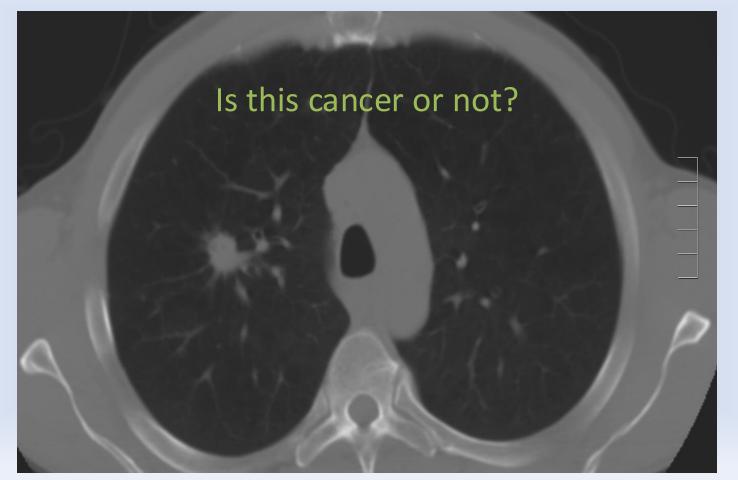
Incidental Pulmonary Nodule Programs (IPNs) – What are Best Practices Diagnosis and Monitoring

Gerard A. Silvestri, MD, MS, Master FCCP Hillenbrand Professor of Thoracic Oncology Medical University of South Carolina, Charleston


Epidemiology

- Scope of the problem
- Prediction models represent a simple solution

How to track

Summary

What is the problem?

Management Alternatives

Surgery

- "When in doubt, cut it out"

Biopsy

- "When cancer is the answer, tissue is the issue"

Wait and watch

- "Don't just do something...stand there!"

Epidemiology

- Incidentally detected nodules
- 29% of all scans positive for nodule (4-30 mm)
- Estimated 1.5 million nodules detected/year in US

Prevalence of malignancy

- 5% of all incidental nodules at 2 yrs
- Up to 10% for nodules >8mm
- 25% in patients referred to a pulmonologist
- >70% for patients referred to a thoracic surgeon

Gould et al. AJRCCM 2015Tanner et al. CHEST 2015Vachani et al. CHEST 2022Godfrey et al. 2023

Epidemiology

- 4000 IPN's identified every day
- 95% of all pulmonary nodules are benign
- The frequency of nodules is higher in individuals undergoing imaging in fungal endemic areas
- NLST 96% of all positive scans are false positive and three -quarters have some form of diagnostic follow-up

Am J Respir Crit Care Med 2015;192(10): p1208 Ann Am Thorac Soc 2016;13(9): p1568 N Engl J Med 2011; 365: p395

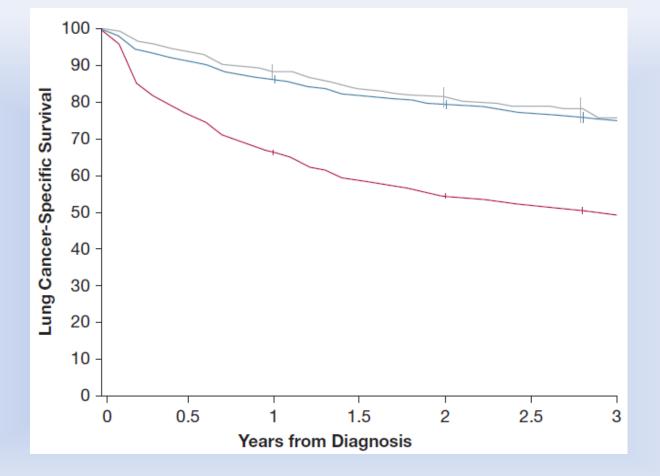
Surgery for Benign Disease 22% Overall

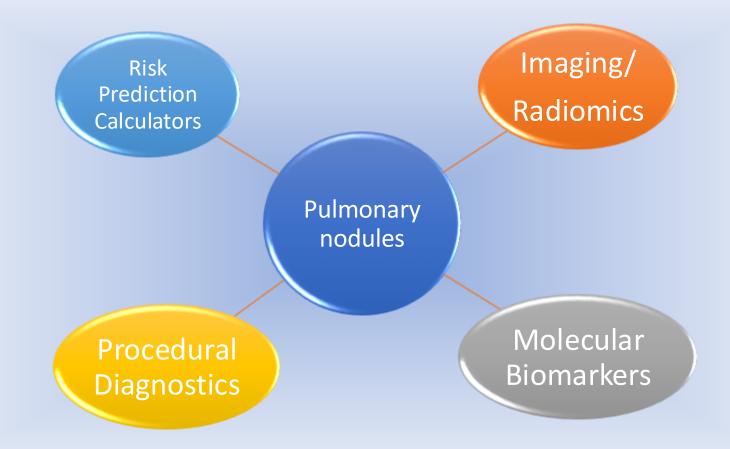
Study	Surgical procedure	Surgical procedure with benign result
NLST	673	164 (24.4%)
Dépiscan	9	3 (33.3%)
DANTE	90	17 (18.9%)
DLCST	25	7 (28%)
NELSON	NR	61
ITALUNG	38	4 (10.5%)
MILD	45	4 (8.9%)
LUSI	NR	NR
UKLS	39	4 (10.3%)
LSS	46	18 (39.1%)

Too much and too little care

Retrospective cohort from 15 VA hospitals

Results:

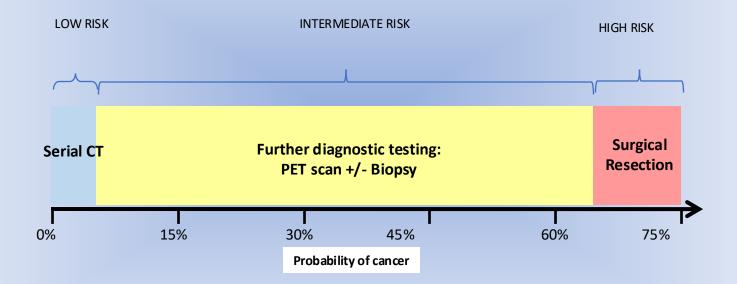

- 47% of patients received care inconsistent with guidelines
 - 17.8% over-evaluation
 - 26.9% under-evaluation
- 15% of patients underwent invasive procedures
 - 41% of these did not have cancer
 - 30% of patients who underwent surgical resection did not have cancer
- 5% of patients had no follow-up


Does it Matter Whether The Nodule is Screen Detected or Not?

- Assessed the relative proportion of early-stage lung cancer diagnosed after reporting of PNs vs through low-dose CT (LDCT) scan screening?
- Seer Medicare Cohort
 - Patients in the lung cancer cohort were classified by whether they had undergone LDCT scan screening, whether they had a diagnosis of PN, or neither within 18 months before diagnosis.
 - Compared cancer stage and survival across groups.

Diagnosis

	PN Group (6942)	LDCT Group (1271)	Reference (35981)
Women (%)	56.8	51.1	48.4
Adenocarcinoma (%)	52.4	45.2	43.6
Squamous cell (%)	21.1	26.8	23.6
Localized (%)	58.1	50.3	24.4
Distant (%)	19.1	19.1	51.6
Stage I (%)	58.5	51.0	23.0
Stage IV (%)	18.0	17.4	48.8

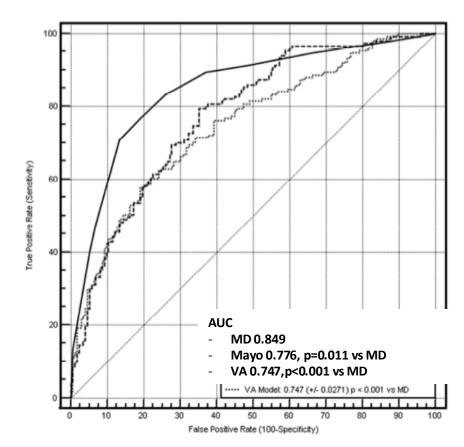

The Solution

Assessing pre-test probability for malignancy

Making a clinical decision based on the pCA

Follow Guidelines

Assess likelihood of malignancy



Risk prediction models

Table 2. Validated Risk Prediction Models for Evaluation of Pulmonary Nodules						
Risk prediction model	Mayo Clinic model ¹⁷	Herder model ¹⁸	VA model ¹⁹	Brock University model ²	Cleveland Clinic model ²⁰	
Nodule detection	Incidental nodule on chest radiograph	Incidental nodule on chest radiograph and PET scan was performed for further evaluation	Incidental nodule seen on chest radiographic confirmed on CT imaging +/- PET scan	Nodules detected on LDCT as part of lung cancer screening program	Incidental nodules referred to biopsy or resection	
% Of nodules that were malignant in the cohort used to develop the model	23	57	54	5.5	66.5	
Model variables	Age Smoking history History of extrathoracic malignancy ≥5 y ago Nodule diameter Spiculation Upper lobe location	Mayo Clinic model + FDG-PET uptake	Age Smoking history Time since quitting smoking Nodule diameter	Age Sex Family history of lung cancer Emphysema Nodule Size Nodule Size Location Nodule count	Age Smoking history Upper lobe location Solid and irregular/spiculated nodule edges Emphysema FDG-PET avidity History of cancer other than lung	
Area under the curve	0.83	0.88	0.79	≥0.94	0.75-0.81 (C-index)	

MUSC Medical University of South Carolina

Physician and Model ROCs

Tanner, Silvestri Chest 2017

Diagnosis and procedure use categorized by nodule pretest probability for cancer

	Low Risk < 5% n=36	Intermediate Risk >5 to <65% n=300	High Risk >65% n=41	p-value		
Outcome						
Benign	36 (100%)	224 (75%)	23 (55%)	<0.0001		
Malignant	0	76 (25%)	18 (45%)	<0.0001		
Most Invasive Procedure Utilized						
Surgery	6 (17%)	64 (21%)	7 (17%)	0.6878		
Biopsy	10 (28%)	95 (32%)	20 (49%)	0.0711		
Surveillance	20 (56%)	141 (47%)	14 (34%)	0.1548		

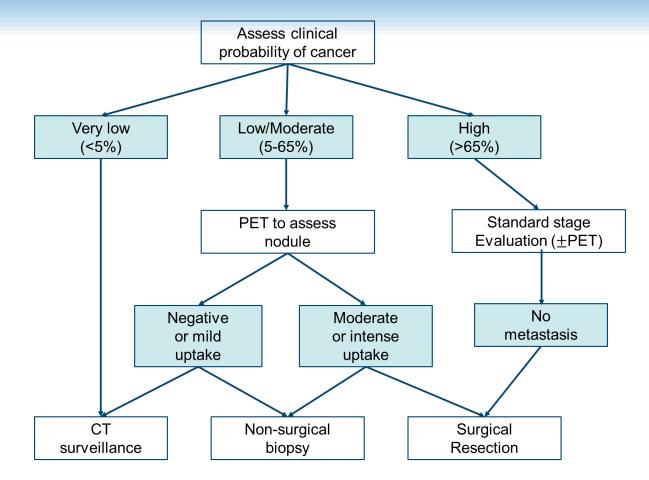
Mayo Model

- Incidental nodules, originally developed on CXR/ validated on CT
- Independent predictors of malignancy
- Clinical
 - Older age (OR 1.04 for each year)
 - Current or former smoking (OR 2.2)
 - Hx of cancer > 5 years (OR 3.8)
- Radiographic
 - Nodule diameter (OR 1.14 for each mm)
 - Spiculation (OR 2.8)
 - Upper-lobe location (OR 2.2)

Examples

- 75 year old
- Current smoker
- 15 mm nodule
- Spiculated
- Upper lobe location
- No extrathoracic malignancy
- PET not performed
- pCA = 87.5%

40 year old never smoker 15 mm non spiculated lower lobe location No extrathoracic malignancy PET not performed pCA = 3.4%

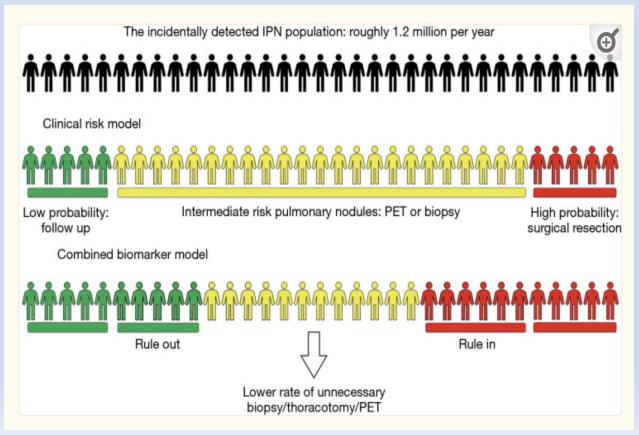

 https://www.mdcalc.com/calc/4057/solitary-pulmonary-nodule-spn-malignancy-riskscore-mayo-clinic-model

Accuracy of PET for Nodules: Meta-Analysis

- Literature Search 2000-2014
 - 70 studies: 10 in endemic areas for infectious lung disease
 - 60% of nodules were malignant
- Sensitivity 89%: Specificity 75%
 - Specificity 61% (95%CI 49-72%) in infectious lung disease areas
- PET scans are NOT good radiographic biomarkers

Deppen et al JAMA 2014; 312:1227-36

Guidelines for nodule management



MUSC Medical University of South Carolina

Biomarkers

- <u>Biomarker</u> a characteristic used to measure and evaluate objectively normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention
- Clinically useful biomarker
 - Prompt identification and treatment of those with cancer
 - Avoidance of unnecessary diagnostic procedures in those without cancer

Role of a biomarker

Conclusions

- Common Radiologic Problem with an Increasing incidence
- Management Decisions Often Based on Pre-test Probability of Malignancy
- However, need to use and trust either the models or your own clinical intuition and act accordingly
- Nodule tracking systems are necessary such that follow-up management occurs. APP's perfect for this role
- Answer probably comes with escaping from silos combining technologies and utilizing deep machine learning/Artificial intelligence.
- Importance of NGS/PDL-1 testing will take increasing role in nodule management as early stage disease now has a myriad of management alternatives (adjuvant, neoadjuvant, perioperative)