

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Small Cell Lung Cancer

Millie Das, MD Clinical Professor, Stanford University Chief, Oncology, VA Palo Alto

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Officially Licensed by the IASLC 2024

Agenda

- Antibody-drug conjugates
 - B7-H3: Ifinatamab deruxtecan (OA04.03)
 - TROP2: Sacituzumab govitecan (OA04.04)
- T-cell engagers
 - Tarlatamab (OA10.04)
 - MK-6070 (OA10.06)

Current options for relapsed disease?

Options at Relapse

	ORR (%)	OS (months)
Topotecan	24	5.7
Irinotecan	19	7
Re- Platinum CTFI >3-6m	39	7.5
Lurbinectedin	35	9.3
Tarlatamab	40	14.3

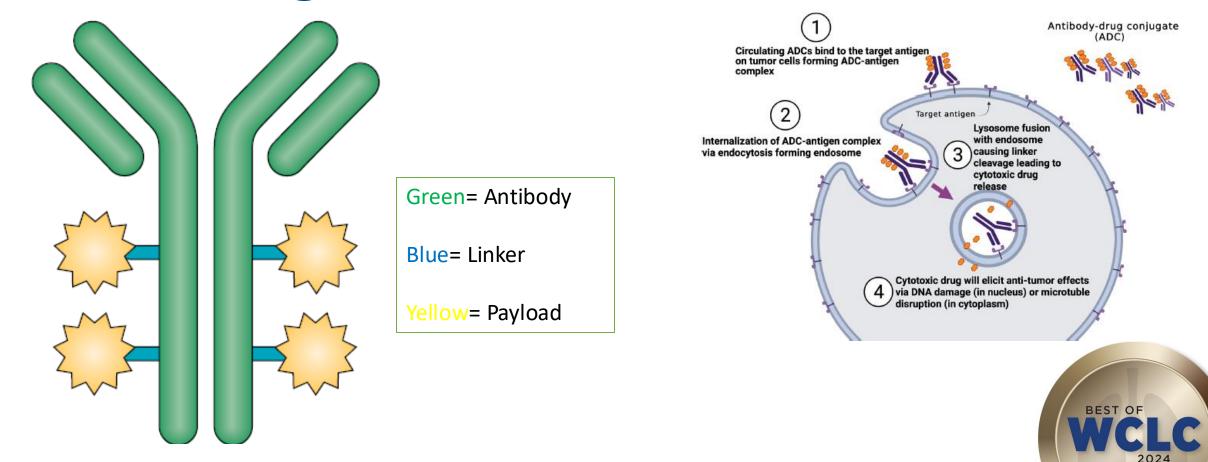
Poor ORR and OS especially in chemotherapy resistant patients

- ORR ~ 20%
- OS ~ 6 months
- Tarlatamab an option for select patients

Chemotherapy Free Interval ≤ 6 months Additional options per NCCN

	ORR (%)	OS (months)
Oral etoposide	46	3.5
Gemcitabine	13	3.9
Nivolumab	10	4.4
CAV	18	5.7
Paclitaxel	24	5.8
Temozolomide	20	6
Pembrolizumab	19	7.7
Docetaxel	25	
Amrubicin (Japan)	31	7.5

von Pawel et al. JCO 1999 ; Edelman, et al. Lung Cancer 2022; O'Brien, et al. JCO 2006; Trigo et al. Lancet 2020; Ahn et al N EJM 2023; Yamamoto, et al. AntiCancer Res 2006; von Pawel et al. JCO 1999; van der tree, et al. Ann of Onc 2001; Pietanza, et al. Clin Can Res 2012; Antonia, et al. Lancet Oncol 2016; Chung et al, JTO 2020; Johnson, et al. J Clin Oncol 1990


Anjali Rohatgi ADCs for Extensive -stagerSCLCed by the IASLC. Copyright permission from the IASLC is required for reuse.

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

ADC: "Targeted Chemotherapy"

Drago JZ, et al. Nat Rev Clin Oncol. 2021 Jun;18(6):327-344; Abuhelwa Z, et al. Cancer Treat Rev. 2022 May;106:102393; Fu Z, et al. Signal Transduction and Targeted Therapy. 20227:93

BEST OF

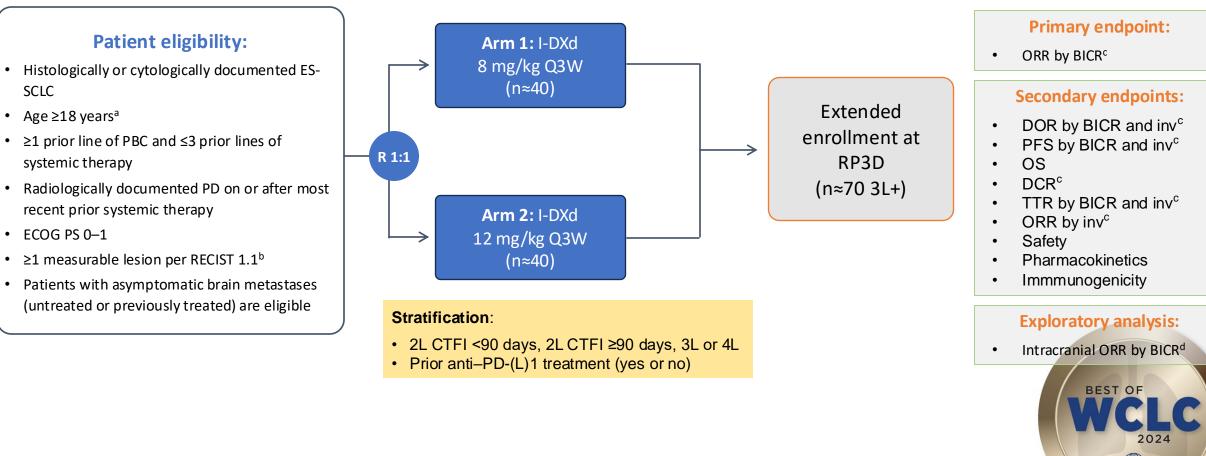
SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Ifinatamab deruxtecan (I-DXd) in extensive-stage small cell lung cancer (ES-SCLC): interim analysis of IDeate-Lung01

Charles M. Rudin,¹ Myung-Ju Ahn,² Melissa Johnson,³ Christine L. Hann,⁴ Nicolas Girard,⁵ Makoto Nishio,⁶ Ying Cheng,⁷ Hidetoshi Hayashi,⁸ Yu Jung Kim,⁹ Alejandro Navarro,¹⁰ Yuanbin Chen,¹¹ Tetsuya Sakai,¹² Meng Qian,¹³ Juliette Godard,¹⁴ Mei Tang,¹³ Jasmeet Singh,¹³ Luis Paz-Ares¹⁵

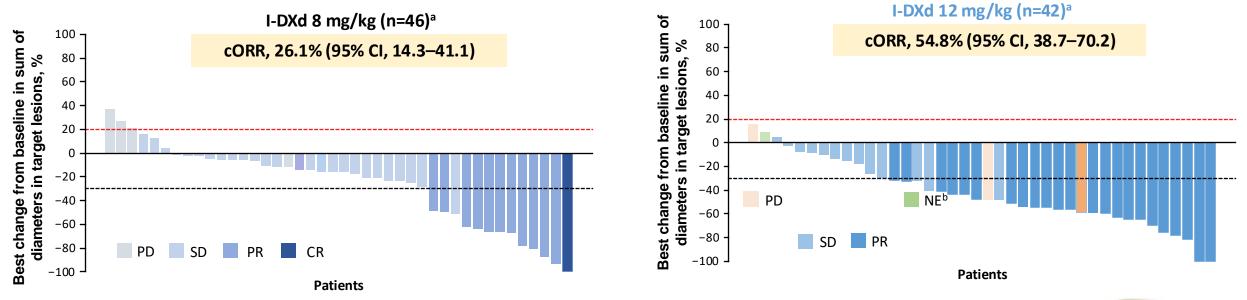
¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ³Sarah Cannon Research Institute, Nashville, TN, USA; ⁴Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; ⁵Institut Curie, Paris, France; ⁶The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; ⁷Jilin Cancer Hospital, Changchun, China; ⁸Department of Medical Oncology, Kindai University, Osaka, Japan; ⁹Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea; ¹⁰Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹¹Cancer and Hematology Centers, Grand Rapids, Michigan, MI, USA; ¹²National Cancer Center Hospital East, Kasniwa, Japan; ¹³Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ¹⁴Daiichi Sankyo, SAS, Paris, France; ¹⁵Hospital Universitario 12 de Octubre, Madrid, Spain.

SCLC


•

•

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA


Phase 2 IDeate-Lung01 study (NCT05280470)

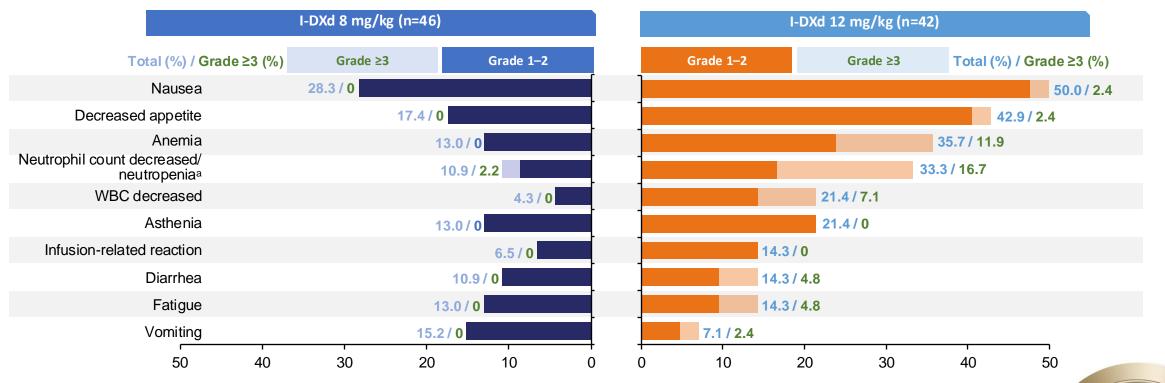
I-DXd: Humanized anti-B7-H3 IgG1 mAb with deruxtecan payload

I-DXd has promising antitumor activity; patients treated with 12 mg/kg had a higher ORR than those treated with 8 mg/kg



Confirmed response by BICR ^c	I-DXd 8 mg/kg n=46	I-DXd 12 mg/kg n=42
ORR, % (95% Cl) CR, n (%) PR, n (%)	26.1 (14.3–41.1) 1 (2.2) 11 (23.9)	54.8 (38.7–70.2) 0 23 (54.8)
DCR, % (95% CI)	80.4 (66.1–90.6)	90.5 (77.4–97.3)

PFS and OS were similar between study arms, numerically favoring the I-DXd 12-mg/kg dose


Efficacy summary in patients with brain metastases at baseline and in a subset of patients with brain target lesions at baseline

	Patients with brain metastases at baseline		Patients with brain target lesions at baseline			
	Systemic response ^a		Systemic response ^a		Intracranial response ^b	
	I-DXd 8 mg/kg n=19	I-DXd 12 mg/kg n=18	I-DXd 8 mg/kg n=6	I-DXd 12 mg/kg n=10	I-DXd 8 mg/kg n=6	I-DXd 12 mg/kg n=10
Confirmed ORR, ^a % (95% Cl)	26.3 (9.1–51.2)	61.1 (35.7–82.7)	16.7 (0.4–64.1)	60.0 (26.2– 87.8)	66.7 (22.3– 95.7)	50.0 (18.7– 81.3)
Best overall response, ^a n (%)						
CR	1 (5.3)	0	1 (16.7)	0	2 (33.3)	2 (20.0)
PR	4 (21.1)	11 (61.1)	0	6 (60.0)	2 (33.3)	3 (30.0)
SD	11 (57.9)	5 (27.8)	3 (50.0)	3 (30.0)	2 (33.3)	5 (50.0)
PD	2 (10.5)	2 (11.1)	2 (33.3)	1 (10.0)	0	0
NE	1 (5.3)	0	0	0	0	0

BEST OF

Most common treatment-related TEAEs (≥10% total population)

ILD/pneumonitis adjudicated as treatment-related was reported in:

- Four (8.7%) patients in the 8-mg/kg cohort (Grade 2, n=3; Grade 5, n=1)
- Five (11.9%) patients in the 12-mg/kg cohort (Grade, 1 n=1; Grade 2, n=3; Grade 3, n=1)

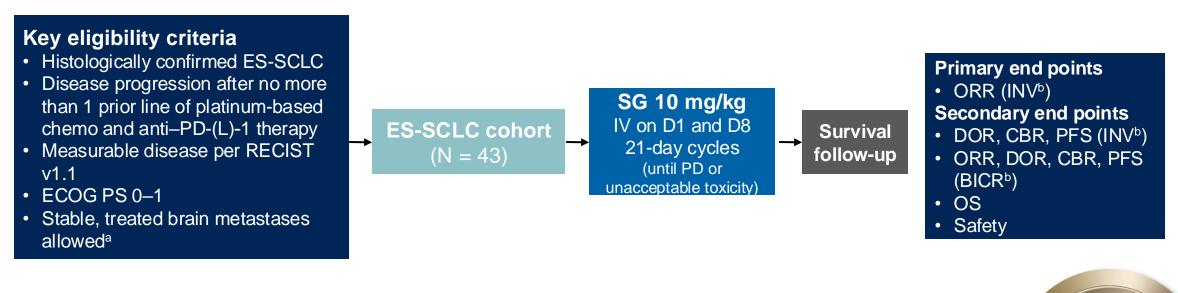
BEST OF

No ILD events were pending adjudication at the time of data cutoff

My takeaways

- I-DXd has promising efficacy in previously treated SCLC patients
 - 12 mg/kg dosage showed improved efficacy compared with 8 mg/kg
- Safety profile was generally manageable, mostly GI and hematologic toxicities
- Potential for CNS activity noted in small number of patients with brain target lesions
- Phase III Ideate-Lung02 study underway utilizing 12 mg/kg dosing (NCT06203210)

Sacituzumab Govitecan as Second-Line Treatment in Patients With Extensive-Stage Small Cell Lung Cancer


Afshin Dowlati¹, Anne C. Chiang², Andrés Cervantes³, Sunil Babu⁴, Erika Hamilton⁵, Shu Fen Wong⁶, Andrea Tazbirkova⁷, Ivana Gabriela Sullivan⁸, Cédric van Marcke⁹, Antoine Italiano¹⁰, Jilpa Patel¹¹, Sabeen Mekan¹¹, Tia Wu¹¹, Saiama N. Waqar¹²

¹University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA; ²Yale School of Medicine, New Haven, CT, USA; ³INCLIVA Instituto de Investigación Sanitaria, University of Valencia, Valencia, Spain; ⁴Fort Wayne Medical Oncology and Hematology, Fort Wayne, IN, USA; ⁵Sarah Cannon Research Institute, Nashville, TN, USA, ⁶Andrew Love Cancer Centre, Geelong, Victoria, Australia; ⁷Pindara Private Hospital, Benowa, Queensland, Australia; ⁸Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁹Cliniques unversitaires Saint-Luc, Brussels, Belgium; ¹⁰Institut Bergonié, Bordeaux, France; ¹¹Gilead Sciences, Inc, Foster City, CA, USA; ¹²Washington University School of Medicine, St. Louis Mo, USA BEST OF

TROPiCS-03 Study Design

SG: Humanized anti–TROP2 mAb with SN-38 payload

4

Efficacy ^a	Platinum resistant (CTFI <90 days) (n = 20)	Platinum sensitive (CTFl ≥90 days) (n = 23)	
ORR, % (95% CI)	35.0 (15.4–59.2)	47.8 (26.8–69.4)	
BOR, n (%)			
Confirmed PR	7 (35.0)	11 (47.8)	
SD	7 (35.0)	11 (47.8)	
PD	4 (20.0)	0	
Not assessed ^b	2 (10.0)	1 (4.3)	
DCR (confirmed PR + SD), % (95% CI)	70.0 (45.7–88.1)	95.7 (78.1–99.9)	
CBR (confirmed PR + SD for ≥6 months), % (95% CI)	40.0 (19.1–63.9)	56.5 (34.5–76.8)	
Median DOR, months (95% CI) ^{c,d}	6.3 (1.5–6.9)	4.4 (3.0–NR)	
DOR rate at 6 months, % (95% CI) ^c	57.1 (17.2–83.7)	41.6 (13.1–68.4)	
Median PFS, months (95% CI) ^c	3.8 (1.4–7.6)	5.0 (4.1–7.4)	
Median OS, months (95% CI) ^c	6.6 (4.7–17.7)	14.7 (7.7–NR)	

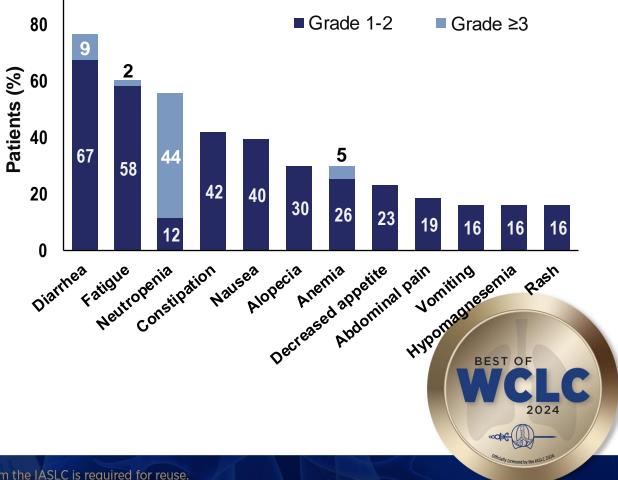
2024

SD duration was defined as the time from the date of first dose of study drug to the first documentation of PD or death from any cause. ^aBy investigator assessment. ^bPatients without any post-baseline assessments were counted as not assessed. ^aBased on Kaplan-Meier estimates. ^dCalculated for patients with confirmed PR. **BOR**, best overall response; **CBR**, clinical benefit rate; **CTFI**, chemotherapy-free interval; **DCR**, disease control rate; **DOR**, duration of response; **NR**, not reached; **ORR**, objective response rate; **OS**, overall survival; **PD**, progressive disease; **PFS**, progression-free survival; **PR**, partial response; **SD**, stable disease.

5

Efficacy Analyses

- 48.8% (21/43) of patients had a reduction of >30% in target lesion diameter



Safety Summary

Event, n (%)	ES-SCLC (N = 43)
Any-grade TEAEs	43 (100.0)
Grade ≥3 TEAEs	32 (74.4)
Serious TEAEs	22 (51.2)
TEAEs leading to dose reduction ^a	16 (37.2)
TEAEs leading to discontinuation	0
TEAEs leading to death ^b	3 (7.0)
Related to study drug ^c	1 (2.3)

100

My takeaways

- SG has promising efficacy in previously treated SCLC
- Activity seen in both platinum-sensitive and platinum-resistant patients
- Safety profile manageable, mostly GI and hematologic (44% grade 3 neutropenia)
- Phase III study in development?

Tarlatamab with a PD-L1 Inhibitor as First-Line Maintenance After Chemo-Immunotherapy for ES-SCLC: DeLLphi-303 Phase 1b Study

<u>Sally C. M. Lau</u>¹, Myung-Ju Ahn, Mor Moskovitz, Michael Pogorzelski, Simon Häfliger, Kelly G. Paulson, Amanda Parkes, Yuyang Zhang, Ali Hamidi, Martin Wermke

¹ Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, N

DeLLphi-303: Tarlatamab with PD-L1 Inhibitor as 1LM

Phase 1b, multicenter, open-label study (NCT05361395)

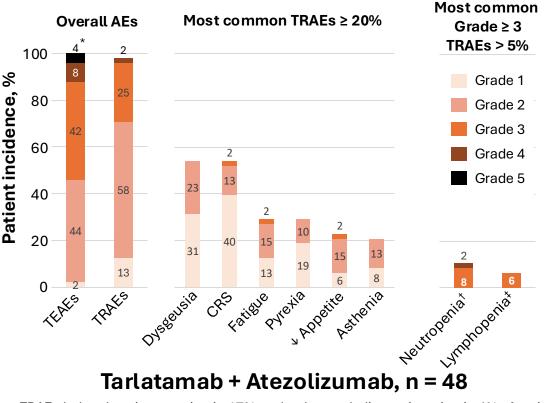
1L Chemo-IO	Enrollment Key Inclusion Criteria		Tarlatamab (10 mg IV Q2W)* +
Platinum-etoposide + PD-L1 inhibitor	 No disease progression following 4-6 cycles of platinum-etoposide + PD-L1 inhibitor Eligible if no access to 1L PD-L1 inhibitor 	Non- randomized	Atezolizumab (1680 mg IV Q4W)
(4-6 cycles)	 Prior treatment for LS-SCLC permitted ECOG PS 0-1 Treated and asymptomatic brain metastases allowed DLL3 positivity not required 	Switching to different PD-L1 inhibitor permitted	Tarlatamab (10 mg IV Q2W)* + Durvalumab (1500 mg IV Q4W)

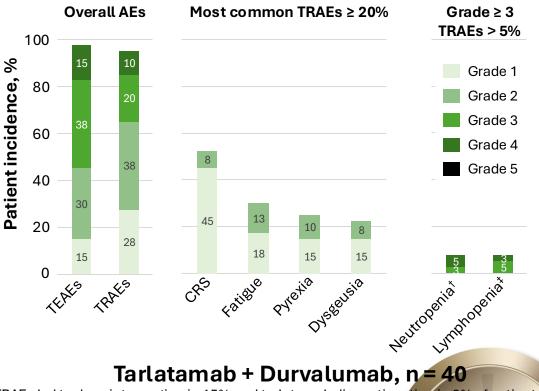
- Must initiate C1D1 of maintenance phase within 8 weeks of the start of the last cycle of 1L chemo-immunotherapy
- Median follow-up time (N = 88): 10.0 months (range: 1.4+-20.4)

Primary Endpoints⁺: Dose-limiting toxicities, treatment-emergent / treatment-related adverse events (TEAEs, TRAEs) Secondary Endpoints[‡]: Disease control and PFS per local RECIST 1.1 assessment, OS

#WCLC24 wclc2024.iaslc.org

1L Maintenance



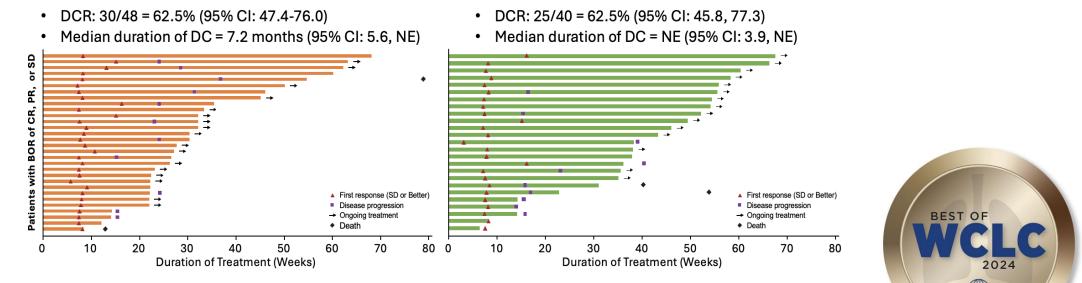

Most common

KUR

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Safety profile

TRAEs led to dose interruption in 17% and tarlatamab discontinuation in 4% of patients[§]


TRAEs led to dose interruption in 15% and tarlatamab discontinuation in 8% of patients

- Tarlatamab with a PD-L1 inhibitor as 1LM had a manageable safety profile with no DLTs and no fatal TRAEs
- There were no new or unexpected toxicities, and immune related adverse events (irAEs) were rare (2.3%)[¶]

DeLLphi-303 Phase 1b Study: Efficacy in 1L Maintenance

- For tarlatamab + PD-L1 inhibitor, DCR was 62.5% (95% CI: 51.5–72.6) and mDoDC was 9.3 months (95% CI: 5.6, NE)
- Median PFS: 5.6 months (compare to 2.6 mos for 1st line maintenance atezo)
- 9-mo OS: 89% (compare to ~60% for 1st line maintenance atezo)

Tarlatamab + Durvalumab, n = 25

Tarlatamab + Atezolizumab

Reck M, et al. J Thoric Oncol. 2022; 17:1122-1129

Overview of ongoing tarlatamab trials in SCLC

Clinical trial name	Phase	Tarlatamab treatment	Status*
DeLLphi-300 ^{1,2}	1	Tarlatamab in relapsed/refractory SCLC	Active, not recruiting
DeLLphi-301 ³	2	Tarlatamab in heavily pretreated + patients with SCLC ⁺	Active, not recruiting
DeLLphi-302 ^{4,5}	1b	Tarlatamab in combination with an anti-PD1 monoclonal antibody in SCLC (2L or later)	Active, not recruiting
DeLLphi-303 ^{6,7}	1b	Tarlatamab in combination with SOC in 1L ES-SCLC	Recruiting
DeLLphi-304 ^{8,9}	3	Tarlatamab vs SOC chemotherapy in 2L SCLC	Recruiting
DeLLphi-305 ¹⁰	3	Tarlatamab + durvalumab vs. durvalumab in 1L maintenance	Recruiting
DeLLphi-306 ¹¹	3	Tarlatamab after chemoRT in LS-SCLC	Recruiting
			BESTOF

1. ClinicalTrials.gov, NCT03319940 (accessed June 2023); 2. Paz-Ares L, et al. J Clin Oncol 2023;41:2893–903;

3. ClinicalTrials.gov, NCT05060016 (accessed June 2023); 4. ClinicalTrials.gov, NCT04885998 (accessed June 2023);

5. Dowlati A, et al. Ann Oncol 2021;32(suppl_5):S1164–74.10.1016; 6. CliničalTrials.gov, NCT05361395 (accessed June 2023);

7. Gadgeel SM, et al. Ann Oncol 2022;33(suppl_7):S701–2.10.1016; 8. ClinicalTrials.gov, NCT05740566 (accessed June 2023); 9. Paz-Ares L, at al. ASCO 2023; poster 232a. 10. NCT06211036. 11. NCT06117774

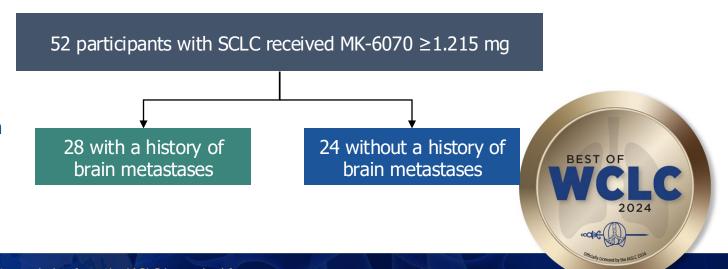
Ticiana Lea MD I DLU3 Targeting Bite The rapies in SQLC and CNC the IASLC is required for reuse.

My takeaways

- Promising activity of tarlatamab + IO in this phase I maintenance study in SCLC
- Phase III study underway (DeLLphi-305: NCT06211036)
- Is maintenance treatment early 2nd line treatment?
 - Are we curing patients?

Impact of Brain Metastases on Safety and Efficacy of MK-6070, a DLL3-Targeting T-Cell Engager, in Small Cell Lung Cancer

Noura J. Choudhury,¹ Himisha Beltran,² Melissa L. Johnson,³ Erin L. Schenk,⁴ Rachel E. Sanborn,⁵ Jonathan R. Thompson,⁶ Hirva Mamdani,⁷ Afshin Dowlati,⁸ Rahul R. Aggarwal,⁹ Ann W. Gramza,¹⁰ Prantesh Jain¹¹


¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³Sarah Cannon Research Institute, Nashville, TN, USA; ⁴University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ⁵Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; ⁶Froedtert and the Medical College of Wisconsin Workforce Health, Milwaukee, WI, USA; ⁷Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; ⁸University Hospital Siedman Cancer Center, Case Western Reserve University, Cleveland, OH, USA; ⁹University of California, San Francisco, San Francisco, CA, USA; ¹⁰Harpoon Therapeutics, Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA; ¹¹Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA

HPN328-4001 (MK-6070) Study Design and Analysis Considerations

- Trial design: 3 + 3 dose escalation
 - MK-6070 administered IV QW or Q2W with step dosing
- Key eligibility criteria for participants with SCLC
 - Age ≥ 18 years
 - ECOG PS 0 or 1
 - Measurable disease per RECIST v1.1
 - SCLC relapsed/refractory to ≥1 prior systemic therapy that included platinum-based chemotherapy
- Brain metastasis considerations
 - Present at baseline: participants eligible if brain metastases asymptomatic, previously treated, and radiologically stable for ≥2 weeks
 - Localized progression during study: radiotherapy permitted if participants otherwise benefitting from treatment

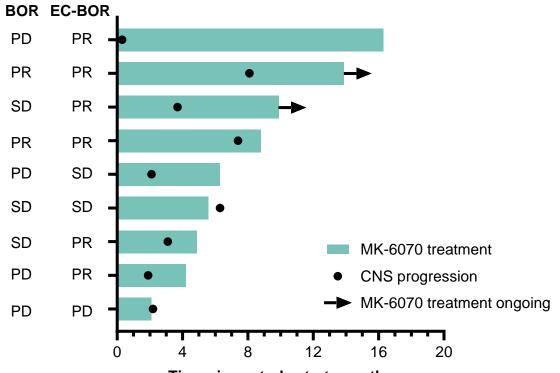
- Response assessment
 - ORR: assessed per RECIST v1.1
 - Extracranial ORR: assessed per modified RECIST v1.1 that includes participants with systemic responses and brain-only progression
- Analysis population: participants with SCLC who received ≥1 administration of MK-6070 monotherapy at a dose ≥1.215 mg

ClinicalTrials.gov identifier, NCT04471727. Data extraction date: June 3, 2024.

Antitumor Activity

	Confirmed	Response	Confirmed Extracranial Response		
	History of Brain Mets (n=28)	No History of Brain Mets (n=22ª)	History of Brain Mets (n=28)	No History of Brain Mets (n=22ª)	
ORR, % (95% CI)	36% (19-56)	18% (5-40)	50% (31-69)	18% (5-40)	
DCR, % (95% CI)	64% (44-81)	50% (28-72)	75% (55-89)	50% (28-72)	
Best overall response, n (%)					
Complete response	1 (4%)	0	1 (4%)	0	
Partial response	9 (32%)	4 (18%)	13 (46%)	4 (18%)	
Stable disease	8 (29%)	7 (32%)	7 (25%)	7 (32%)	
Progressive disease	10 (36%)	8 (36%)	7 (25%)	8 (36%)	
Discontinued before assessment	0	3 (14%)	0	3 (14%)	

^a2 participants without a history of brain metastases were excluded from the efficacy population because they had not reached their first imaging assessment as of the data extraction date. Data extraction date: June 3, 2024; PFS and OS data not mature at this time.


Intracranial Antitumor Activity

- Of 28 participants with a history of brain metastases:
 - 9 (32%) had CNS progression
 - Median time to CNS progression: 3.1 mo (range, 0.3-8.1)
 - Median time on treatment: 6.3 mo (range, 2.1-16.3)
 - 4 (14%) had extracranial PR but CNS progression
 - All 4 received radiotherapy to the brain
 - Median time on treatment: 7.4 mo (range, 4.2-16.3), with 1 participant remaining on treatment
- Of 20 participants with brain metastases at baseline: •
 - 5 (25%) had complete response in the brain^a
- Of 24 participants without a history of brain metastases:
 - None had CNS progression

PD PD

^aBased on the data collected, it is only possible to determine whether the brain metastases were present or absent at each imaging assessment. Data extraction date: June 3, 2024.

Participants With a History of Brain Metastases Who Had CNS Progression (n=9)

Time since study start, months

My takeaways

- In the phase I study of MK-6070, there are no concerning safety signals and encouraging efficacy noted in SCLC patients with or without brain metastases
- Data suggests potential CNS activity, though further studies are needed
 - Prior radiation therapy details and RANO assessments needed

Overall Conclusions

- Exciting new drugs being explored in SCLC with encouraging efficacy
- B7-H3 and TROP-2 ADCs show promise
- Preliminary data indicates potential CNS activity for ADCs and T-cell engagers
- Small numbers of patients in trials presented today
- Await additional data from phase III trials

