Breast Cancer Symposium - October 19, 2024

Management of stage I TNBC

Paolo Tarantino, MD

TNBC: definition

The term TNBC was first used in 2005 to refer to a subset of patients with breast cancer (10-15%) for whom **chemotherapy was the only treatment available**, given the **lack ER/PR expression and HER2 overexpression**.

It is a heterogenous biologic entity, generally associated with early relapse, visceral involvement and poor prognosis.

Intrinsic PAM50 subtypes HER2-enriched Luminal A Luminal B Normal-like Basal-like

Molecular subtypes defined by Lehmann et al.

Stage I TNBC: definition and incidence

One third of all TNBCs are diagnosed as stage I tumors

WHAT TYPES OF TREATMENTS ARE RECOMMENDED FOR STAGE I TNBC?

Table 3. Systemic therapy for HER2-positive or triple-negative breast cancers					
Anatomic stage		Tumor subtype HER2+	ТИВС		
Stage I Typically as adjuvant therapy	T1a T1b T1c	TH—case by case TH TH	Chemotherapy—case by case TC chemotherapy AC/T chemotherapy		
Stage II Neoadjuvant therapy preferred		AC/TH or TCH, with addition of P if neoadjuvant and/or node-positive	AC/T chemotherapy ^b		
Stage III Neoadjuvant therapy preferred		AC/THP or TCHP ^a	AC/T chemotherapy ^b		
Residual invasive cancer after neoadjuvant therapy		Trastuzumab emtansine	Capecitabine		

• Non-anthracycline, taxane-based regimens are alternatives for low/int risk (eg. Stage 1)

Clinical trial evidence

Outcomes in Combined Arms:

Stage 1, n=64	
pCR rate = 52.5%	
DDFS = 95.1 %	

Stage 2+, n=113 pCR rate = 46.9% DDFS = 78.8 %

Outcomes and chemo use for stage I TNBC in SEER

2010 - 2019

2023 ASCO

ANNUAL MEETING

#ASCO23

- Women with Stage IA
 TNBC from SEER
- Diagnosed 2010-2019
- One primary malignancy
- Known treatment history
- vital status, and cause of death

Study Population

N=8,601

• No surgery: n=314

- Received neoadjuvant chemo: n=1,116
- Received neoadjuvant radiation treatment: n=17

PRESENTED BY: Paolo Tarantino, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Patients Characteristics

Chemotherapy

		No / Unkr	No / Unknown		Yes	
		Ν	%	Ν	%	p value
All patients		3306	38.4%	5295	61.6%	
Age at diagnosis	<50	323	9.8%	1200	22.7%	<0.00 1
	50-64	992	30.0%	2486	46.9%	
	>64	1991	60.2%	1609	30.4%	
т	T1mi <i>(≤1 mm</i>)	210	6.4%	22	0.4%	<0.00 1
	T1a (<i>1-5 mm</i>)	744	22.5%	216	4.1%	
	T1b (6-10 mm)	863	26.1%	1312	24.8%	
	T1c (<i>11-20 mm</i>)	1489	45.0%	3745	70.7%	
Histology	Ductal	2987	90.4%	4994	94.3%	<0.00 1
inclosed	Lobular	43	1.3%	33	0.6%	
	Ductal and lobular	22	0.7%	40	0.8%	
	Other	254	7.7%	228	4.3%	
Grade	<u> </u>	256	7.7%	89	1.7%	<0.00 1
Ciddo	<u> </u>	1041	31.5%	980	18.5%	
	III/IV	1875	56.7%	4158	78.5%	
	Unknown	134	4.1%	68	1.3%	
Surgery	Partial mastectomy	2367	71.6%	3820	72.1%	0.583
eu gory	Mastectomy	939	28.4%	1475	27.9%	
Radiation	No / Unknown	1643	49.7%	2024	38.2%	<0.001
	Yes	1663	50.3%	3271	61.8%	

2023 **ASCO**

ANNUAL MEETING

Predictors of Chemotherapy Use

Variables **significantly associated** (all p<0.02) with the use of chemotherapy at multivariate logistic regression were:

- Younger age (<50 vs. >64, OR=5.19)
- Married status (vs. Single, OR=1.28)
- Ductal histology (vs. Other, OR=2.05)
- High tumor grade (vs. low grade, OR=4.89)
- Larger tumors (Reference T1mic, T1a OR=2.91, T1b OR=19.16, T1c OR=31.49)

#ASCO23

Use of Chemotherapy Over Time

 Additionally, the use of chemo significantly increased during 2010-2019 for both T1b and T1c tumors (p for trend <0.01).

2023 ASCO

ANNUAL MEETING

BCSS in Patients With T1mi & T1a TNBC

Marginal differences in 5-year BCSS for T1mi and T1a TNBC depending on the use of chemotherapy.

Median follow up: 48 months (IQR: 20 - 83)

#ASCO23

2023 **ASCO**

ANNUAL MEETING

No adjusted analysis could be performed due to low event rate.

PRESENTED BY: Paolo Tarantino, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

BCSS in Patients With T1b & T1c TNBC

- No BCSS improvement in **T1b** TNBC (adjusted HR=0.87; p=0.619)
- Significant BCSS improvement in T1c TNBC (adjusted HR=0.64; p=0.002)

Multivariable cox models adjusted for: age at diagnosis, race, tumor grade, histology, radiation, marital status, income, and rurality.

PRESENTED BY: Paolo Tarantino, MD

2023 **ASCC**

ANNUAL MEETING

#ASCO23

<u>Neoadjuvant</u> or <u>adjuvant</u> chemotherapy?

5-10% of patients with cT1a/b TNBC and 10-15% of patients with cT1c TNBC undergoing upfront surgery are found to have occult node-positive disease

Clinical T Category	Dana-Farber Brigham Cancer Center		National Cancer Database		
	(<i>n</i> = 343)		(<i>n</i> = 46,015)		
	N	Number of pathologic node positive (%)	N	Number of pathologic node positive (%)	
cT1a/b	96	9 (9.4%)	8171	399 (4.9%)	
cT1c	175	26 (14.9%)	18,608	2121 (11.4%)	
cT2	72	15 (20.8%)	19,236	3784 (19.7%)	

US of the axilla + FNAB of suspicious noted upstaged 7.5% of cT1c N0 cases to N1

→ Before upfront surgery for stage I TNBC, axillary US is highly recommended (particularly for cT1c!)

Outcomes with NACT for stage I TNBC (ESM024)

A registry analysis of **1144 patients with cT1 N0 TNBC receiving NACT** was conducted (**94% cT1c**)

All received neoadjuvant anthracyclines/taxanes, 40% also received platinum, 25% received adjuvant capecitabine Patient selection from nationwide Netherlands cancer registry:

	All patients (N=1144)
Age (years)	
Median [Min, Max]	50.0 [22.0, 77.0]
T stage	
1a/b	67 (5.9%)
1c	1077 (94.1%)
fumor grade	
Grade 1/2	274 (24.0%)
Grade 3	777 (67.9%)
Missing	93 (8.1%)
Histological subtype	
Ductal carcinoma	1034 (90.4%)
Lobular carcinoma	16 (1.4%)
Other	94 (8.2%)
Neoadjuvant regimen	
With platinum	472 (41.3%)
Without platinum	672 (58.7%)
Type of surgery	
Lumpectomy	818 (71.5%)
Mastectomy	324 (28.3%)
Missing	2 (0.2%)
Adjuvant capecitabine	
Yes	282 (24.7%)
No	858 (75.0%)
Unknown	4 (0.3%)

Overall survival in patients with pCR vs RD

pCR rate: 57%, similar for platinum vs. no platinum.

→ Supports consideration of neoadjuvant anthracyclines/taxanes for patients with cT1c disease

cT1c is heterogenous

Smaller sizes (<15 mm) may warrant upfront surgery and less chemotherapy (e.g. TC)

Larger sizes (\geq 15 mm) may warrant NACT with inclusion of anthracyclines (unclear role of carbo)

→ Remains a case-by-case scenario, requiring the inclusion of additional clinico-pathologic factors (age, comorbidities, grade, LVI, Ki67) and patient preference

What about borderline stage I / stage II?

Patients with stage I TNBC were excluded from KEYNOTE-522, but T2NO were included

EFS with the KN522 regimen in T2N0

Relevant EFS benefit warrants the use of **neoadjuvant chemo + pembro for patients** with TNBC of $\geq 2 \text{ cm}$ (in the absence of contraindications or relevant comorbidities)

WHAT BIOMARKERS MAY AID TREATMENT DECISIONS FOR STAGE I TNBC?

Biomarkers: TILs

cells over the total stromal area within the tumor (i.e., not the % of cells in the stroma that are lymphocytes)

Salgado R. Webinar 2022. https://www.youtube.com/watch?v=dCI9sYePWfc

Biomarkers: TILs

<1% TILs

Biomarkers: TILs

50% TILs

Distribution of TILs

Approximately 20-30% of TNBCs show ≥50% TILs

Loi S. JCO. 2013

Denkert C. Lancet Oncol. 2018

León-Ferre R. SABCS. 2022

70

The presence of sTILs represents a strong prognostic factor

Much higher rates of distant recurrence (approaching 30%) for **untreated** stage I TNBC patients with <50% sTILs, compared with those having \geq 50% sTILs

Personal opinion: the solidity of the retrospective data available warrants routine reporting of TILs and inclusion in decision making for borderline cases (suggested threshold: >50% TILs)

Prospective trial planned: ETNA

ETNA-cohort 2 study design

Screening

Blood test, medical history

Tumor samples (biopsy + surgery)

Open label, multicentric, phase II, single-arm biomarker driven trial

Follow-up:

PI: Dr. Barbaba Pistilli (Gustave Roussy Cancer Center)

*screening 1000 patients, assuming an expected proportion of TILS ≥ 50%: 16% (Loi et al JCO 2019; unpublished data)

QoL, standard work-up (WeSHARE plateform)

Every 6 months for 3 years

Prospective trial planned: OPTImisation of treatMent for pAtients with low stage triplenegative breast cancer patients with high sTIL (OPTImaL)

A 14-gene immunoglobulin B-cell signature was found to be significantly associated with outcomes in a pooled analysis of 7 clinical trials, including a total of 357 patients with stage I TNBC

Retrospective analysis among 117 patients with stage I TNBC treated at Dana-Farber Cancer Institute

Trend in worse outcomes among patients with low IGG score, with 3year RFS of 91% (vs 100%), HR 0.52, p=0.54

Chemotherapy De-escalation Study in Stage 1 TNBC: SAFE-DE

PI: N. Turner, NCT05058183

Multiple ADC targets expressed by TNBC

Preference for targets that are **expressed on the cell surface**, undergo **internalization** and have a **differential expression** in tumor vs normal tissue

SG for metastatic TNBC

Mo

ADAPT-TN-III: Sacituzumab Govitecan (+/- Pembrolizumab)

Randomized, open-label, neoadjuvant, phase-II-trial in low-risk early TNBC

SECONDARY ENDPOINTS:OS, dDFS, dDFI, RFS, HRQoL, BCFI

PRIMARY ENDPOINTS: pCR (at surgery), iDFS (after 3 years)

Take-Home Messages

- Stage I TNBC is common, accounting for about one third of all TNBC diagnoses, and associated with up to 30% risk of recurrence if left untreated
- Chemotherapy is recommended for most stage I TNBCs, with a case-by-case discussion for T1a tumors
- Both the **neoadjuvant** and **adjuvant** approaches are reasonable, always remembering to adequately stage the axilla (US highly recommended)
- There is sufficient evidence to routinely evaluate **TILs** and include them in the decisionmaking process for borderline cases
- Novel biomarkers (e.g. TNBC-DX, ctDNA) and treatments (e.g. ADCs) will hopefully further refine treatment for this highly prevalent disease in the coming years

Thank you for your attention!

EMAIL paolo_tarantino@dfci.harvard.edu

Twitter: @PTarantinoMD

