ASH Updates in Chronic Lymphocytic Leukemia

Javier Pinilla-Ibarz, MD, PhD.

Senior Member Head of Lymphoma section and Director of Immunotherapy Malignant Hematology Department

Continuous Therapy vs Fixed Duration

ECOG 19121	FCR	IR
FLAIR ^{2*}	FCR	IR
illuminate ³	OCIb	I+O
Alliance A0412024	BR	I IR
RESONATE-25	Clb	
ELEVATE TN ⁶	OCIb	AO A
SEQUOIA ^{†,7} (Cohort 1, Arm A vs B)	BR	Zanu

Shanafelt TD, et al. *New Engl J Med.* 2019; 381:435-443. Hillman P, et al. *Lancet Oncol*, 2023,24:535-552. Moreno C, et al. *Lancet Oncol*. 2019,20:43-56. Woyach JA, et al. *Blood*, 2021;138:639. Barr PM, et al. *Blood Adv.* 2022;6:3400-3450. Sharman JP, et al. *Leukemia*. 2022;36:1171-1175. Tam CS, et al. *Lancet Oncol*. 2022;23:1031-1043. AlSawaf O, et al. *Nat Commun*. 2023;14:2147. Eichhorst B, et al. *N Eng J Med*. 2023;338:1739-1754. Kater AP, et al. *NEJM Evid*. 2022;1:711. Tam CS, et al. *Blood*. 2022;139:3278-3289. National Institute of Health (NIH). Accessed Sept 25, 2024. https://clinicaltrials.gov/study/NCT04608318; NCT03836261

Pivotal Clinical Trials of BTKi Monotherapy

Trail	Agent	Follow- up	ORR	PFS	OS	Common AEs
RESONATE-2 ¹ (N=269)	Ibrutinib vs chlorambucil	8 y	92% vs 37% mDOR NR vs 48.8 mo	mPFS 8.9y vs 15 mo HR 0.154 (0.108-0.220)	mOS NR vs 89 mo HR 0.453 (0.276-0.743)	Diarrhea Fatigue Cough Nausea
ELEVATE TN ^{2,3} (N=535)	Acalabrutinib ± obinutuzumab vs chlorambucil + Obinutuzumab	74.5 mo	93.9% vs 85.5% vs 78.5%	mPFS NR vs NR vs 27.8 mo HR 0.14, 0.23	mOS NR vs NR vs NR HR 0.62	Neutropenia Thrombocytopenia Diarrhea
SEQUOIA ⁴ (N=479)	Zanubrutinib vs BR	43.7 mo	94.6% vs 85.3% mDOR NR vs 30.6 mo	mPFS NR vs 42m HR 0.42 (0.28-0.63)	mOS NR vs NR HR 1.07 (0.51-2.22)	Neutropenia Bleeding Infection

HR, hazard ratio; mDOR, median duration of response; mOS, median overall survival; NR, not reached; ORR, overall response rate 1. Barr PM et al. *Blood Adv*. 2022;6:3440-3450. 2. Sharman JP et al. *Blood*. 2023;142(suppl 1):636. 3. NCT02475681. 4. Tam CS et al Lancet Oncol. 2022;23:1031-1043.

BTKi Monotherapy Clinical Trials and Del(17p)/TP53 Mutations

Trail	Agent	N	Follow-up	ORR	PFS	OS
4 pooled RCTs ¹	Ibrutinib	89	49.8 mo	93% (CR 39%)	mPFS NR 4-y: 79%	4-y: 88%
PCI-32765 ^{2,3}	Ibrutinib	84	113-117 mo	95.8%	mPFS: 81 mo	10-у: 69.7%
ELEVATE TN ⁴	Acalabrutinib or acalabrutinib + obinutuzumab	23, 25	74.5 mo	Not reported (CR 32%)	mPFS 73m, NR 74-mo: 56%, 56%	Not reported
SEQUOIA ⁵ (Arm 2)	Zanubrutinib	111	47.9 mo	90.0% mDOR: NR	mPFS NR 48-mo: 79.4%	24-mo: 93.6%

CR, complete response

1. Allan JN et al. Br J Haematol. 2022;196:947-953. 2. Itsara A et al. Blood. 2023;142:201-202. 3. https://clinicaltrials.gov/study/NCT01500733?tab=results. 4. Sharman JP et al. Blood. 2023;142 (suppl 1):636. 5. Tam CS et al Lancet Oncol. 2022;23:1031-1043.

4

Patients with CLL Treated with Continuous BTKi Are Living Longer, therefore QoL Becomes Paramount when Selecting Treatment

Ghia P, et al. Hemasphere. 2024;8(5):e74.

CLL14: Venetoclax + Obinutuzumab in TN CLL

OVERALL AND COMPLETE RESPONSE RATES AT EOT+3

6 Year F/U CLL14: PFS (Obinutuzumab + Venetoclax vs Obinutuzumab + Chlorambucil)

*EOT+3, 3 months after treatment completion.

PFS by TP53

Median PFS

Ven-Obi & no TP53del/mut: 76.6 m Ven-Obi & TP53del/mut: 51.9 m HR 2.29, 95% CI [1.37-3.83], p=0.001

Median PFS Ven-Obi & IGHVmut: NR Ven-Obi & IGHVunmut: 64.8 m HR 0.38, 95%CI [0.23-0.61], p<0.001

Fischer K, et al. *N Engl J Med.* 2019;380:2225-2236. al-Sawaf O, et al. Presented at: EHA 2023; June 8, 2023; Madrid, Spain. S145.

CLL 13 trial Efficacy: PFS

PFS comparisons

GIV vs CIT: HR 0.30, 97.5%CI: 0.19-0.47, *p<0.001* GIV vs RV: HR 0.38, 97.5%CI: 0.24-0.59, *p<0.001* GIV vs GV: HR 0.63, 97.5%CI: 0.39-1.02, *p*=0.03

GV vs CIT: HR 0.47, 97.5%CI: 0.32-0.69, *p<0.001* GV vs RV: HR 0.57, 97.5%CI: 0.38-0.84, *p=0.001*

RV vs CIT: HR 0.78, 97.5%CI: 0.55-1.10, p=0.1

Fürstenau M, et al. Presented at: ASH 2023; December 10, 2023; San Diego, CA. 635.

CAPTIVATE: PFS in the FD Cohort

PFS in All Treated Patients and by del(17p), mTP53, or CK

Median time on study: 61.2 months (range, 0.8-66.3)

• Overall median PFS was not reached with up to 5.5 years of follow-up

^aDefined as ≥3 chromosomal abnormalities by conventional CpG-stimulated cytogenetic; ^bExcluding patients with del(17p)/mTP53 or CK. CK = complex karyotype. Wierda WG, et al. *JCO*. 42:7009-7009.

Phase III GLOW Ibrutinib+Venetoclax: Median PFS Was Not Reached with up to 57mo of Follow-Up

- Estimated PFS rates at 42 months post tx
 - mIGHV CLL: 91% for uMRD at EOT+3, 92% for patients with MRD ≥ 10 -4 at EOT+3
 - uIGHV CLL: 78% for patients with uMRD at EOT+3, 50% for patients with MRD ≥ 10-4 at EOT+3

AMPLIFY Study Design

Σ.

 \mathbf{T}

RANDOMIZE

TN CLL (N=867)

Key inclusion criteria

- 8 MII 2012
- TN CLL requiring treatment per iwCLL 2018 criteria¹
- Without del(17p) or TP53^a
- • • • •

Key exclusion criteria

- CIRS-Geriatric >6
- Significant cardiovascular disease

Stratification

- 🖉 YAL 🚟 🛠 🛛 🖉 🖾 🖓 🖉
- IGHV mutational status
- \$34 \$34 25 = * 50
- Geographic region

Brown et al ASH 2024

NCT03836261. Data cutoff: April 30, 2024. aAssayed by central lab.

AV, acalabrutinib-venetoclax; AVO, acalabrutinib-venetoclax-obinutuzumab; BR, bendamustine-rituximab; CIRS-Geriatric, Cumulative Illness Rating Scale-Geriatric; CLL, chronic lymphocytic leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; FCR, fludarabine-cyclophosphamide-rituximab; IGHV, immunoglobulin heavy-chain variable region gene; iwCLL, International Working Group on CLL; OS, overall survival; PFS, progression-free survival; TN, treatment-naive;

uMRD, undetectable measurable residual disease. **1.** Hallek M, et al. *Blood.* 2018;131:2745-60.

AMPLIFY: randomized, multicenter, open-label, Ph 3 trial

IRC-assessed PFS

Median PFS was NR for AV and AVO, and was 47.6 mo for FCR/BR

ITT population. Median follow-up from randomization: 40.8 months (range, 0-59 months).

Hazard ratio (95% CI) computed using a Cox proportional-hazards model stratified by the randomization strata. P-value based on stratified log-rank test.

AV, acalabrutinib-venetoclax; AVO, acalabrutinib-venetoclax-obinutuzumab; BR, bendamustine-rituximab; CI, confidence interval; FCR, fludarabine-cyclophosphamide-rituximab; HR, hazard ratio; IRC, independent review committee; ITT, intent-to-treat; NR, not reached; PFS, progression-free survival.

Brown et al ASH 2024

PFS in the uIGHV Subgroup

PFS in the mIGHV Subgroup

Brown et al ASH 2024

uMRD Rates (Flow Cytometry [<10⁻⁴] in PB)

Key secondary endpoint timing: cycle 9, day 1 (AV arm), cycle 10, day 1 (AVO arm), and cycle 6, day 1 plus 12 weeks (FCR/BR)

Brown et al ASH 2024

Pirtobrutinib, Venetoclax, Obinutuzumab Trial MRD at Serial Time-Points in Blood and Bone Marrow

Sonrotoclax + Zanubrutinib efficacy in TN CLL

BGB-11417-101: TN CLL

Soumerai JD, et al. ASH 2024;1012.

Sonrotoclax + Zanubrutinib MRD in TN CLL

BGB-11417-101: TN CLL

• As of the data cutoff date, no patients had switched from uMRD to MRD4+

Soumerai JD, et al. ASH 2024;1012.

Diverse BTK mutations cause resistance to covalent BTK inhibitors

Montoya et al ASH 2022

BRUIN CLL-321 Study Design

Sharman et al ASH 2024

IRC-Assessed Progression-free Survival

Sharman et al ASH 2024

Time to Next Treatment or Death in Venetoclax Naïve and Treated Patients

Venetoclax Treated

100 100 of Remaining t Treatment (%) 90 reatment (% of Remaining **Pirtobrutinib** 80 80 Pirtobrutinib 70 70 60 60 50 50 Free of Next of Next Probability 40 Probability 40 IdelaR/BR 30 30 IdelaR/BR 20 20 Free 10 10 0 28 30 32 12 20 22 26 34 32 10 14 16 18 24 16 18 20 22 24 26 28 30 34 n 10 14 **Time Since Randomization (Months) Time Since Randomization (Months)** Number at Risk Number at Risk IdelaR/BR IdelaR/BR Pirtobrutinib Pirtobrutinib n=59 n=59 n=60 n=60 29.5 Median TTNT, mo (95% CI) 12.5 Median TTNT, mo (95% CI) 20.0 8.7 Hazard ratio (95% CI) 0.36 (0.21-0.61) Hazard ratio (95% CI) 0.37 (0.23-0.60) 0.0001* Stratified log-rank 2-sided p-value < 0.0001* Stratified log-rank 2-sided p-value

Sharman et al ASH 2024

Venetoclax Naïve

Diverse BTK mutations cause resistance to non-covalent BTKi

Efficacy and safety of, Bruton's Tyrosine Kinase (BTK) Degrader NX-5948 in Patients with Relapsed/Refractory CLL: Phase Ia/b trial

Shah et al ASH 2024

Lymph Node Assessment and High-Risk Molecular Features

Clinical activity in patients with CLL including those with baseline mutations and CNS involvement

Shah et al ASH 2024

NX-5948 Duration of Treatment

Shah et al ASH 2024

BGB-16673: A Chimeric Degradation Activating Compound (CDAC)

CaDAnCe-101: R/R CLL/SLL

- Many patients with CLL/SLL experience disease progression with BTK inhibitors, which can be caused by resistance mutations in BTK¹⁻³
- BGB-16673 is a bivalent CNS-penetrating small molecule that induces BTK degradation by binding specifically to BTK and the E3 ligase⁴
- In preclinical models, BGB-16673 degraded both wild-type and mutant BTK resistant to cBTK (C481S, C481F, C481Y, L528W, T474I) and ncBTK inhibitors (V416L, M437R, T474I, L528W), leading to tumor suppression^{4,5}
- BGB-16673 led to substantial reductions in BTK protein levels in peripheral blood and tumor tissue⁶
- We present updated safety and efficacy results in patients with R/R CLL/SLL and preliminary efficacy results in patients with R/R RT from phase 1 of CaDAnCe-101

Thompson et al ASH 2024

High Overall Response Rates in All Biologic Subsets

CaDAnCe-101: R/R CLL/SLL

Characteristic, n/N with known status (%)	Total (N=49) ^a
Double exposure (previously received cBTKi + BCL2i)	26/30 (86.7)
Triple exposure (previously received cBTKi + ncBTKi + BCL2i)	7/12 (58.3)
del(17p) and/or TP53 mutation	23/31 (74.2)
Complex karyotype	11/15 (73.3)
BTK mutations	10/16 (62.5)
PLCG2 mutations	4/6 (66.7)

Treatment Duration and Response

CaDAnCe-101: R/R CLL/SLL

Thompson et al ASH 2024

Responses Occurred Regardless of Specific Mutations Best Overall Response vs. Baseline Mutation

CaDAnCe-101: R/R CLL/SLL

Thompson et al ASH 2024

Promising Activity Also Seen in Patients With Richter Transformation

CaDAnCe-101: R/R CLL/SLL

- Safety-evaluable patients, n=14; efficacyevaluable patients, n=12
- Median age (range): 64 years (47-80 years)
- Median prior number of therapies for RT (range): 2 (1-9)
- All patients previously received a cBTKi; 12/14 had anthracyclines
- ORR: 58.3% (7/12), CR: 8.3% (1/12)
- 5 of 7 (71.4%) patients with response on treatment for >6 months

Treatment duration, weeks

Study Design: EPCORE[®] CLL-1 Expansion and C1 Optimization

- Primary endpoint (EXP): Overall response rate
- Primary endpoint (C1 OPT): Incidence and severity of CRS, ICANS, and clinical TLS
- Key secondary endpoints (EXP): CR rate, time to response, MRD (PBMCs using the clonoSEQ[®] assay), and safety/tolerability

 To ensure patient safety and better characterize CRS, inpatient monitoring was required for at least 24 hours after each epcoritamab dose in C1

Danilov et al ASH 2024

C1 OPT Mitigated Adverse Events of Interest Including ICANS and Clinical TLS

	EXP	EXP C1 OPT CRS Events by Dosing P							
	N=23	N=17		EXP					
CRS, n (%)	22 (96)	14 (82)				18.	.2%		Grade 1 Grade 2
Grade 1	2 (9)	12 (71)	ළ 60 - ව 60 -						Grade 3
Grade 2	16 (70)	2 (12)	ue - 40 -		13.6%	63.	.6%		
Grade 3	4 (17)	0	20 - 20 -	21.7%	36.4%	18.	2%	21.1%	18.8%
Treated with tocilizumab, n (%)	20 (87)	6 (35)	0 –	Step-up	Step-up Step-up		ull dose S	Second full	Third full
Leading to treatment discontinuation, n (%)	0	0		dose 1 N=23	dose 2 n=22	n=	22	dose n=19	dose+ n=16
CRS resolution, n/n (%)	22/22 (100)	14/14 (100)							
Median time to resolution, days (range)	3 (1–16)	3.5 (1–7)	ך 100			C1 (OPT		Grade 1
ICANS, n (%)	3 (13)	0	% 80 -						Grade 2
Grade 1	1 (4)	0	9 60 - Ue 40				13.3%		
Grade 2	2 (9)	0		_	6.3%	04.00/	46.7%	7.7%	22.20/
Clinical TLS, n (%)	1 (4)	0		23.5%	12.5%	31.3%		30.8%	33.3%
Grade 2	1 (4)	0		Step-up dose 1	Step-up dose 2	Step-up dose 3	First full dose	Second full dose	Third full dose+
			N=17 n=16 n=16 n=15 n=13					n=12	

Danilov et al ASH 2024

Deep Responses Across Subgroups

Response, n (%)		C1 OPT mFU: 2.9 months				
	Full Analysis Set N=23	Response Evaluable n=21	<i>TP53</i> Aberration n=15	<i>IGHV</i> Unmutated n=16	Double Exposed ^a n=19	Response Evaluable n=10
Overall response ^b	14 (61)	14 (67)	10 (67)	10 (63)	10 (53)	6 (60)
Complete response	9 (39)	9 (43)	5 (33)	7 (44)	7 (37)	1 (10)
Partial response	5 (22)	5 (24)	5 (33)	3 (19)	3 (16)	5 (50)
Stable disease	4 (17)	4 (19)	2 (13)	3 (19)	4 (21)	2 (20)
Progressive disease	1 (4)	1 (5)	1 (7)	0	1 (5)	1 (10)

- With limited follow-up, the C1 OPT regimen does not appear to affect epcoritamab efficacy
- uMRD4 in PBMCs was observed in most responders, including all patients with CR who were tested for MRD

EXP MRD Negativity, n/n (%) ^c	uMRD4	uMRD6 ^d
Overall response ^b	9/12 (75)	8/12 (67)
Complete response	7/7 (100)	6/7 (86)
Partial response	2/5 (40)	2/5 (40)
Full analysis set	9/23 (39)	8/23 (35)

Depth and Duration of Response in EXP

Danilov et al ASH 2024

Phase 1/2 TRANSCEND CLL 004 study: liso-cel + ibrutinib combination cohort

Wierda et al ASH 2024

Efficacy outcomes: response by investigator and uMRD4

- Median (IQR) on-study follow-up (including LTFU): 24.8 months (14.2–34.6)
- Median (range) time to first response: 1 month (0.9-6.0)
- Median (range) time to first CR/CRi: 3 months (0.9–12.1)

Wierda et al ASH 2024

Progression-free survival by best overall response at DL2

Wierda et al ASH 2024

Sequencing Targeted CLL Therapies

cBTKiAlternative cBTKi if intolera					ance	BCL2i+CD20 ncBTKi				i			
cBTKi Alternative cBTKi if intoler					ance ncBTKi BCI			BCL2i+	CL2i+CD20				
				_									
BCL2i+CD20						BCL2i+CD20			сВТКі				
BCL2i+CD20		сВТ				cBTKi	Ki				ncBTKi		
Years 1	2	3	4	5	6	7	8	9	10	11	12	13	14
BCL2i+cBTKi						cBTKi					ncBTKi		
						_	Τ						
BCL2i+cBTKi						BCL2i+o	BTK				ncBTKi		
cBTKi = covalent	BTKi									Double ex	posed vs do	uble refract	ory

ncBTKi = non-covalent

• Exposed ≠ refractory

• Refractory= progression on treatment

Faculty's opinion.