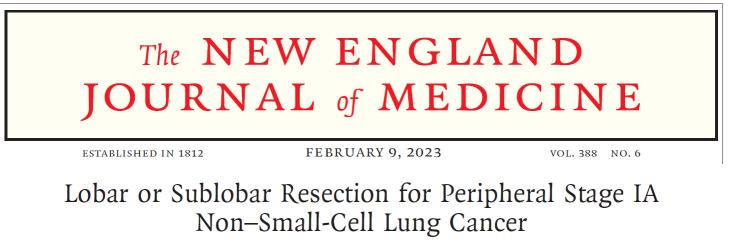


Surgery for Early-Stage NSCLC

MA03.07, MA03.11, M15.03

Johannes Kratz, MD FACS Associate Professor of Surgery, UCSF Van Auken Endowed Chair in Thoracic Oncology Interim Section Chief, Thoracic Surgery Medical Director of Robotic Surgery Program Director, Thoracic Surgery Residency Program


#WCLC24

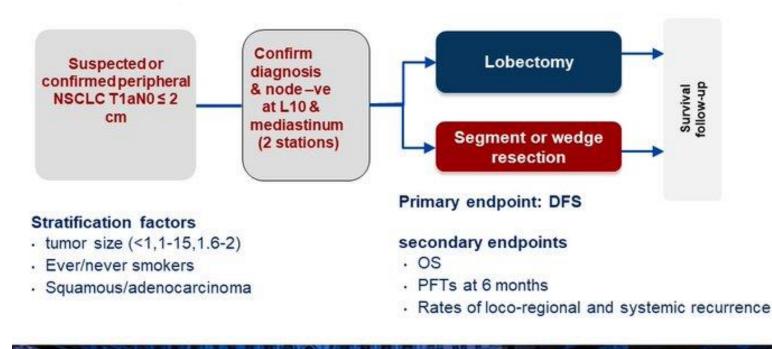
Outcomes of Older Patients in CALGB 140503 (Alliance): Lobar vs Sublobar **Resection for Peripheral Stage IA Non-Small Cell Lung Cancer**

Apar Kishor Ganti, Bryce Damman, Xiaofei Wang, Thomas E. Stinchcombe, Nasser Altorki

VA Nebraska Western Iowa Healthcare System and University of Nebraska Medical Center, Omaha, NE; Mayo Clinic, Rochester, MN; Duke University, Durham, NC; Weill Cornell Medicine, New York, NY USA

Nasser Altorki, M.D., Xiaofei Wang, Ph.D., David Kozono, M.D., Ph.D., Colleen Watt, B.S., Rodney Landrenau, M.D., Dennis Wigle, M.D., Ph.D., Jeffrey Port, M.D., David R. Jones, M.D., Massimo Conti, M.D., Ahmad S. Ashrafi, M.D., Moishe Liberman, M.D., Ph.D., Kazuhiro Yasufuku, M.D., Ph.D., Stephen Yang, M.D., John D. Mitchell, M.D., Harvey Pass, M.D., Robert Keenan, M.D., Thomas Bauer, M.D., Daniel Miller, M.D., Leslie J. Kohman, M.D., Thomas E. Stinchcombe, M.D., and Everett Vokes, M.D.

Support: Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U10CA180821 and U10CA180882 (to the Alliance for Clinical Trials in Oncology), UG1CA233184, UG1CA233253, UG1CA233290, UG1CA233324, UG1CA232760, U10CA180863 (CCTG); and U10CA180888 (SWOG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

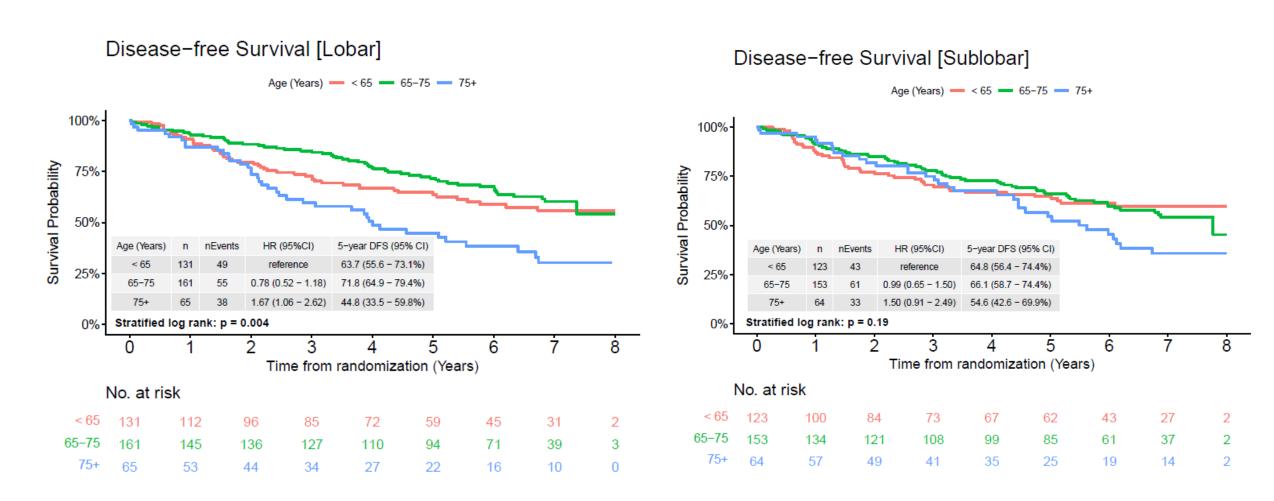

https://acknowledgments.alliancefound.org

ClinicalTrials.gov number: NCT00499330

Introduction

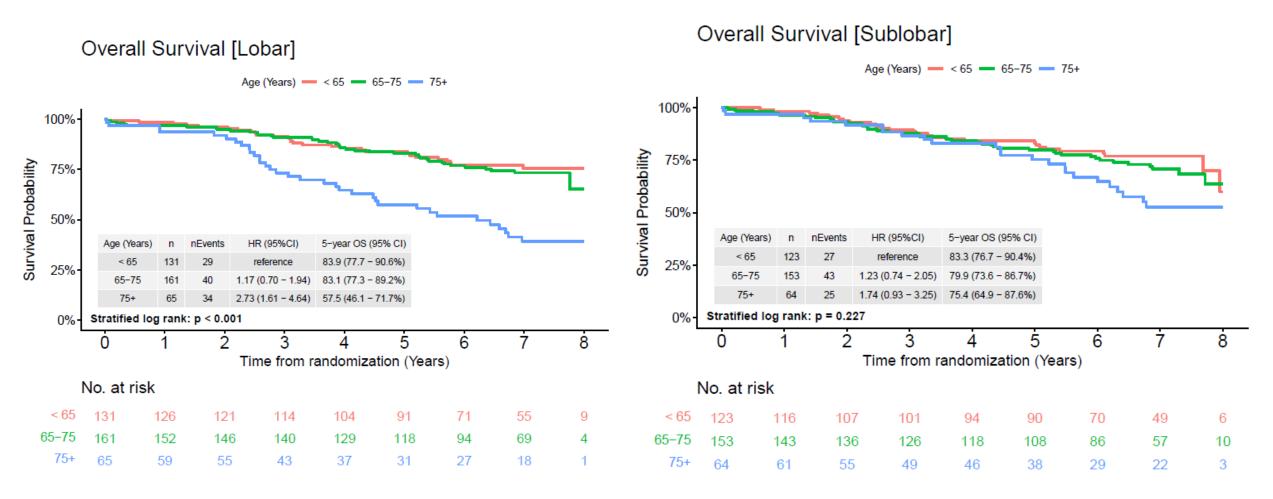
CALGB 140503: Phase III randomized trial comparing lobectomy and sublobar resection for small-sized carcinoma

Conclusion: Sub-lobar resection not inferior to lobar resection for NSCLC patients with small peripheral tumors



Patients and Methods

- Patients enrolled on CALGB 140503 were categorized into 3 groups based on age: <65 years, 65-75 years and >75 years.
- Baseline characteristics, surgical approaches, pathological findings, DFS, overall survival OS, ≥grade 3 AEs and 90-day mortality were compared
- Comparison of continuous variables Kruskal-Wallis test; discrete variables - chi-square or Fisher's exact test
- Survival outcomes stratified log-rank test


Results - DFS

2024 World Conference

on Lung Cancer

Results - OS

Results – Outcomes based on age groups

		<65 years	65-75 years	>75 years	P-value
	Lobar	63.7 (55.6 – 73.1)	71.8 (64.9 - 79.4)	44.8 (33.5 - 59.8)	0.004
5-yr DFS % (95% CI)	Sublobar	64.8 (56.4 - 74.4)	66.1 (58.7 - 74.4)	54.6 (42.6 - 69.9)	0.19
	Lobar	83.9 (77.7 – 90.6)	83.1 (77.3 - 89.2)	57.5 (46.1 - 71.7)	<0.001
5-yr OS % (95% CI)	Sublobar	83.3 (76.7 - 90.4)	79.9 (73.6 - 86.7)	75.4 (64.9 - 87.6)	0.23
≥grade 3 AE n (%)	Lobar	17 (13%)	27 (16.8%)	11 (16.9%)	0.63
	Sublobar	12 (9.8%)	22 (14.4%)	13 (20.3%)	0.14
90-day mortality n (%)		1 (0.4%)	5 (1.6%)	4 (3.1%)	0.09

#WCLC24

Conclusions

- Older patients tolerated surgical resection in CALGB 140503 well,
 - Similar adverse events and 90-day mortality as younger patients
- The reasons for a lower DFS and OS in patients >75 who underwent a lobectomy need to be studied further
- Surgical resection for early-stage NSCLC should be offered to all appropriate patients regardless of age

Postoperative Complications Compromised Disease-Free and Recurrence-Free Survival in CALGB 140503 (Alliance) Trial Patients

Daniel Miller¹, Xiaofei Wang², Bryce Damman³, Thomas Stinchcombe⁴, Jennifer Mentlick³, Rodney Landreneau⁵, Dennis Wigle³, David Jones⁶, Massimo Conti⁷, Ahmad Ashrafi⁸, Moishe Liberman⁹, Marc de Perrot¹⁰, John Mitchell¹¹, Robert Keenan¹², Thomas Bauer¹³, Nasser Altorki¹⁴

¹Emory University School of Medicine, Atlanta, GA, ²Alliance Statistics/Data Management Center, Duke University, Durham, NC, ³Mayo Clinic, Rochester, MN ⁴Biostatistics and Bioinformatics, Duke University, Durham, NC, ⁵University of Pittsburgh Medical Center, Pittsburgh, PA,, ⁶Memorial Sloan Kettering Cancer Center, New York, NY, ⁷Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC, ⁸Surrey Memorial Hospital, Fraser Valley Health Authority, BC, ⁹Centre Hospitalier de l'Université de Montréal, Montreal, QC, ¹⁰Thoracic Surgery, Toronto, ON, ¹¹University of Colorado Hospital School of Medicine, Aurora, CO, ¹²Moffitt Cancer Center, Tampa, FL, ¹³Hackensack Meridian Health System, Edison, NJ, ¹⁴Weill Cornell Medicine/New York-Presbyterian, New York, NY.

2024 World Conference SEPTEMBER 7-10, 2024 on Lung Cancer SAN DIEGO, CA USA Lancet Respir Med. 2018 December ; 6(12): 915–924. doi:10.1016/S2213-2600(18)30411-9.

Perioperative mortality and Morbidity after Lobar versus Sublobar Resection for early stage lung cancer: A post-hoc analysis of an international randomized phase III trial (CALGB/ Alliance 140503)

Nasser K. Altorki, M.D.¹, Xiaofei Wang, PhD^{2,4}, Dennis Wigle, M.D.³, Lin Gu⁴, Gail Darling, M.D.⁵, Ahmad S Ashrafi, M.D.⁶, Rodney Landrenau, M.D.⁷, Daniel Miller, M.D.⁸, Moishe Liberman, M.D.⁹, David R Jones, M.D.¹⁰, Robert Keenan, M.D.¹¹, Massimo Conti, M.D.¹², Gavin Wright, M.D.¹³, Linda J Veit, MPH¹⁴, Suresh S. Ramalingam, M.D.¹⁵, Mohamed Kamel, M.D.¹, Harvey I. Pass, M.D.¹⁶, John D. Mitchell, M.D.¹⁷, Thomas Stinchcombe, M.D. ¹⁸, Everett Vokes, M.D.¹⁹, and Leslie J Kohman, M.D.¹⁴

Perioperative mortality was defined as death from any cause within 30 and 90 days of surgical intervention and was calculated on all randomized patients. Morbidity was graded using the Common Terminology Criteria for Adverse Events (CTCAE v4.0). All analyses were done on an intention to treat basis.

	Grade 1 (mild)	Grade 2 (moderate)	Grade 3 (severe)	Grade 4 (life-threatening)	Grade 5 (fatal)
Cardiovascular					
Atrioventricular heart block					
Lobar resection	1 (<1%)	0	0	0	0
Sublobar resection	0	0	0	0	0
Cardiac ischaemia or infarctio	n				
Lobar resection	0	0	3 (1%)	2 (1%)	0
Sublobar resection	0	0	0	0	1 (<1%)
Hypertension					
Lobar resection	4	2	1(<1%)	0	0
Sublobar resection	0	2	0	0	0
Hypotension					
Lobar resection	3 (1%)	10 (3%)	1 (1%)	0	0
Sublobar resection	2 (1%)	6 (2%)	4 (1%)	0	0
Left-ventricular diastolic dysf	unction				
Lobar resection	0	0	0	0	0
Sublobar resection	1	0	0	0	0
Pulmonary hypertension					
Lobar resection	1 (<1%)	0	0	0	0
Sublobar resection	0	0	0	0	0

- Cardiovascular (AV block, ischemia, HTN, HYPOTN, arrhythmia, etc.)
- Hemorrhage (local or CVA)
- Infection (PNA, wound infection, UTI, sepsis, etc.)
- Neurological (confusion, pain)
- Pulmonary (ARDS, aspiration, air leak, PTX, etc.)
- Surgical (intra-op injury)
- Vascular (thrombus or embolism)

CALGB 140503

Adverse Events (30 Days of Surgery)

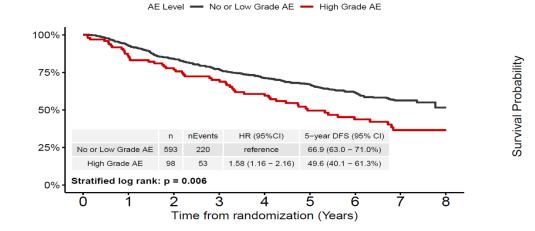
	Lobar resection (n=355)*	Sublobar resection (n=337)*	Difference (95% Cl)
Grade 1 event	64 (18%)	75(22%)	-4.2% (-10.2 to 1.8)
Grade 2 event	75(21%)	49 (15%)	6.6% (0.9 to 12.3)
Grade 3 event	37 (10%)	41(12%)	-1.7% (-6.6 to 30)
Grade 4 event	13 (4%)	5(1%)	2.2% (-0.2 to 4.9)
Grade 5 event	4 (1%)	2(1%)	0.5% (-1.1 to 2.3)

No complications in 47% of patients (LR 46%, SLR 49%) Grade 3/4/5 AEs occurred in 15.2% (LR) and 14.2% (SLR) Grade 3 hemorrhage (transfusion) in 1.6% (LR) and in 2.3% (SLR) Prolonged air leak 2.5% (LR) and in 0.6% (SLR) No statistical difference between treatment arms

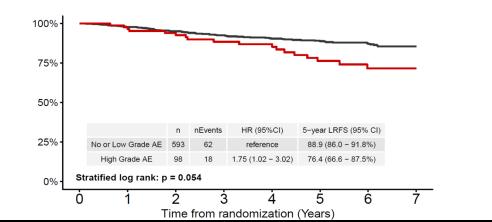
Methods

- Between 6/2007 and 3/2017, 697 patients were randomized to LR (357) or SLR (340)
 - 80.2% of the resections were via VATS approach. No RATS procedures.
- Adverse events (1-5) were graded using the AEs version 4.0 and were grouped
 - Low-Grade group (AEs \leq 2) and a High-Grade group (AEs \geq 3).
 - Grade 5 AE (Death) was excluded from survival analyses.
- Survival endpoints were estimated by the Kaplan–Meier estimator and tested by stratified Log-rank test. The Chi-square test was used to compare the distribution of LG AEs vs HG AEs among various groups. Overall, Disease-free, Recurrence-free, Locoregional recurrence-free and Distant recurrence-free survivals were calculated.

Association between High Grade AE and Type of Surgical Treatment

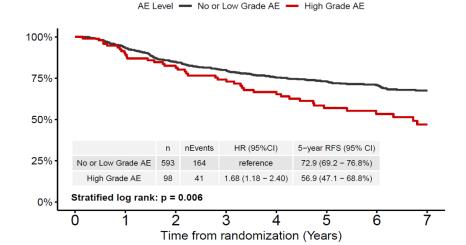

No/Low Grade AE302 (84.6%)293 (86.2%)High Grade AE55 (15.4%)47 (13.8%)		Lobar(n = 357)	Sublobar(n = 340)
	1		

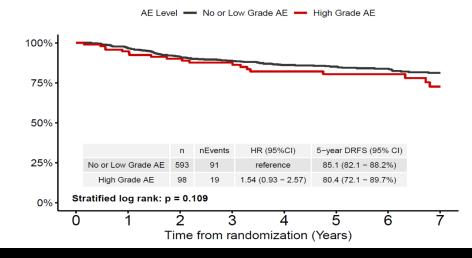
P-value: 0.555


Association between High Grade AE and Surgical Procedure

	Lobectomy(n = 362)	Segment $(n = 131)$	Wedge(n = 204)	
No/Low Grade AE High Grade AE	$305 (84.3\%) \ 57 (15.7\%)$	$\frac{108}{23} (82.4\%) \\ 23 (17.6\%)$	$\begin{array}{c} 182 \ (89.2\%) \\ 22 \ (10.8\%) \end{array}$	
	P-value: 0	.159		
Association between High Grade AE and Site Volume				
	Low(n = 210)	Medium(n = 257)	High(n = 230)	
No/Low Grade AF High Grade AE	$\begin{array}{ccc} 180 & (85.7\%) \\ 30 & (14.3\%) \end{array}$	$\begin{array}{c} 211 \ (82.1\%) \\ 46 \ (17.9\%) \end{array}$	204~(88.7%) 26~(11.3%)	

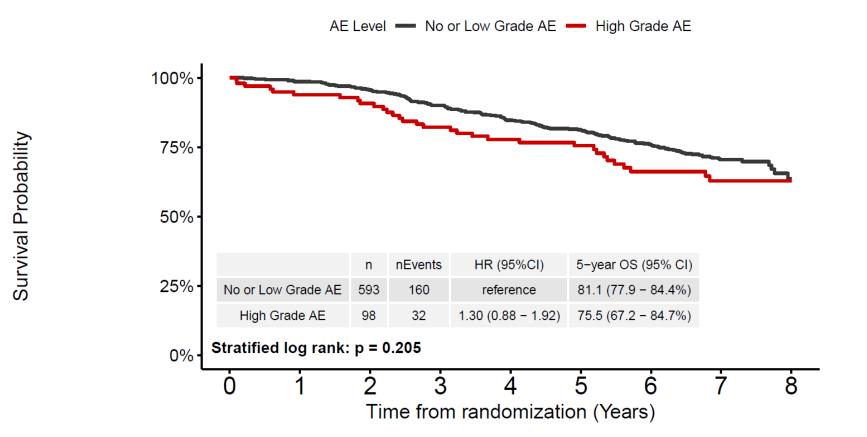
Disease-free Survival


Locoregional Recurrence-free Survival


Survival Probability

AE Level — No or Low Grade AE — High Grade AE

Recurrence-free Survival


Distant Recurrence-free Survival

Survival Probability

Dan Miller MD | CALGB 140503 Complications/Survival

Overall Survival

Dan Miller MD | CALGB 140503 Complications/Survival

Survival	Low Grade AEs	High Grade AEs	P Value
Overall	81.1%	75.5%	0.205
Disease-free	66.9%	49.6%	0.006*
Recurrence- free	72.9%	56.9%	0.006*
Locoregional Recurrence-free	88.9%	76.4%	0.054
Distant Recurrence-free	85.1%	80.4%	0.109

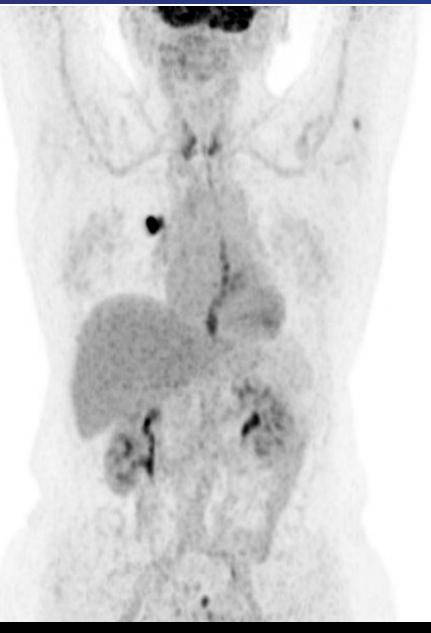
Conclusions

In this large, prospective randomized trial, <u>High Grade AEs negatively influenced Disease-Free</u> and Recurrence-Free survival, but not overall survival. LRR and DR survivals were also affected, but not significantly.

This analysis shows that even in patients who undergo resection for the smallest (< 2 cm) of <u>NSCLCs</u>, postoperative High-Grade AEs can decrease cancer-specific survivals.

Prevention (ERAS protocols) of postoperative High-Grade AEs is mandatory in patients undergoing surgical treatment for early-stage NSCLC to reduce recurrence and maximize survival. Less than 10% of sites had Fast track or ERAS protocols during trial time period.

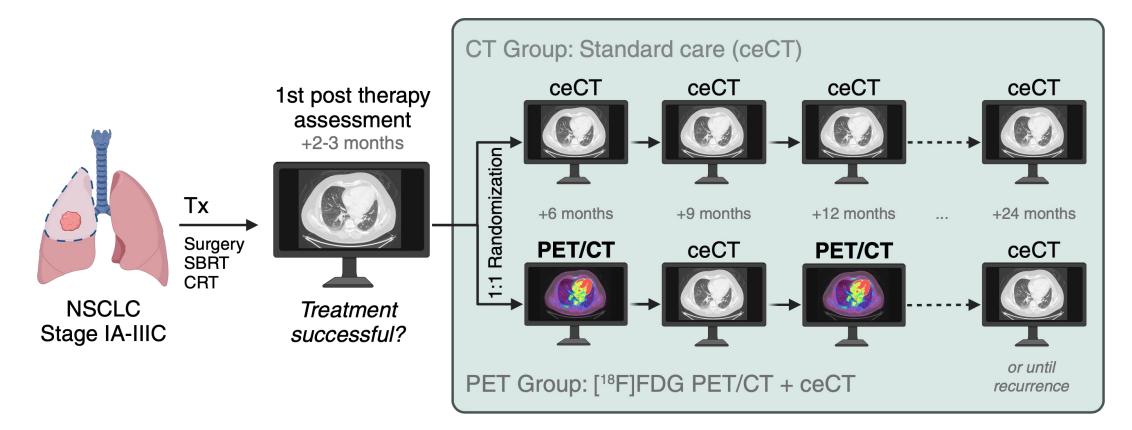
Surveillance with [¹⁸F]FDG PET/CT of Lung Cancer after Curative Therapy; First Results of a Randomized Trial (SUPE_R)


On behalf of the SUPE_R study group, Kasper Guldbrandsen, MD Copenhagen University Hospital - Rigshospitalet Denmark

K.Guldbrandsen / Surveillance with [¹⁸F]FDG PET/CT of Lung Cancer after Curative Therapy (SUPE_R)

Surveillance of Lung Cancer

- High risk of recurrence (20-60%) in NSCLC patients after curative therapy, which is why surveillance with CT is recommended
- Up to 40% of recurrences are diagnosed because of symptoms, despite CT surveillance¹
- [¹⁸F]FDG PET/CT shows promising diagnostic performance and can detect recurrences that are not detectable by CT²
- SUPE_R Trial: Evaluate if [¹⁸F]FDG PET/CT improves NSCLC recurrence detection and patient outcomes compared to CT surveillance



¹Lou F, et al. Ann Thorac Surg. **2014**;98(5):1755-60 ²Choi S, et al. Ann Thorac Surg. **2011**;92(5):1826-32

K.Guldbrandsen / Surveillance with [¹⁸F]FDG PET/CT of Lung Cancer after Curative Therapy (SUPE_R)

SUPE_R Trial: Design

Quality of Life questionnaire and blood samples for ctDNA analysis at each assessment

Results: Recruitment and Recurrences

 750 patients were recruited from 10 hospitals in Denmark and randomized to PET (n=373) or CT (n=377).

on Lung Cancer

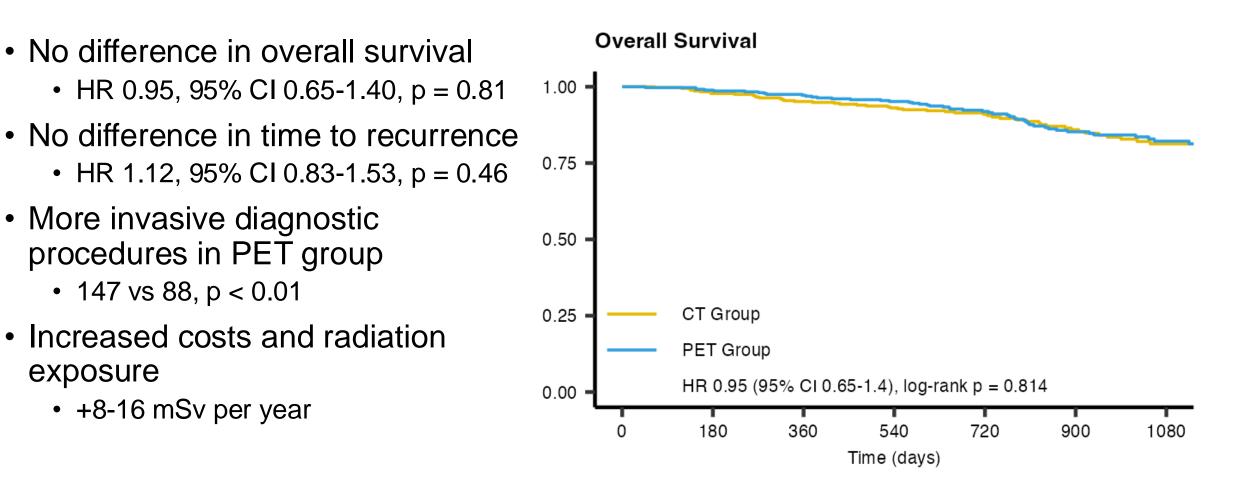

- The majority had adenocarcinomas (73%), stage I disease (71%), and received surgery (79%).
- More patients with suspected recurrence in the PET group (p < 0.01).
- More surveillance-detected recurrences in the PET group (p = 0.02).
- No difference in the number of confirmed recurrences, extent of recurrence, or curative treatment rate.

Table 1	1.	Recurrence	Characteristics
---------	----	------------	-----------------

	PET Group	CT Group	P-value
Suspected recurrence	166/373 (45)	132/377 (35)	< 0.01
Confirmed recurrence	87/373 (23)	77/377 (20)	0.34
Surveillance detected	78/87 (90)	59/77 (77)	0.02
Recurrence extent			
Local only	48/87 (55)	47/77 (61)	0.45
Distant only	19/87 (22)	14/77 (18)	0.56
Both	18/87 (21)	13/77 (17)	0.53
Recurrence treatment			
Curative intent	42/86 (49)	37/75 (49)	0.95
Palliative	41/86 (48)	34/75 (45)	0.77

Results: Time to Recurrence and OS

Take Home Message

- [¹⁸F]FDG PET/CT is not recommended for routine surveillance due to lack of benefit, increased costs and radiation exposure
- Alignment with recent evidence:
 - Gambazzi et al. (2019)¹: RCT in 96 patients, no difference rate of curative treatment or diagnostic performance of [¹⁸F]FDG PET/CT vs CT
 - Westeel et al. (IFCT-0302, 2022)²: RCT in 1775 patients, no survival benefit of CT vs. chest X-ray, median follow-up 7.2 years
 - Galjart et al. (meta-analysis, 2022)³: No survival benefit for intensive follow-up in multiple cancer types, including lung cancer
- Perhaps we should reconsider our approach to surveillance "Less is more?"

¹Gambazzi, et al. Ann Thorac Surg. **2019**;107(2):430-435 ²Westeel, et al. Lancet Oncol. 2022;23(9):1180-1188.**2011**;92(5):1826-32 ³Galjart, et al. Eur J Cancer. **2022**;174:185-199.

K.Guldbrandsen / Surveillance with [¹⁸F]FDG PET/CT of Lung Cancer after Curative Therapy (SUPE_R)