

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Tumor Biology, Pathology, Novel Diagnostics

Tianhong "Tina" Li, MD, PhD

UC Davis Comprehensive Cancer Center, Sacramento, CA, United States

CPresented by Tianhong "Tina" Lit UCDCCC, USA, thli@ucdavisleduASLC. Copyright permission from the IASLC is required for reuse.

Multi-omics and/or single cell profiling with advanced computational analysis (AI) for new biology and potential biomarkers

Abstract	Title	Focus
OA15.03	Clinicogenomic Landscape of Lymph Node Metastases in TRACERx	 Tumor cell Clonality in Metastasis + minimal residual disease (MRD)
OA15.04	Multi-Omic Profiling of Paired Non-Small Cell Lung Cancer and Draining Lymph NodesReveals Novel T-Cell Differentiation Patterns	2. Origin and differentiation of Tumor infiltrating lymphocyte (TIL)
OA15.05	Single-Cell Spatial Architectures of Paratumor Zone Determines the Prognosis of Multiple Lung Cancers	3. Heterogeneity of immune cell infiltrates in primary vs. metastatic lung cancer

CPresented by Tianhong "Tina" Li; UCDCCC, USA; thli@ucdavisleduASLC. Copyright permission from the IASLC is required for reuse.

Focus of discussion

- Clinical questions
- Biological questions

Additional issues

- Does the study have hypothesis?
- Does the study have specific goals?
- Have the specific goals been achieved?
- Do the study results have clinical impact?
- Have the results advanced our knowledge in lung cancer biology?

Clinicogenomic Landscape of Lymph Node Metastases in TRACERx

Takahiro Karasaki^{1,2,3},

James Black^{1,2}, Alexander Frankell^{1,2}, Christopher Abbosh¹,

Ariana Huebner^{1,2}, Maise Al Bakir^{1,2},

Nicholas McGranahan², Mariam Jamal-Hanjani², Charles Swanton^{1,2}

1. Francis Crick Institute, London, UK

2. UCL Cancer Institute, London, UK

3. Toranomon Hospital, Tokyo, Japan (Current affiliation)

#WCI C24

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

OA15.03: Clinicogenomic Landscape of Lymph Node Metastases in TRACERx

Clonal evolution

- Is there any difference in dissemination patterns to N1/N2 nodes?
- Are all LN metastases equal when there are multiple LN metastases?

Prognostic impact

- Why N2 disease is so different from N1 disease in terms of prognosis?
- Why surgical benefit is limited for N2 disease?

Part 1: Clonal evolution and dissemination to the LNs

TorKarasaki pelinicogenomic Landscape of Lymph Node Metastases in TRACERX rom the IASLC is required for reuse.

Take home messages

Clonal evolution and dissemination to the LNs

- · Most LNs are seeded by a single clone from the primary tumor
- Approximately half of the cases with multi-station LN metastases had distinct clones that metastasized to each LN from the primary tumour.

 \rightarrow Information from single LN may be insufficient to capture the holistic evolution of tumor clones when multiple LNs were involved.

MRD analysis and nodal involvement

- Landmark positive (MRD+ ≤120 days after surgery) was associated with TNM stage, especially with pN stage.
- Landmark negative patients had better OS than Landmark positive patients, regardless of pN status.

PMID: 37046095 (Al Bakir et al):

- <u>No significant association</u> between clonal dissemination pattern in LN and lung cancer-specific disease-free survival.
- <u>Polyclonal dissemination was enriched</u> for tumours that result in extrathoracic recurrence.

PMID: 37055640 (Abbosh et al):

Shorter OS in patients <u>with ctDNA</u> exhibiting polyclonal dissemination versus monoclonal dissemination

Details in 2 published manuscripts

Article

The evolution of non-small cell lung cancer metastases in TRACERx

Nature 2023 Apr;616(7957):534-542. (PMID: 37046095)

https://doi.org/10.1038/s41586-023-05729-x Received: 21 October 2021 Accepted: 12 January 2023 Published online: 12 April 2023 Open access Check for updates Maise Al Bakir^{12,96}, Ariana Huebner^{1,2,3,96}, Carlos Martínez-Ruiz^{13,96}, Kristiana Grigoriadis^{12,3,96}, Thomas B. K. Watkins²⁹⁶, Oriol Pich²⁹⁶, David A. Moore^{12,4}, Selvaraju Veeriah¹, Sophia Ward^{1,2,5}, Joanne Laycock¹, Diana Johnson¹, Andrew Rowan², Maryam Razaq¹, Mita Akther¹, Cristina Naceur-Lombardelli¹, Paulina Prymas¹, Antonia Toncheva¹, Sonya Hessey^{16,7}, Michelle Dietzen^{12,3}, Emma Colliver², Alexander M. Frankell¹², Abigail Bunkum^{16,7}, Emilia L. Lim¹², Takahiro Karasaki^{1,2,6}, Christopher Abbosh¹, Crispin T. Hiley¹², Mark S. Hill², Daniel E. Cook², Gareth A. Wilson², Roberto Salgado^{6,9} Emma Nye¹⁰, Richard Kevin Stone¹⁰, Dean A, Fennell^{11,12}, Gillian Price^{13,14}, Keith M, Kerr^{14,15}, Babu Naidu¹⁶, Gary Middleton¹⁷³⁸, Yvonne Summers¹⁹, Colin R, Lindsav¹⁹, Fiona H, Blackhall¹⁹, Judith Cave²⁰, Kevin G. Blyth^{21,22,23}, Arjun Nair^{24,25}, Asia Ahmed²⁴, Magali N. Taylor²⁴ Alexander James Procter²⁴, Mary Falzon⁴, David Lawrence²⁶, Neal Navani^{27,26}, Ricky M. Thakrar^{27,28}, Sam M. Janes²⁷, Dionysis Papadatos-Pastos²⁹, Martin D. Forster^{1,28} Siow Ming Lee^{1,20}, Tanya Ahmad²⁰, Sergio A. Quezada^{1,20}, Karl S. Peggs^{31,32}, Peter Van Loo^{33,34,35}, Caroline Dive^{36,37}, Allan Hackshaw³⁸, Nicolai J. Birkbak^{12,39,40,41}, Simone Zaccaria¹⁷, TRACERx Consortium*, Mariam Jamal-Hanjani^{16,29,9757}, Nicholas McGranahan^{1,3,9757} & Charles Swanton 12,29,97

Article

Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA

Nature 2023 Apr;616(7957):553-562. (PMID: 37055640)

https://doi.org/10.1038/s41586-023-05776		
Received: 6 April 2022		
Accepted: 30 January 2023		
Published online: 13 April 2023		
Check for updates		

Christopher Abbosh^{1101E]}, Alexander M. Frankell¹²³⁰⁷, Thomas Harrison³¹⁰⁷, Judit Kisistok^{1,4,6,007}, Aaron Garnett³¹⁰¹, Laura Johnson³, Selvaraju Veeriah¹, Mike Moreau³, Adrian Chesh³, Tafadzwa L. Chaurzwa^{7,6}, Jakob Weiss^{1,6,9}, Morgan R. Schroeder³, Sophia Ward¹²³⁰, Kristiana Grigoriadis^{1,231}, Aamir Shahpurwalla⁹, Kevin Litchfield¹¹², Clare Puttick^{1,21,7}, Dhruva Biswas^{1,21,3}, Takahiro Karasaki^{12,34}, James R. M. Black¹¹⁷, Carlos Martinez-Ruiz¹¹¹, Maise Al Bakir^{1,2}, Oriol Pich², Thomas B. K. Watkins², Emilia L. Lim^{1,3}, Ariana Huebner^{1,2,1}, David A. Moore^{1,235}, Nadia Godin-Heymann¹⁶, Anne L'Hernault¹⁶, Hannah Bye¹⁶, Aaron Odell³, Paula Roberts³, Fabio Gomes¹⁷, Akshay J. Patel¹⁶, Elizabeth Manzano¹, Crispin T. Hiley^{1,2}, Nicolas Carey¹⁸, Joan Riley¹⁹, Daniel E. Cook², Darren Hodgson¹⁶, Daniel Stetson²⁰, J. Carl Barrett²⁰, Roderik M. Kortlever²¹, Gerard I. Evan²¹, Allan Hackshaw²², Robert D. Daber³, Jacqui A. Shaw¹⁸, Hugo J. W. L. Aerts^{2,6,23}, Abel Licon³, Josh Stahl³, Mariam Jamal-Hanjani^{114,34}, TRACERx Consortium⁴, Nicolai J. Birkbak^{12,4,8,102}, Nicholas McGranahan^{111,021E} & Charles Swanton^{11,23,1021E}

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

9th Edition TNM staging findings: Metastasis to multiple N2 station or multiple extra thoracic organs have poorer prognosis than single N2 or organ metastasis

Huang J., et al. J Thorac Oncol 2024 May;19(5):766-785 (PMID: 37866624)

Conten Mingt Sound Tsao OAP 570-t Discussant icensed by the IASLC. Copyright permission from the IASLC is required for reuse.

OA15.03: Clinicogenomic Landscape of Lymph Node Metastases in TRACERx

Clinical:

- Do the findings apply to all types (histology and driver status) of lung cancers?
- Is pattern of spread (polyclonal vs. monoclonal) prognostic?
- Can clonal dissemination patterns explain the survival difference between N2a (single) vs N2b (multiple), or M1c1 (single organ) vs. M1c2 (multiple organ) metastatic patients?
- Does clonality determination in ctDNA have impact on treatment strategy and outcome?

Biological

• What are the mechanisms that drive mono vs. poly clonal metastatic patterns?

Hypothesis	YES (inferred)	
Study goals	YES	
Hypo./Goals answered?	YES	
Clinical impact	Somewhat	
Advancing knowledge	Substantial (p.1) Supportive (p.2)	
Caveats or further needs: Sample size Mechanistic explanation 		

Multi-omic profiling of paired NSCLC tumor and draining lymph node reveals novel T cell differentiation patterns

Vivian Gerretsen MD Supervisors: Floris Dammeijer, Joachim Aerts

Erasmus MC | IRC-VIB Rotterdam, The Netherlands | Ghent, Belgium

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

OA15.04 T cell development in tumor and beyond – origin of TILs

Chow et al. Nat Rev Clin Oncol 2022

Improving our **understanding of T cell dynamics** in tumor will aid in new immunotherapy and biomarker development

Tumor infiltrating lymphocytes (TILs) become progressively **exhausted**

A linear **developmental trajectory** (Tpex \rightarrow Tex) has been proposed

How and whether this **cross-tissue** trajectory occurs in human remains unknown

Digital spatial profiling

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

OA15.04 Tumor-draining lymph nodes (TDLNs) are essential to mount an anti-tumor T cell response

40X

<figure>

Е

M

N

Sentinal lymph node

procedure

S1008100 CD3 ID01 III ID0

06:POL1 POL1:CD11

0

n = 5

Recurrence (R) No Recurrence (NR) RFS < 24 months RFS > 60 months

Q

IDO1:CD110

PD-L1:CD11c

CD3 🧶 S100B

Van Krimpen et al. Cancer Cell 2022

Dammeijer et al. Cancer Cell 2020

11

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

OA15.04

Hypothesis: Improving understanding of T-cell dynamics in tumor will aid in new immunotherapy and biomarker development

Objectives:

- 1) Better understand the T cell dynamics in early-stage NSCLC
- 2) Investigate the clonal relatedness of TDLN and tumor T cells

Multi-omic characterization of paired tumor and TDLN in patients with early-stage non-small cell lung cancer (NSCLC)

TDLNs are enriched for earlier CD8⁺ T cell differentiation subsets, while tumor is enriched for exhausted CD8⁺ T cells

Gradient of T cell differentiation states present in TDLN and tumor

Tumor-specific genes enriched mainly but not solely in Texh cells

Can we trace back where Texh cells originate from?

OA15.04: Multi-Omic Profiling of Paired Non-Small Cell Lung Cancer and Draining Lymph Nodes Reveals Novel T-Cell Differentiation Patterns

Single cell analyses

CONCLUSIONS

Clonal relatedness between TDLN CD8⁺ T cells and TILs in **all** included patients

Distinct clonal patterns of T cell subsets, related to commonly known (exhausted) TILs

Different 'routes' to exhaustion may have **consequences for therapeutic targeting**

Currently ongoing:

Validating existing scRNAseq databases including those incorporating **neo-antigen specificity**

Ex vivo tumor slice cultures examining T-cell subset **functionality** and **response to immune checkpoint blockade**

OA15.04: Multi-Omic Profiling of Paired Non-Small Cell Lung Cancer and Draining Lymph Nodes Reveals Novel T-Cell Differentiation Patterns

Questions/Comments

Clinical:

- How can knowledge on "routes" of exhaustion improve current treatment strategy in early-stage NSCLC?
- Would the route of exhaustion be affected by neoadjuvant therapies, including immuno, chemo or radiation therapies?

Biological:

 Would the route and phenotype of T-cell exhaustion identified in this study be <u>applicable to advanced</u> <u>stage patients</u>?

Hypothesis	YES		
Study goals	YES		
Hypo./Goals answered?	YES		
Clinical impact	Currently Unclear		
Advancing knowledge	Substantial		
Caveats or further needs: - Additional validation			

on Lung Cancer

2024 World Conference SEPTEMBER 7-10, 2024

SAN DIEGO. CA USA

Single-Cell Spatial Architectures of Paratumor Zone Determines the Prognosis of Multiple Lung Cancers

Yuan Xiaoqiu

Department of Thoracic Surgery & Thoracic Oncology Institute Peking University People's Hospital, Beijing, China

Funding: National Natural Science Foundation of China (82373416,82072566)

Beijing Municipal Natural Science Foundation (QY23070)

北京大学人民医院 胸部肿瘤研究所 Thoracic Oncology Institute

Background

Multiple lung cancers (MLCs) ~2.6-8.4% lung cancer

Multiple primary lung cancers (MPLC)

- Independent clonal origins
- Usually good prognosis

Intrapulmonary metastasis (IPM)

- Shared clonal origins
- Worse prognosis

Methods

OA15.05

Understanding immunology is quite challenging for non-immunologists

Compared with the adjacent

normal tissues of MPLC, MPLC

 IPM tumor macrophages significantly activated M2 compared to adjacent normal tissues

M2 different functional states

Activation of anti-tumor immunity in MPLC paratumor zone against immune escape in IPM

OA15.05: Single-Cell Spatial Architectures of Paratumor Zone Determines the Prognosis of Multiple Lung Cancers

CONCLUSIONS

- Different anti-tumor immunity in paratumor region between MPLC and IPM
- > M2 macrophages may play a key role
- The microenvironment score incorporating paratumor features can identify high-risk phenotypes of multiple lung cancers

- Most of the prognostic microenvironmental features come from the adjacent area
- The characteristics of the paratumor microenvironment, patients with higher risk of IPM can be screened out → more actively intervened

Current approach (by pathologists) to distinguish separate primary vs. intrapulmonary metastatic lung cancers?

Combination of histology and molecular profiles:

- Different histologies -> metastasis
- Different LUAD subtypes -> metastasis
- Similar LUAD subtypes -> molecular profiling

Detterbeck FC, et al. J Thorac Oncol 2016;11(5):651-665 (PMID: 26944304)

Chang J and Reckthman N, et al. Mod Pathol 37 (2024) 100453 (PMID: 38387831)

Molecular profiling

Current approach (by pathologists) to distinguish separate primary vs. intrapulmonary metastatic lung cancers?

Questions/Comments

Clinical:

Unclear what is the clinical utility and impact of the results

Biological:

- Each ROI is 1x1 mm^{2.} How were they chosen and how representative are they for the entire tumors.
- Biological meaning of the results is unclear.

Hypothesis	Missing
Study goals	Unclear
Hypo./Goals answered?	Not sure
Clinical impact	Unclear
Advancing knowledge	Possible

Caveats or further needs:

- Validation with multiplex IHC/IF
- Input from pathologists in project development

Take home message

- Advanced omics profiling and computational technologies enable broad and deep molecular analysis at single cell levels
- These data provide unprecedented opportunities to explore new frontiers and gain new insights in cancer biology, with potential transformative clinical impacts
- However, results from computational analysis are hypothesis generating and require robust biological and clinical validation

My Takeaway Messages

- 1. In 9th Edition TNM staging, metastasis to multiple N2 station or multiple extra thoracic organs have poorer prognosis than single N2 or organ metastasis.
- 2. Polyclonally determination in ctDNA might have prognostic impact on risk of cancer recurrence.
- 3. Tumor-draining lymph nodes (TDLNs) are essential to mount an antitumor T cell response, and might have complex interaction with primary tumor.
- 4. M2 macrophage in paratumor microenviorment might be imporant in determing anti-tumor response.

