

Radiation for Early Stage NSCLC

Megan E. Daly MD Professor of Clinical Radiation Oncology Associate Director of Clinical Research University of California Davis Comprehensive Cancer Center

Abstracts of Interest

- Chang JY *et al.* Artificial Intelligence-Based Model for Personalized Immunotherapy in Patients with Early-Stage NSCLC Treated with Stereotactic Ablative Radiotherapy: I-SABR SELECT (OA 13.05)
- Le Rouex PY *et al.* Prediction of health-related quality-of-life results after lung Stereotactic Body Radiotherapy using dosevolume parameters from functional mapping on Gallium-68 perfusion PET/CT (poster 424)

iSABR Trial: Phase 2 Randomized Trial

- Randomized phase 2 comparison of SABR alone versus SABR followed by 4 cycles nivolumab for early stage inoperable or parenchymal recurrence of NSCLC
- SABR was 50 Gy in 4 fractions (peripheral) or 70 Gy in 10 fractions (central)
- 156 patients randomized
- Powered to detect a 23% difference in 4-year event free survival
- Median FU time was 33 months

Chang JY et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet Oncology 2023

BEST OF BOCCLC 2024 Cocc Cocc Cocc

SEPTEME

Stereotactic Ablative Radiotherapy With or Without Immunotherapy for Early-Stage or Isolated Lung Parenchymal Recurrent Node-Negative NSCLC: An Open-Label, Randomized, Phase 2 Trial (PI: Joe Chang)

iSABR Trial Results

Chang JY et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet Oncology 2023

Artificial Intelligence-Based Model for Personalized Immunotherapy in Patients with Early-Stage NSCLC Treated with Stereotactic Ablative Radiotherapy:

I-SABR SELECT

Joe Y. Chang, MD, PhD, ASTRO, FACR University of Texas MD Anderson Cancer Center

Making Cancer History

2024 World Conference on Lung Cancer

Swarm intelligence to pinpoint potential effect modifiers

cially Licensed by the IASLC 2024

I-SABR vs SABR cohorts (follow vs Anti-recommendation)

Phase-II I-SABR Trial

STARS Trial

(Chang et al: Lancet Oncology 22:1488, 2021)

Follow vs Anti-recommendation in all pts in I-SABR Trial

How does this fit into existing landscape?

 3 separate randomized phase 3 trials conducted to test hypothesis that adding IO to SABR improves outcomes in early stage, medically inoperable NSCLC

Randomized Phase 3 Trials with SABR + Immunotherapy for Early-Stage NSCLC

Study	Drug	Timing	Duration ICI	Primary Endpoint	N	Outcome
PACIFIC 4	Durvalumab	Concurrent and Adjuvant (first 100 pts adjuvant only)	Up to 24 months	PFS	630	Awaiting results, no interim analysis yet
S1914	Atezolizumab	Neoadjuvant, concurrent and adjuvant	Up to 6 months	OS	480	Closed early after interim analysis for futility
KEYNOTE 867	Pembrolizumab	Concurrent and Adjuvant	Up to 12 months	OS and EFS	530	Closed early after interim analysis for futility

Why was iSABR positive while two randomized phase 3 trials appear to be negative?

- Patient population differences?
 - Included parenchymal recurrences, which were excluded in phase 3 trials
 - Patient selection decisions at a single institution
- IO started after SABR?
- Shorter duration IO?
- Different checkpoint inhibitor?
- Imbalances between arms in a randomized phase 2 by chance?
- Can a selection model such as iSABR select help explain why these trials were negative?

Prediction of health-related quality-of-life results after lung Stereotactic Body Radiotherapy using dosevolume parameters from functional mapping on Gallium-68 perfusion PET/CT

<u>Pierre-Yves Le Roux</u>, D Bourhis, F Pinot, M Hamya, G Goasduff, F Blanc-Béguin, S Hennebicq, M Mauguen, K kerleguer, U Schick, M Consigny, O Pradier, G Le Gal, PY Salaun, V Bourbonne, F Lucia

Dr François Lucia Francois.lucia@chu-brest.fr

Functional Lung Avoidance Radiotherapy

- Preferentially voids higher functioning lung regions identified through various imaging modalities while directing dose toward lower and non-functioning lung regions
- Hypothesized to reduce lung toxicity
- · Range of imaging modalities used to identify functional lung regions
 - 4DCT ventilation imaging
 - ³He MRI
 - Gallium-68 ventilation and perfusion PET/CT
 - Hyperpolarized Xenon-129 MRI
 - SPECT/CT
 - DCE-MRI
- Balance between accuracy of imaging technique to identify functional lung, and availability/cost

Lung SBRT

- Standard lung SBRT planning :
 - Dose constraints on the anatomical lung delineated on CT
 - Simplistically assumes that the lungs are functionally homogeneous
- Regional distribution of pulmonary function is heterogeneous

Functional lung avoidance planning

personalizing RT treatment planning to individuals' lung functional distribution

Lucia F, Diagnostics 2023

Functional lung avoidance radiotherapy

Anatomically based RT planning

Lung function

imaging

Variability of regional lung function distribution not taken into account.

Regional lung function mapping for optimizing RT treatment plans

Non functional territories

Functional territories

Functional lung avoidance radiotherapy

Personalizing RT treatment planning to individuals' lung functional distribution, in the hope of reducing pulmonary toxicity Siva S. Technol Cancer Res Treat 2015

DTEMPER 7 10 2024 CAN DIECO CA HEA

PEGASUS trial

Primary endpoint:

 baseline-to-early change (between 1 month and 3 month) and baseline-to-late change (between 6 month and 12 month) in the QLQ-C30 global health status (GHS)/quality-of-life (QoL) score and in the deterioration of the dyspnea (patientreported lung toxicity)

Results

Comparison of dosimetric parameters in patients with and without impairement of dyspnea

		Total (N= 39)	No (N= 33)	Yes (N= 6)	Р
Farly	MLD AV	2.9 [2.1, 3.8]	2.9 [2.0, 3.7]	2.5 [2.3, 4.5]	0.75
change	MLD LVF	2.7 [1.2, 4.6]	2.8 [1.2, 4.8]	2.3 [1.1, 3.0]	0.48
change	MLD FV50%	3.0 [1.6, 4.2]	2.8 [1.3, 4.1]	4.8 [4.1, 5.9]	<0.0001
	MLD FV70%	3.1 [1.8, 3.9]	2.7 [1.8, 3.8]	4.0 [3.6, 5.1]	0.02
	MLD FV90%	2.9 [1.8, 3.7]	2.8 [1.7, 3.5]	3.1 [2.9, 4.9]	0.18

			Total (N= 22)	No (N= 19)	Yes (N= 3)	Р	
Lato	MLD AV		2.9 [2.3, 4.0]	2.9 [2.3, 4.0]	2.9 [2.5, 3.7]	1.0	1
	MLD LVF		3.6 [1.6, 4.8]	3.8 [2.3, 5.0]	1.3 [1.0, 2.5]	0.19	1
change	MLD FV50%		2.9 [1.3, 4.0]	2.4 [1.1, 3.4]	4.1 [3.9, 4.1]	0.03	1
	MLD FV70%		2.8 [1.9, 3.9]	2.6 [1.8, 3.8]	3.8 [3.4, 4.1]	0.02	1
	MLD FV90%		2.8 [2.2, 3.8]	2.8 [2.0, 3.8]	3.3 [2.9, 4.0]	0.11	1

12

Results

Comparison of dosimetric parameters in patients with and without impairement of quality of life/Global health status

		Total (N= 39)	No (N= 26)	Yes (N= 13)	Р
Farly	MLD AV	2.9 [2.1, 3.8]	2.9 [1.9, 3.6]	2.9 [2.4, 4.4]	0.47
change	MLD LVF	2.7 [1.2, 4.6]	2.9 [1.9, 5.0]	1.4 [0.8, 3.2]	0.19
change	MLD FV50%	3.0 [1.6, 4.2]	2.1 [1.1, 3.1]	4.2 [4.1, 5.5]	<0.0001
	MLD FV70%	3.1 [1.8, 3.9]	2.1 [1.5, 3.5]	3.9 [3.5, 4.4]	<0.0001
	MLD FV90%	2.9 [1.8, 3.7]	2.4 [1.5, 3.5]	3.3 [2.8, 4.6]	0.03

			Total (N= 22)	No (N= 15)	Yes (N= 7)	Ρ	
Lato	MLD AV		2.9 [2.3, 4.0]	2.9 [2.3, 4.4]	2.9 [2.3, 3.3]	0.53	
	MLD LVF		3.6 [1.6, 4.8]	4.3 [2.7, 5.0]	1.4 [1.0, 3.5]	0.11	
change	MLD FV50%		2.9 [1.3, 4.0]	1.6 [1.00, 3.0]	4.1 [3.4, 4.2]	0.01	
	MLD FV70%		2.8 [1.9, 3.9]	2.5 [1.5, 3.2]	3.8 [3.0, 4.1]	0.08	
	MLD FV90%		2.8 [2.2, 3.8]	2.6 [1.9, 4.0]	3.2 [2.7, 3.3]	0.21	

13

Functional Lung Avoidance Trials- Completed

Study	Design	Ν	Imaging technique	Primary endpoint	Outcomes
FLAIR trial Yaremko et al (IJROBP 2022)	Randomized, masked design	31 enrolled, 27 randomized	³ He MRI	Change in FACT-L LCS score	No difference in FACT-L LCS score
Vinogradskiy Y et al (IJROBP 2022)	Single arm phase	67	4DCT ventilation imaging	Rate of grade ≥2 pneumonitis	14.9% grade ≥2 pneumonitis
Yamamoto et al (IJROBP 2018 & WCLC 2022)	Single arm pilot study	34	4DCT ventilation imaging	grade ≥3 adverse events	4.2% grade≥3 pneumonitis 12.5% grade≥3 esophagitis
PEGASUS Trial (WCLC 2024)	Single arm phase	60	Gallium68-MMA perfusion PET/CT	QLQ-C30 QOL	Dose to FL associated with decreased QOL

Functional Lung Avoidance Trials- Not yet reported

Study	Design	Ν	Imaging technique	Primary endpoint
Peter MacCallum (NCT03569072)	Single arm feasibility study	20	Gallium-68 ventilation and perfusion PET/CT	Technical feasibility
National Taiwan University (NCT03077854)	Single arm, blinded trial	64	4DCT ventilation imaging	Pulmonary QOL at 3 months post-RT
University of Pennsylvania (NCT05302817)	Phase 1 single arm	20	Hyperpolarized Xenon-129 MRI	Adverse events related to xenon
University of Washington (NCT02773238)	Single arm phase II	56	SPECT/CT	Overall survival (trial also involves dose escalation)
Dana-Farber (NCT01799135)	Pilot	6	DCE-MRI	Feasibility
University of Wisconsin (NCT02843568)	Randomized	139	4DCT ventilation imaging	Pulmonary function based on tissue elasticity
University of Aarhus (NCT01745484)	Single arm	71	SPECT	Grade 2 pneumonitis

SEPTEMBER 7-10 2024 SAN DIEGO CALISA

PEGASUS-2

Functional lung avoidance planning guided by lung perfusion PET/CT versus anatomical planning for lung stereotactic body radiotherapy: a double blinded, multicenter, randomized, controlled trial.

Functional Lung Avoidance Planning: Next Steps

- Need for completed randomized phase 3 trials with clinically meaningful endpoints
- Challenges with availability/practicality of some functional imaging approaches
 - Gallium-68 Lung Perfusion PET/CT not widely available
 - Other methods such as 4DCT ventilation imaging are more widely available
- Treatment planning software to optimize off ventilation gradients not widely available

Summary

- Intriguing deep learning model based on phase 2 iSABR trial suggests patient selection may be critical when adding IO to SABR in early stage disease
- However, role of immunotherapy in early stage medically inoperable NSCLC in question after early closure of 2 separate phase 3 trials
- Functional lung avoidance planning is an intriguing approach to reduce lung toxicity from thoracic radiation
- Randomized phase 3 trials and broader availability of the needed technologies are required