

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Other Oncogene-Driven Cancers

Nathaniel Myall, MD Stanford Cancer Center

October 5, 2024

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Discussion Agenda

- HER2 Alterations
 - PL04.04 & MA12.10 Phase 1b Beamion LUNG-1 (Zongertinib) PL04.03 Phase I/II SOHO-01 (BAY 2927088)
- *KRAS* G12C
 - OA09.06 Quality of Life Metrics for Adagrasib vs Docetaxel
 - OA14 Novel KRAS G12C Inhibitors
- Rare "other-oncogenes": NTRK fusions
- MA06.12 Updated Analysis of Larotrectinib in TRK-fusion NSCLC

Historical Landscape of *HER2* Therapy

Zhao & Xia, JCO Precis Oncol, 2020

Phase Ib Analysis of Beamion LUNG-1: Zongertinib (BI 1810631) in Patients with *HER2*-Mutant NSCLC

Gerrina Ruiter,^{1,2} Hai-Yan Tu,³ Myung-Ju Ahn,⁴ Kiyotaka Yoh,⁵ Jon Zugazagoitia,⁶ Egbert Smit,^{2,7} Yi-Long Wu,³ David Planchard,^{8,9} Byoung-Chul Cho,¹⁰ Beatrice Wehler,¹¹ Yanqiu Zhao,¹² Ute von Wangenheim,¹³ Maren Rohrbacher,¹⁴ Behbood Sadrolhefazi,¹⁵ Gen Lin,¹⁶ Yan Yu,¹⁷ Ernest Nadal,¹⁸ John Heymach¹⁹

Zongertinib (BI 1810631) for HER2-positive Solid Tumors with Brain Metastases: Subanalysis of the Beamion LUNG-1 Trial

Frans Opdam,¹ John V. Heymach,² David Berz,³ Minal Barve,⁴ Hai-Yan Tu,⁵ Yi-Long Wu,⁵ Gerrina Ruiter,^{1,6} Myung-Ju Ahn,⁷ Jon Zugazagoitia,⁸ Egbert Smit,^{6,9} David Planchard,^{10,11} Byoung-Chul Cho,¹² Beatrice Wehler,¹³ Yanqiu Zhao,¹⁴ Gen Lin,¹⁵ Yan Yu,¹⁶ Ernest Nadal,¹⁷ Maren Rohrbacher,¹⁸ Lukas Schroeter,¹⁹ Josep Serra,²⁰ Behbood Sadrolhefazi,²¹ Kiyotaka Yoh,²² Noboru Yamamoto²³

Beamion LUNG-1: Zongertinib

Zongertinib: tyrosine kinase inhibitor of mutant and wild-type HER2

Phase Ib primary endpoint		Phase lb: ongoing dose expansion		
Confirmed objective response (RECIST v1.1) by central independent review		(in patients with HER2-mutant NSCLC)		
Key inclusion criteria		→ 120 mg Interim		
Cohort 1:	Pre-treated* [†] NSCLC with a <i>HER</i> 2 TKD mutation	Cohort 1 \rightarrow 240 mg \rightarrow futility (n=75) (n=75)		
Cohort 2:	Treatment-naïve NSCLC with a HER2 TKD mutation	Cohort 2		
Cohort 3:	Pre-treated [*] NSCLC with a non-TKD <i>HER2</i> mutation or <i>HER2</i> TKD-mutant squamous NSCLC	Cohort 3 (exploratory)		
Cohort 4:	NSCLC with active brain metastases with a <i>HER</i> 2 TKD mutation	Cohort 4 (exploratory)		
Cohort 5:	Pre-treated [*] NSCLC with a <i>HER2</i> TKD mutation and prior treatment with HER2-directed ADCs	Cohort 5		

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. PL04.04, Ruiter et al, WCLC 2024

Patient Demographics

	120 mg n = 75	240 mg n = 57
Median age, years (range)	62 (30–80)	62 (36–82)
Sex, n (%)		
Female	51 (68)	25 (44)
Male	24 (32)	32 (56)
Race, n (%)		
Asian	40 (53)	33 (58)
White	24 (32)	15 (26)
Missing	11 (15)	9 (16)
Lines of prior systemic antica	ncer treatmen	t*, n (%)
1	42 (56)	28 (49)
2	12 (16)	16 (28)
≥3	21 (28)	13 (23)

ECOG PS, n (%)		
0	28 (37)	17 (30)
1	47 (63)	40 (70)
Mutation type, n (%)		
A775_G776insYVMA	49 (65)	34 (60)
P780_Y781insGSP	8 (11)	4 (7)
Other	23 (31)	23 (40)
Brain metastases, n (%)	28 (37)	26 (46)
Tobacco use, n (%)		
Never	49 (65)	32 (56)
Current	2 (3)	0
Former	24 (32)	25 (44)

120 mg

n = 75

240 mg

n = 57

BEST OF WCCLC 2024

*Over 75% of patients received prior immune checkpoint inhibitor therapy, 9% prior HER2 therapy

Efficacy Endpoints

- ORR 66.7% (97.5% CI 53.8-77.5) for all patients (n = 75) treated at the 120 mg dose.
- Two-thirds of patients remain on therapy at the time of data cut-off (PFS immature).

Safety Endpoint

TRAEs, n (%)	120 mg n = 75		240 mg n = 57	
	All	Grade ≥3	All	Grade ≥3
Any TRAE*	69 (92)	13 (17)	57 (100)	11 (19)
Diarrhea	36 (48)	1 (1)	37 (65)	1 (2)
Rash [†]	18 (24)	0	17 (30)	0
ALT increased	14 (19)	6 (8)	16 (28)	6 (11)
AST increased	16 (21)	4 (5)	14 (25)	4 (7)
Anemia	8 (11)	0	10 (18)	0
Nausea	10 (13)	0	4 (7)	0
Neutrophil count decreased	7 (9)	1 (1)	7 (12)	3 (5)
Pruritus	6 (8)	0	8 (14)	0
Serious TRAE	3 (4)	3 (4)	7 (12)	5 (9)

- Most common adverse events regardless of dose were diarrhea, rash, and elevated liver enzymes.
- Many adverse events were numerically more frequent in patients receiving zongertinib 240 mg, including diarrhea, rash, elevated liver enzymes, anemia, and serious treatment-related adverse events.

BEST O

 11% required dose reduction and 3% discontinued treatment.

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. PL04.04, Ruiter et al, WCLC 2024

Intracranial Efficacy

Phase lb: ongoing dose expansion (in patients with *HER2*-mutant NSCLC)

Cohort 1:* HER2 TKD mutation: pretreated			
Cohort 2:	HER2 TKD mutation: treatment naïve		
Cohort 3:†	Non-TKD HER2: pretreated		
Cohort 4: [†] <i>HER2</i> TKD mutation: active brain metastases			
Cohort 5:	HER2 TKD mutation: prior HER2-directed ADCs		
Patients with brain metastases permitted if asymptomatic (Cohorts 1, 2, 3, 5)			

Secondary Endpoint: CNS response by RANO-BM

Phase 1b (*HER2*+ NSCLC): n = 132 (41% w/ CNS metastases)

Confirmed BOR (RECIST v1.1) BICR

Patients with brain metastases (n = 54) ORR: 70% (1 CR, 37 PR) DCR: 94%

Patients without brain metastases (n = 78) ORR: 73% (2 CR, 55 PR) DCR: 96%

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Intracranial Efficacy

Confirmed BOR (RECIST v1.1) BICR

Overall phase 1b cohort (n = 52): iORR 37% iDCR 83%

Patients who received 120 mg (n = 27) ORR: 33% (4 CR, 5 PR) DCR: 74%

Patients who received 240 mg (n = 25) ORR: 40% (5 CR, 5 PR) DCR: 92% Clinical Example: 51 yo M w/ *HER*2 exon 20 insertion receiving zongertinib 240 mg daily

BEST OF

Safety and Efficacy of BAY 2927088 in Patients with *HER2*-Mutant NSCLC: Expansion Cohort from the Phase I/II SOHO-01 Study

<u>Xiuning Le, MD, PhD</u>,¹ Nicolas Girard, MD, PhD,² Pasi A. Jänne, MD, PhD,³ Silvia Novello, MD, PhD,⁴ Hye Ryun Kim, MD, PhD,⁵ Herbert H. Loong, FRCP, MBBS,⁶ Boon Cher Goh, MBBS, MRCP, MMed,⁷ Ki Hyeong Lee, MD, PhD,⁸ Kazumi Nishino, MD, PhD,⁹ Shun Lu, MD,¹⁰ Xiaorong Dong, MD, PhD,¹¹ Jun Zhao, MD,¹² Ticiana A. Leal, MD,¹³ Daniel Shao-Weng Tan, PhD, MBBS, BSc,¹⁴ Koichi Goto, MD, PhD,¹⁵ Tine Descamps, PhD,¹⁶ Barbara J. Brennan, PhD,¹⁷ Rui Li, MS,¹⁷ Paolo Grassi, MD,¹⁸ Tae Min Kim, MD, PhD¹⁹

¹MD Anderson Cancer Center, Houston, TX, USA; ²Institut Curie, Paris, France; ³Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Department of Oncology, University of Turin, AOU San Luigi Orbassano, Turin, Italy; ⁵Yonsei Cancer Center, Seoul, South Korea; ⁶The Chinese University of Hong Kong, Hong Kong SAR, China; ⁷Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore; ⁸Chungbuk National University Hospital, Cheongju, South Korea; ⁹Osaka International Cancer Institute, Osaka, Japan; ¹⁰Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; ¹¹Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¹²Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing, China; ¹³Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; ¹⁴National Cancer Centre Singapore, Singapore, Singapore; ¹⁵National Cancer Center Hospital East, Kashiwa, Japan; ¹⁶Bayer plc, Reading, UK; ¹⁷Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA; ¹⁸Bayer S, p.A., Milan, Italy; ¹⁹Seoul National University Hospital, Seoul, South Korea

SOHO-01 Study: BAY 2927088

Patient Demographics

	Cohort D (<i>N</i> =44)*
Female, <i>n</i> (%)	28 (63.6)
Race, <i>n</i> (%)	
White	10 (22.7)
Asian	30 (68.2)
Not reported	4 (9.1)
Median age, years (range)	62.0 (29-82)
Baseline ECOG PS, <i>n</i> (%)	
0	19 (43.2)
1	25 (56.8)
Smoking habits at informed consent, <i>n</i> (%)	
Never	31 (70.5)
Former	11 (25.0)
Current	2 (4.5)
NSCLC histology, n (%)	
Squamous cell carcinoma, not otherwise specified	2 (4.5)
Adenocarcinoma, mixed or not otherwise specified	42 (95.5)
Median time since initial diagnosis, months (range)	16.0 (3.9-77.2)

	Cohort D (<i>N</i> =44)
HER2 mutations	
Y772_A775dup (YVMA) insertion	31 (70.5)
Point mutations	3 (6.8)
Other	10 (22.7)
Brain metastases at baseline	
Yes	8 (18.2)
No	36 (81.8)
Number of previous systemic anti-cancer treatments, <i>n</i> (%)	
1	20 (45.5)
2	10 (22.7)
≥3	14 (31.8)

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Primary Safety Endpoint

n (%)	All grades (<i>N</i> =44)	Grade ≥3 (<i>N</i> =44)
Any TRAE	42 (95.5)	19 (43.2)
Most common TRAEs occurring in ≥10% of patients		
Diarrhea	38 (86.4)	11 (25.0)
Rash	19 (43.2)	0
Paronychia	11 (25.0)	0
Nausea	11 (25.0)	1 (2.3)
Vomiting	9 (20.5)	2 (4.5)
Dermatitis acneiform	8 (18.2)	0
Stomatitis	8 (18.2)	1 (2.3)
Dry skin	7 (15.9)	0
Increased aspartate aminotransferase	6 (13.6)	1 (2.3)
Decreased appetite	6 (13.6)	2 (4.5)
Increased amylase	5 (11.4)	0
Anemia	5 (11.4)	0
Increased lipase	5 (11.4)	0
Decreased weight	5 (11.4)	0
Pruritis	5 (11.4)	1 (2.3)

^a>2 patients: diarrhea (n=6), hepatic function abnormal (n=2), ALT increase (n=2), decreased appetite (n=2) ILD, interstitial lung disease; TRAE, treatment-related adverse event

- Most reported adverse events were grade 1-2, but grade 3 diarrhea was frequent (25%) (per CTCAE v5: >7 stools/day above baseline or hospitalization indicated or limited self-care ADL's).
- 31.8% required dose reduction and 6.8% discontinued treatment.
- No ILD or pneumonitis reported.

PL04.03, Le et al, WCLC 2024

BEST O

Secondary Efficacy Endpoints

- Median follow-up: 10.9 months (range 0.9-20.2)
 - Treatment ongoing in 16 of 44 (36.4%) patients
 - Treatment duration >12 mos in 14 patients (31.8%)

Outcomes in Selected Subgroups

Subgroup		Patients, ^a n	ORR, <i>n</i> (%; 95% Cl)
All evaluable patients in cohort D		43	31 (72.1; 56.3, 84.7)
HER2 YVMA	Yes	30	27 (90.0; 73.5, 97.9)
insertion	No	13	4 (30.8; 9.1, 61.4)
Brain metastases	Yes	8	5 (62.5; 24.5, 91.5)
at baseline	No	35	26 (74.3; 56.7, 87.5)
Previous therapy	Previous platinum, no previous immunotherapy	17	12 (70.6; 44.0, 89.7)
	Previous platinum and immunotherapy	25	18 (72.0; 50.6, 87.9)

HER2 YVMA (Y772_A775dup

Median DoR: 9.7 months (95% CI 5.5, NE)

Median PFS: 9.9 months (95% CI 6.9, NE)

Conclusions

- For a molecular subgroup (*HER2*) that has lacked tyrosine kinase inhibitor options, zongertinib and BAY 2927088 represent novel effective therapies with high response rates (~70%).
- Zongertinib demonstrates effective intracranial activity.
- Adverse events should not be minimized, particularly with respect to diarrhea, which can impact quality of life.

Health-Related Quality of Life (HRQoL) Outcomes with Adagrasib vs Docetaxel in *KRAS*^{G12C}-Mutated NSCLC: KRYSTAL-12 study

Enriqueta Felip,¹ Tony S. K. Mok,² Shun Lu,³ Fabrice Barlesi,^{4,5} Robert Jotte,⁶ Giuseppe Lo Russo,⁷ Martin Reck,⁸ Wenxiu Yao,⁹ Ludovic Doucet,¹⁰ Aitor Azkárate Martínez,¹¹ Vanesa Gregorc,¹² Oscar Juan-Vidal,¹³ Jo Raskin,¹⁴ Helena Linardou,¹⁵ Rutika Raina,¹⁶ Hannah Penton,¹⁶ Adam Lee,¹⁷ Steven Blum,¹⁸ Beata Korytowsky,^{19*} Michaël Duruisseaux²⁰⁻²²

¹Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Barcelona, Spain; ²State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong; ³Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; ⁴Gustave Roussy, Villejuif, France; ⁵Paris Saclay University, Le Kremlin-Bicêtre, France; ⁶Rocky Mountain Cancer Center, US Oncology Research, Denver, CO, USA; ⁷Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ⁸Airway Research Center North, German Center for Lung Research, LungenClinic, Grosshansdorf, Germany; ⁹Sichuan Cancer Hospital & Institute, Chengdu, China; ¹⁰Institut de Cancérologie de l'Ouest, Saint-Herblain, France; ¹¹Hospital Universitario Son Espases, Palma, Spain; ¹²Candiolo Cancer Institute, FPO-IRCSS, Candiolo, Italy; ¹³Hospital Universitari i Politècnic La Fe, Valencia, Spain; ¹⁴Antwerp University Hospital, University of Antwerp, Edegem (Antwerp), Belgium; ¹⁵Fourth Oncology Department & Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece; ¹⁶OPEN Health, Rotterdam, The Netherlands; ¹⁷Bristol Myers Squibb, Uxbridge, UK; ¹⁸Bristol Myers Squibb, Princeton, NJ, USA; ¹⁹Mirati Therapeutics, a Bristol Myers Squibb company, San Diego, CA, USA; ²⁰Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France; ²¹Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France; ²²Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France

KRYSTAL-12 Schema and PRO Tools

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

OA09.06, Felip et al, WCLC 2024

Change in Scores by Treatment Arm

Change in Scores by Treatment Arm

Novel KRAS G12C Inhibitors

Abstract	Drug	ORR	PFS
OA14.03, Li et al, World Lung, 2024	Garsorasib 600 mg BID	52.0%	9.1 mos (5.6-10.3)
OA14.05, Zhou et al, World Lung, 2024	IBI351 600 mg BID	49.1%	9.7 mos (5.6-11.0)
OA14.06, Sacher et al, World Lung, 2024	Divarasib 400 mg daily	59.1%	15.3 mos (12.3-26.1)
Skoulidis et al, <i>N Engl J Med</i> , 2021	Sotorasib 960 mg daily	37.1%	6.8 mos (5.1-8.2)
Janne et al,NEngl J Med, 2022	Adgarasib 600 mg BID	42.9%	6.5 mos (4.7-8.4)

ORR = objective response rate PFS = progression free survival

Conclusions

- Adagrasib and sotorasib represent existing targeted therapy options for patients with progressive KRAS G12C-positive NSCLC.
- In KRYSTAL-12, adagrasib was associated with improvement in symptoms and metrics of health-related quality of life as compared to docetaxel.
- Nonetheless, more effective targeted therapy options are needed. Several agents are under current study with early encouraging results (e.g., divarasib).

Updated Efficacy, Safety, and Biomarker Analysis in Patients with TRK Fusion Lung Cancer Treated with Larotrectinib

<u>Jessica J. Lin</u>,^{1,2} Daniel S.W. Tan,³ Shivaani Kummar,⁴ Victor Moreno,⁵ Damian Rieke,⁶ Biswajit Dubashi,⁷ Kunhi Haresh Parambath,⁸ Domnita-Ileana Burcoveanu,⁹ Natascha Neu,¹⁰ Saskia Leserer,¹⁰ Henrik Seidel,¹¹ Chiara E. Mussi,¹² Lin Shen¹³ Alexander Drilon^{14,15}

¹Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; ²Harvard Medical School, Boston, MA, USA; ³Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore; ⁴Oregon Health & Science University, Portland, OR, USA;
⁵START MADRID-FJD, Hospital Fundación Jiménez Díaz, Madrid, Spain; ⁶Charité – Universitätsmedizin Berlin, Berlin, Germany; ⁷Jawaharlal Institute Of Postgraduate Medical Education and Research, Pondicherry, India; ⁸All India Institute of Medical Sciences, New Delhi, India; ⁹Bayer HealthCare Pharmaceuticals, Inc., Basel, Switzerland; ¹⁰Chrestos Concept GmbH & Co. KG, Essen, Germany; ¹¹Bayer AG, Berlin, Germany; ¹²Bayer S.p.A., Milan, Italy; ¹³Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China; ¹⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁵Weill Cornell Medical College, New York, NY, USA.

NTRK Fusions in NSCLC

- The incidence of NTRK fusion in NSCLC is low (<1%).
- Larotrectinib is a selective small molecular inhibitor of TRKA, TRKB, and TRKC proteins that is approved for patients with solid tumors harboring *NTRK* fusions.
- However, in the pivotal study leading to Larotrectinib's approval (Drilon et al, *N Engl J Med*, 2018), only 4 of 55 enrolled patients had a diagnosis of lung cancer.

Cocco et al, *Nat Rev Clin Oncol*, 2018 Drilon et al, *N Engl J Med*, 2018

BEST OF

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Study Design

MA06.12, Lin et al, WCLC 2024

Patient Demographics

	N=32		N=32
Age, years, median (range)	55.5 (25–81)	Prior therapies, n (%)§	40 (50)
Sex , n (%) Male Female	13 (41) 19 (59)	Surgery Radiotherapy Systemic therapy ^{II,¶} Immunotherapy [¶]	16 (50) 15 (47) 31 (97) 13 (41)
NTRK gene fusion, n (%) [†]		Prior systemic therapies, median (range) ^{∥,¶}	2 (0–8)
NTRK1 NTRK2 NTRK3	24 (75) 0 8 (25)	Prior systemic therapies , n (%) ^{∥,} ¶ 0 1	<u>1 (3)</u> 12 (38)
Tumor histology , n (%) Adenocarcinoma Atypical carcinoid Neuroendocrine	30 (94) 1 (3) 1 (3) [‡]	2 ≥3 Best response to prior therapy, n (%) ^{#,¶} Complete response	7 (22) 12 (38) Immunotherapy 1 (8)
Known CNS metastases at baseline , n (%) <u>No</u> Yes	20 (63) 12 (38)	Partial response Stable disease Progressive disease Other ^{††}	0 1 (8) 4 (31) 7 (54)

[†]*NTRK* gene fusions were identified locally by NGS in all patients. [‡]This patient was originally diagnosed with small cell lung cancer that was subsequently assessed as neuroendocrine carcinoma. [§]Patients may be counted in more than 1 row. ^IExcludes patients who received RAI. [¶]Includes patients with any prior immunotherapy. [#]Includes patients who received RAI. ^{††}Includes unknown and not evaluable. CNS, central nervous system; NGS, next-generation sequencing; RAI, radioactive iodine.

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Efficacy

Objective Response Rate

2024

Durability of Response Across Fusion Partners

- Median duration of response (DoR) 34 mos (95% CI 10-NE).
- Durable treatment responses were seen across a range of *NTRK* fusion partners.

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. MA06.12, Lin et al, WCLC 2024

Acquired Mechanism of Resistance?

 Paired post-baseline ctDNA sample identified new mutations in the NTRK kinase domain, KRAS, and TP53, potentially representing mechanisms of acquired resistance to larotrectinib.

Thank you!

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Conclusions

- Although NTRK fusions are uncommon in NSCLC, they represent an important targetable driver alteration.
- While approved across tumor types, larotrectinib shows effective and durable activity against NTRK-fusion NSCLC in particular.
- Molecular testing (liquid or biopsy) in NSCLC should include an assessment of NTRK fusions.