DFS: FOLFOX+selective CRT was non inferior to CRT prior to surgery


Garcia-Aguilar et al. JCO 2022; Schrag et al. ASCO 2023; Conroy et al. ASCO 2023; Bahadoer et al. Lancet 2021


Non-operative Management: OPRA

Control Arm (Historical Controls)

Garcia-Aguilar et al, JCO 2022



ypTNM (surgery)	INCT (n=70)	CNCT (n=50)
pCR	7 (10%)	4 (8%)
In situ	3 (4.3%)	3 (6%)
T	27 (39%)	14 (28%)
П	22 (31%)	16 (32%)
Ш	10 (14%)	12 (24%)
IV	1 (1.4%)	1 (2%)

Garcia-Aguilar et al, JCO 2022.

JANUS – TNT/TDT for Rectal Cancer

mFOLFOX6

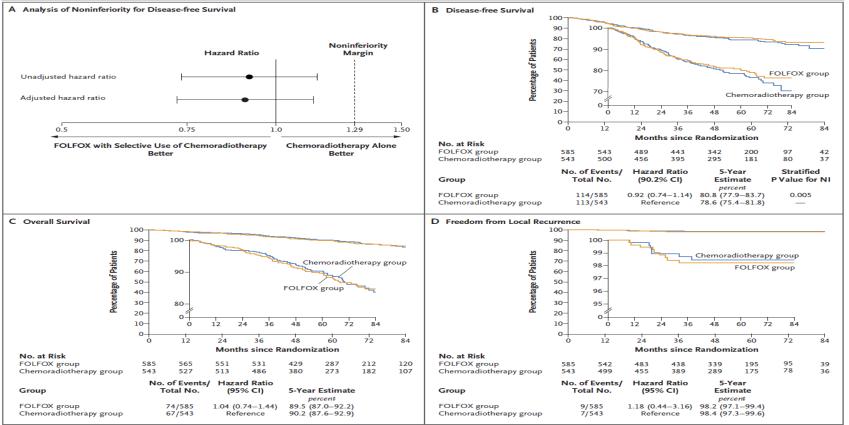
Radio-chemo: Cape 825 mg/m2 BID on days of radiation 54 Gy in 6 weeks (30 radiation days)

Total time until decision on surgery: 9 months!

Evaluations during treatment – Arm 1 (LCRT THEN FOLFOX OR LCRT THEN CAPOX)										
Study Week (+/- 14 days)	Pre	10	12	14	16	18	20	22	24	28/30 ^{1, 2}
Colorectal surgeon eval	X	X								Х
Med Onc ³	X	X	X	X	X	X	X	X	X	Х
Rad Onc	X	X								
DRE	X	X								Х
Sigmoidoscopy	X	X								Х
Biopsy ⁴	X									
MRI Rectum	X									Х
CT CAP ⁵	X									Х
CBC & diff ⁶	X									
CMP & CEA	X	X								Х
Pregnancy Test	X									

¹ Time of evaluation dependent on duration of neoadjuvant chemotherapy FOLFOX (16 weeks) or CAPOX (15 weeks)

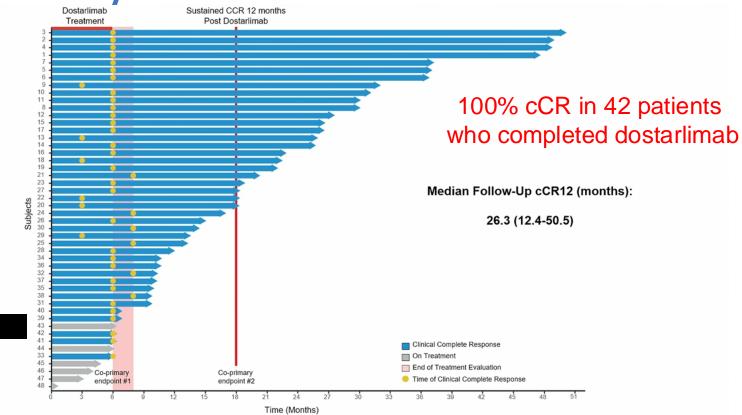
² 8-12 weeks (+/- 4 weeks) after completion of all neoadjuvant therapy


PROSPECT – Chemo vs Chemo-Rads

- Eligibility:
- T2 N1, T3N0, T3N1
- **Candidates for LARs**
 - 80% had tumors > 5 cm from verge

N=1128 started Tx

PROSPECT – outcomes data



Schrag et al. NEJM 2023

Neoadjuvant/ Definitive Immunotherapy in dMMR/ MSI-H Rectal Cancer (N=48)

Pa	tient Demographics N= 48 N (%)
Female Sex	28 (58)
Median Age (range)	51 (26,78)
Race	
White	37 (77)
Asian	5(10)
Black	6 (13)
Non Hispanic/Latino	42 (85)
Hispanic/Latino	6 (13)
Tumor Stage	
T 0/1/2	10 (21)
Т 3	23 (48)
Τ4	15 (31)
N +	41 (85)
Median Distance from anal verge (cn	

Neoadjuvant/ Definitive Immunotherapy in dMMR/ MSI-H Rectal Cancer

Cercek et al., ASCO 2024 (update from NEJM 2022)

My Conclusions on current management of rectal cancer

- Management of rectal cancer requires input from a multidisciplinary tumor conference
- Highly individualized treatment decisions take patient- and tumorrelated factors into account
 - For MSI-H/dMMR cancers neoadjuvant or definitive IO therapy is SOC!
 - For low-lying rectal cancers avoiding a permanent ostomy using TNT/TDT strategies is pertinent
 - If a TNT/TDT approach is used, patients need to be compliant in surveillance
- Primary goal: Provide highest chance for cure
- Secondary goal: Avoid unnecessary toxicity and/ or long-term changes in QOL (e.g. LARS, permanent ostomy)

Thank you!

agrothey@westclinic.com