Myelodysplasia

Namrata S. Chandhok, M.D.

Assistant Professor of Clinical Medicine

University of Miami/ Sylvester Comprehensive Cancer Center Miami, Florida

Presentation Roadmap

- Classification and Risk Stratification
- Lower Risk MDS
- Higher Risk MDS

MDS

- A group of malignant hematopoietic neoplasms characterized by:
 - Bone marrow failure with resultant cytopenia and related complications
 - Evidence of clonality by cytogenetic abnormalities or somatic gene mutations
 - Dysplastic cytologic morphology is the hallmark of the disease
 - Tendency to progress to AML
- Overall incidence 3.7-4.8/100,000
 - In US, true estimates ≈37,000-48,000
- Median age: 70 yr; incidence: 34-47/100,000 >75 yr

Haferlach. Pathobiology. 2019 SEER data. 2000-2009.

UNIVERSITY

OF MIAMI

This Definition Maybe Challenged in the Future...

CCUS: Clonal Cytopenia of Undetermined Significance

The primary distinction between CCUS and lower-risk (LR)-MDS is the presence of pathologically defined dysplasia in >10% of any lineage.

High risk CCUS v. LR MDS... Are they similar?

MDS Classification Systems

MDS WHO Classification MDS w. Biallelic TP53 inactivation

MDS with Increased Blasts

MDS IB-1 Peripheral Blood: 2-4% Bone Marrow: 5-9%

MDS IB-2 Peripheral Blood: 5-19% Bone Marrow: 10-19%

MDS with Fibrosis (MDS IB+ F)

MDS ICC Classification

MDS with Excess Blasts

MDS EB Peripheral Blood: 2-9% Bone Marrow: 5-9%

MDS/ AML Peripheral Blood: 10-19% Bone Marrow: 10-19%

Data from Khoury et al. Leukemia 2022 and Arber et al Blood 2022

Having 2 systems is Confusing!

Lee et al. Blood Cancer Journal 2023

Prognostic Scoring: Use of IPSS-M

No. at risk

VL - 315	243	199	153	110	75	55	40	26	22	16
L - 788	584	442	331	240	162	107	80	56	40	30
ML-274	188	135	92	62	34	16	7	6	3	3
MH - 258	166	114	65	41	25	18	8	4	2	1
H - 353	194	101	48	29	13	10	4	3	3	3
VH - 440	152	50	21	8	6	5	3	3	2	2

No.	at risk										
	VL - 344	267	224	180	126	82	57	42	28	24	18
	L - 852	640	496	382	270	176	112	83	57	40	31
	ML-295	214	152	111	72	35	18	8	7	4	3
	MH - 278	191	134	80	48	27	20	9	4	2	1
	H - 367	235	121	65	37	15	12	6	3	3	3
	VH - 460	200	77	37	14	9	6	3	3	2	2

UNIVERSITY OF MIAMI

IPSS-R v. IPSS-M

- Many presentations over the past 2-3 years!
- Reclassification/ reorganization of trial data

Standard Treatment Options based on Risk Group

Adapted from Chandhok and Sekeres, Wintrobes Hematology Textbook

Erythropoiesis-Stimulating Agent (ESA) Treatment of MDS

- When is the best time to start this treatment?
- At Diagnosis?
- Transfusion Dependence?
- Study Presented: GFM Randomized Phase III EPO-Pretar Trial

- Should this be a single agent or combination
- Add back strategy or upfront
- Non-RS patients with ESA failure Study Presented: GFM Combola Study

Park et al. Abstract 349 ASH 2024 Komrokji et al. Blood Advances 2023 Ades et al. Abstract 351 ASH 2024

UNIVERSITY

OF MIAMI

Approvals for Anemia in Lower Risk MDS

- Luspatercept → Key Trial: COMMANDS
- Initial Approval was for SF3B1 MDS

FDA Label Expansion in 2023: "Treatment of anemia without prior erythropoiesis-stimulating agent (ESA) use in adult patients with very low– to intermediate-risk myelodysplastic syndrome (MDS) who may require regular red blood cell (RBC) transfusions."

COMMANDS:Primary Endpoint (RBC-TI ≥12w +Hb increase 1.5g/dL)

Durability of Response:

RBC-TI period \geq 1 year (44.5% Luspatercept v. 27.6% w. ESA (P = 0.0003)

RBC-TI ≥ 1.5 years (30.2% Luspatercept v 13.8% ESA (P < 0.0001))

Subgroup Benefits: Luspatercept showed superior RBC-TI across subgroups, including RS-negative status, low baseline erythropoietin levels, and non-mutated SF3B1.

Progression Rates to HR MDS or AML: Similar

Garcia Manero, ASH 2023, Abstract 193 Garcia Manero, ASH 2024 Abstract 350

Approvals for Anemia in Lower Risk MDS

Imetelstat→ Key Trial: IMerge

FDA Approval in 2024

"For adults with low- to intermediate-1 risk myelodysplastic syndromes (MDS) with transfusion-dependent anemia requiring four or more red blood cell units over 8 weeks who have not responded to or have lost response to or are ineligible for erythropoiesis-stimulating agents (ESAs)."

IMerge: Imtelstat

UNIVERSITY OF MIAMI

Platzbecker et al. Lancet December 2023 Komrokji, ASH 2023, Abstract 194

Imtelstat Update

Reduced Transfusion Burden

Quality of Life (QOL):

Imetelstat improved fatigue (FACIT-Fatigue scores)

Maintained QOL and anemia symptom control, while placebo showed worsening.

Impact of Prior Therapy:

Small numbers, but efficacy seen in ESA treated or ineligible, Lenalidomide treated, Luspatercept treated, and HMA treated patients

Big Picture Questions

- How to optimize sequencing therapies?
- How do we best utilize these therapies?
- To start earlier or later?

Standard Treatment Options Based on Risk Group

Higher Risk MDS (IPSS-R<u>></u>3.5)

Higher Risk MDS

Fenaux. Lancet Oncol. 2009;10:223

We are desperately waiting for new agents!

HMAs still win

- Phase III AZA-001 study (N = 358)
 - Subset analysis in patients >75 yr of age (n = 87; ~1/4 of randomized patients)
- 2-yr OS superior with azacitidine (P = .0003)
 - Azacitidine: 55%
 - Conventional care: 15%
- No significant difference in the rate of bleeding or infections

Oral HMA: Decitabine and Cedazuridine

• FDA Approval in 2020 → Key Trial: ASCERTAIN

UNIVERSITY OF MIAMI

Ascertain Trial: Oral Decitabine- Cedazuridine

Figure 3: Leukaemia-free survival and overall survival

Garcia Manero et al. Lancet Haem. January 2024

Combinations: Some Recent Disappointing results

- Eprenetapopt (APR-246) + AZA
- Magrolimab+AZA (ENHANCE trial)
- Pevonidostat+AZA v. AZA (PANTHER trial)
- Sabatolimab+HMA vs. HMA+placebo (STIMULUS trial)

Most Recent:

• Tamibarotene+ AZA v. Placebo+ AZA (SELECT-MDS-1 Phase 3 trial)

Anticipated: VERONA Study

Venetoclax + AZA versus AZA monotherapy Phase 3 study

Primary Endpoint: Overall Survival

More to Come...

Thank you for your Attention!

