

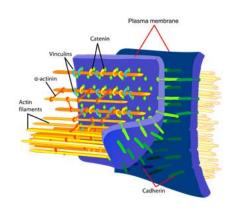
THE UNIVERSITY OF TEXAS

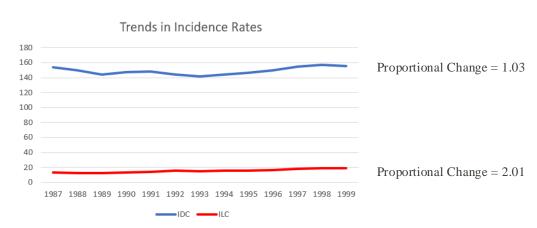
MDAnderson Cancer Center

Making Cancer History®

Invasive Lobular Carcinoma When Non-scary Becomes Scary

Jason A. Mouabbi MD

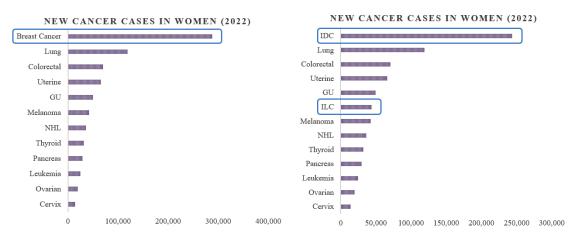

Assistant Professor, Breast Medical Oncology, MD Anderson Cancer Center Chair of the Lobular Breast Cancer Alliance Co-Lead HR+ Working Group


Outline

- Introduce invasive lobular carcinoma (ILC)
- Management of early stage ILC
- Management of advanced stage ILC

What is Invasive Lobular Carcinoma?

- ILC is a type of breast cancer that originate in the Terminal duct lobular units (TDLUs) due to a defective E-cadherin protein after which it has a propensity to migrate toward the lobules of the breast
- 10-15% of all breast cancers
- Incidence rates of ILC are rising faster than IDC



Epidemiology - Lobular breast cancer is not a "rare" cancer

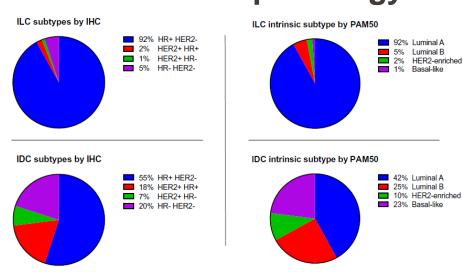
ILC incidence is ~44,000 cases per year in the US alone

- HR+ ILC has a higher incidence (~41,000) than all TNBC (~29,000) and equal to that of HER2+ (~41,000)
- Double the incidence of all ovarian cancers and cervical cancers combined!
- 6th most common female cancer

ILC Diagnosis is Challenging

Characterized microscopically by small cells that insidiously infiltrate the mammary stroma and adipose tissue individually and in a "single file" pattern

• Due to the defective E-cadherin

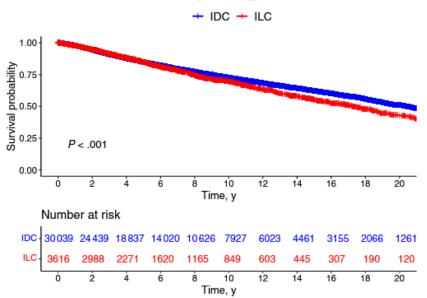

/utated s adj p	samples o < 0.1	, %
0	66	CDH1
24	12	TP53
2.1	7.4	ERBB2
17	8.2	GATA3
0.69	3.1	FOXA1
0.21	1.5	CREBBP
0.75	2.3	CSMD3
45	51	PIK3CA □ 0%
0.27	1.3	BRAF
IDC	ILC	Histomolecular subtype

Group	CDH1	Expression	
1	Mutated	Low	66% (255)
2	Wild-Type	Low	24% (92)
3	Wild-Type	High	10% (39)

Introduction: Features of ILC vs IDC - Clinicopathology

	IDC	ILC		
Stage at diagnosis ¹				
Stage I	55%	46%		
Stage II	35%	33%		
Stage III	8%	17%		
Stage IV	2%	5%		
Grade ²				
Grade 1-2	60%	90%		
Grade 3	40%	10%		
Proliferation Activity (Ki67) ³				
Low (<20%)	35%	60 %		

¹Oesterreich S et al., *J Natl Cancer Inst* 2022; ²Pestalozzi BC et al., *J Clin Oncol* 2006; ³Biglia G et al, *Eur J Surg Oncol*. 2013



- 90% of ILC express AR (compared to ~50 of IDC)
- Prior studies have shown that most TN ILC (5%) are lumAR and have high AR expression

Introduction: Features of ILC vs IDC – Prognosis

Long-term outcomes of ILC are inferior to that of IDC

Overall survival stratified by histology in entire cohort

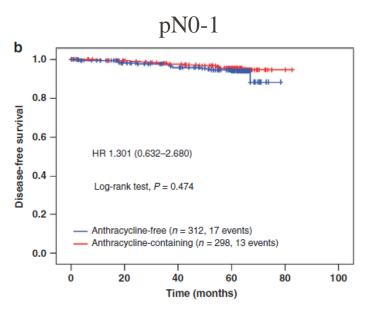
- At 10 years, **1 in 3** ILC experienced a recurrence
- At 20 years, **1 in 2** ILC experienced a recurrence

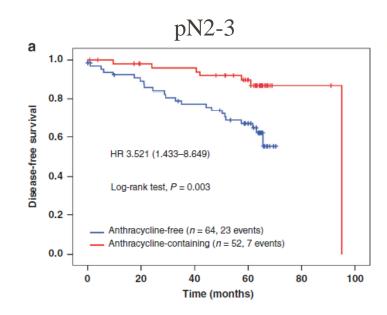
Features of ILC vs IDC – Distant Mets Sites

Table 2 Metastatic patterns of ILC and their frequency in imaging and at autopsy

Metastatic site	Imaging		Autopsy [30, 33]	
	ILC	IDC	ILC	IDC
Bone	16–34% [5, 10]	10–35% [5, 10]	65%	50%
Bone marrow	0.6–1.0% [5, 32]	0.2–0.4% [5, 32]	NR	NR
Lung	2–9% [5, 10]	7–18% [5, 10]	20%	55%
Liver	4–7% [5, 10]	6–11% [5, 10]	40%	70%
CNS parenchyma	1–2% [5, 10, 31]	2–5% [5, 10, 31]	7%	8%
CNS leptomeninges	16% [30]	0.3% [30]	30%	1.3%
Orbit	1% [35]	0.2% [35]	NR	NR
Pituitary	0.5% [10]	0.1% [10]	NR	NR
GI tract (linitis plastica)	5% [10, 30]	1% [10]	43%	2.6%
Peritoneum and retroperitoneum	18% [31]	1% [31]	93%	8%
Stomach	3% [30]	NR	43%	2.6%
Ovaries	2.2-5.0% [10, 30]	0.7% [10]	36%	2.6%
Uterus/cervix	NR	NR	43%	0%
Soft tissue and skin	32% [10]	27% [10]	NR	NR
Salivary glands	3% [31]	0% [31]	NR	NR
Thyroid	NR	NR	12%	7%

ILC invasive lobular carcinoma, *IDC* invasive ductal carcinoma, *NR* not reported, *CNS* central nervous system, *GI* gastrointestinal.


Early Stage ILC


Chemotherapy in early stage ILC

In general, ILC tend to respond poorly to chemotherapy compared to IDC

- Most ILC are LumA (92%): low grade and low proliferation
- Rate of pCR in ILC is <1% following anthracycline-based neoadjuvant chemotherapy (vs 20% in IDC)^{1,2}
 - The exception is pleomorphic ILC (5% of all ILCs) which is a more aggressive subtype (higher grade and Ki67) with a reported pCR = 6%

Chemotherapy in early stage ILC

- 9y DFS 90% (similar to what is seen with ET alone in historical data)
- 9y DFS with AC-T 90% vs 58% with TC

Can genomic profiling help predict who can benefit from chemotherapy

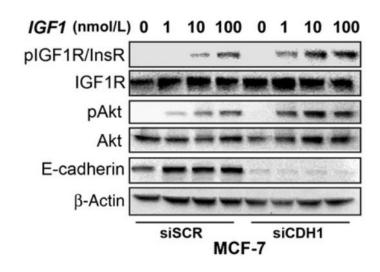
	ILC N = 37,685	IDC N = 149,182			
Clinical Risk					
Low	57%	65%			
High	43%	35%			
Genomic Risk					
RS≤25	92%	83%			
RS>25	8%	17%			
Discordance	Discordance				
Clinical High/ RS≤25	39%	24%			

	ILC N = 1497	IDC N = 5902
Clinical Risk		
Low	48%	57%
High	52%	43%
Genomic Risk		
Low	73%	58%
High	27%	42%
Discordance		
Clinical High/ Genomic Low	36%	18%

ILC Prognostic Tool – MDA iLobulaRx

		Overall Surviva	l	Dis	tant Recurrence-fr	ee Survival
Parameter	Hazard Ratio	HR 95% Confidence Limits	p-value	Hazard Ratio	HR 95% Confidence Limits	p-value
Age (year)	1.022	(1.013, 1.031)	<0.001	1.007	(0.999, 1.016)	0.075
Number of lymph nodes	1.068	(1.056, 1.080)	<0.001	1.078	(1.068, 1.089)	<0.001
Pathological tumor size (mm)	1.048	(1.013, 1.085)	0.008	1.061	(1.031, 1.092)	<0.001
ER status						
<10%						
≥10%	0.548	(0.354, 0.849)	0.007	0.620	(0.412, 0.933)	0.022
Grade						
GI						
GII	1.130	(0.862, 1.482)	0.38	1.067	(0.837, 1.361)	0.60
GIII	1.386	(1.017, 1.890)	0.039	1.476	(1.115, 1.953)	0.007
ILC histology						
Non-classical						
Classical	0.632	(0.474, 0.842)	0.002	0.622	(0.480, 0.806)	< 0.001
Concomitant LCIS						
Absent						
Present	0.737	(0.608, 0.894)	0.002	0.674	(0.567, 0.801)	< 0.001
Adjuvant ET						
None						
Tamoxifen	0.83	(0.640, 1.082)	0.17	0.63	(0.502, 0.823)	<0.001
NSAI	0.61	(0.482, 0.833)	< 0.001	0.41	(0.361, 0.495)	< 0.001

Table 1. Multivariate Cox proportional hazard model parameter estimates for OS and DRFS


Neoadjuvant Strategy for eILC

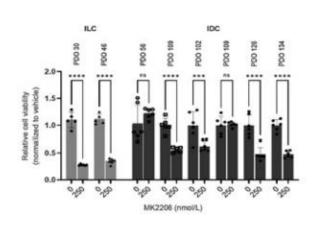
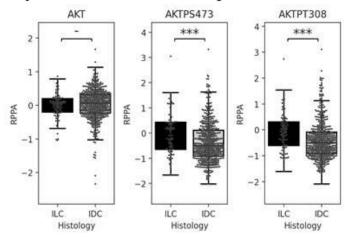

- 50% eILC present with Stage II/III and would benefit from neoadjuvant therapy
- 63-71% of ILCs exhibit an activating mutation in the PTEN-PI3K-AKT pathway
 - Most the mutations are present in primary ILC (**Truncal Mutations**)

Table 5 Comparison of the prevalence of genetic alterations in patients with primary and metastatic ILC

Somatic alteration	Primary ILC [12, 42, 58] (%)	Metastatic ILC [12, 42, 58] (%)
CDH1	53-82	62–76
PIK3CA	44-57	44-52
ESR1	2.0-12.5	15
ERBB2 (HER2)	2	12.0-15.6
PTEN	9	9
FGFR1	6–7	6-11
RUNX1	3-9	5-6
TBX3	10-21	16.0-18.7
TP53	9-18	9-20
FOXA1	8-15	11-15
ARID1A	8-12	11-12
GATA3	3-15	7-15
AKT1	6	9.4
NFI	2-3	6–8

Pre-Clinical ILC models show high activation (phosphorylation) of AKT irrespective of an activating mutation


Nagle A ... Oesterreich S & Lee A, Clin Cancer Res. 2022

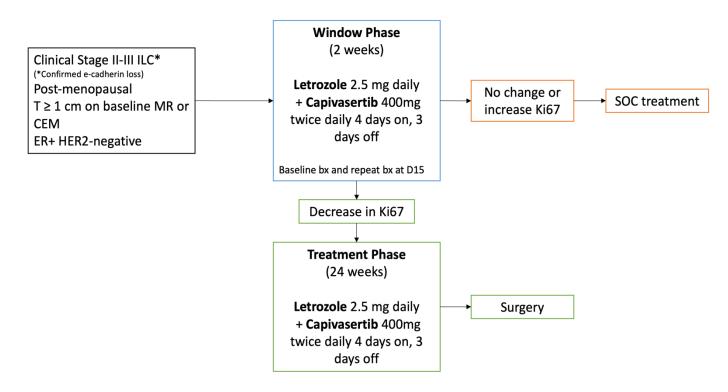
Elangovan A ... Oesterreich S & Lee A, *Mol Cancer Res.* 2022

Clinical Evidence that ILC show high activation (phosphorylation) of AKT

Internal analysis: Protein expression of AKT in human ILC (~300 samples) and IDC samples (~1500 samples)

- Similar AKT protein levels in ILC vs IDC
- Significantly higher phosphorylation (activation) of p-AKT S473 and p-AKT T308 in ILC.

CAPItello-291 Trial: Capivasertib (AKTi) + ET in HR+ HER2-ve MBC

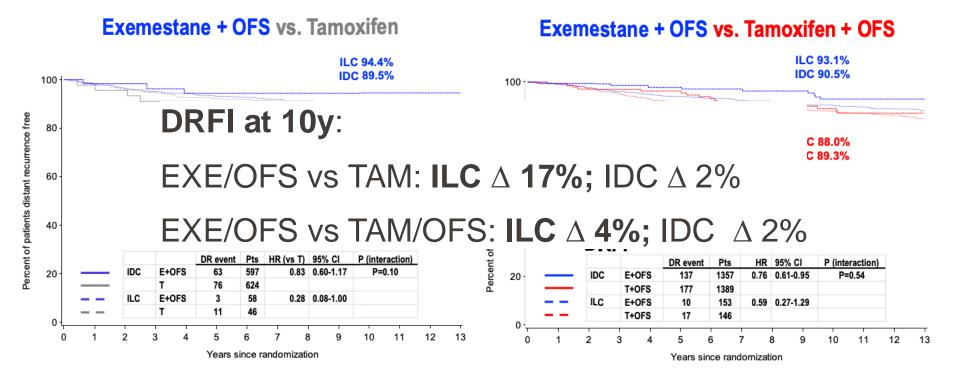


FDA approves capivasertib with fulvestrant for breast cancer

On November 16, 2023, the Food and Drug Administration approved capivasertib (Truqap, AstraZeneca Pharmaceuticals) with fulvestrant for adult patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative locally advanced or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations, as detected by an FDA-approved test, following progression on at least one endocrine-based regimen in the metastatic setting or recurrence on or within 12 months of completing adjuvant therapy.

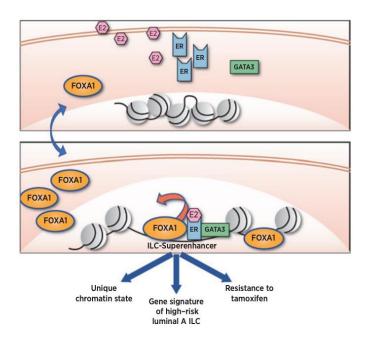
Study arm	CAPI + FUL	PBO + FUL
ORR in non-altered (OR)	23% vs (2.1	
ORR in altered (OR)	29% v (3.9	

NeoAKT trial: Neoadjuvant Study of AKTi + ET in Lobular Breast Cancer



Endocrine Therapy in early stage ILC

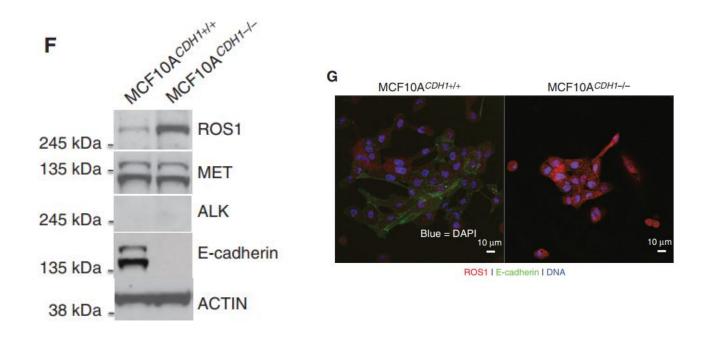
Study	Menopausal Status	Histology	Overall survival benefit with AI versus Tamoxifen
BIG 1–98 [106]	Pre- and Post- menopausal	ILC IDC	Favor AI (HR 0.40, $p = 0.04$) Favor AI (HR 0.73, $p = 0.04$)
ABCSG-8 [107]	Post-menopausal	ILC IDC	Favor AI (HR 0.24, $p = 0.01$) No difference at 3 year (HR 1.08)


HR hazard ratio, AI aromatase inhibitor, ILC invasive lobular carcinoma; IDC invasive ductal carcinoma

ADJUVANT ENDOCRINE THERAPY FOR PREMENOPAUSAL INVASIVE LOBULAR CARCINOMA

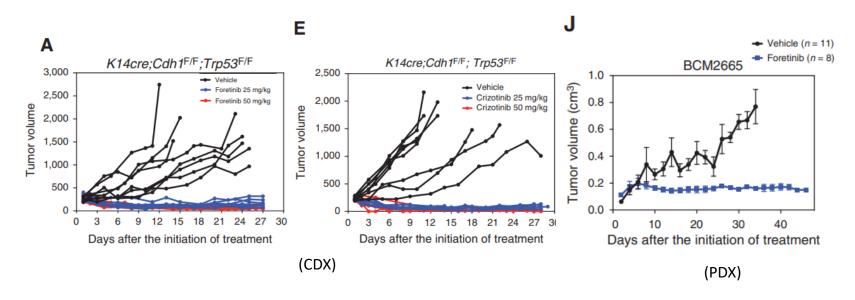
What is the mechanism of tamoxifen resistance in ILC

Preclinical studies showed that compared to IDC, ILC have a gained FOXA1 (transcription factor) binding which binds to ER and act as an ILC-superenhancer which contributes to tamoxifen resistance


Advanced Stage ILC

Treatment of mILC

- ILC benefit from treatment with Endocrine therapy (ET) + Targeted therapy (CDK4/6is, mTORi & Pl3Ki) [1]
- Post ET + CDK4/6is, mPFS to single agent fulvestrant in HR+ HER2- ILC cancer is 2.2 months with a 6-month PFS of 17.7% [2]
- Once endocrine-refractory, ILC have very poor response to subsequent lines of chemotherapy with mPFS 5-8 months [3]


- 1. Mouabbi JA et al, NPJ Breast 2023
 - Mouabbi JA, ESMO Breast Cancer 2024 Abstract 224P
- 3. Mouabbi JA et al., *Oncologist* 2023

ROS1 inhibition is synthetic lethal with E-cadherin defects in isogenic models

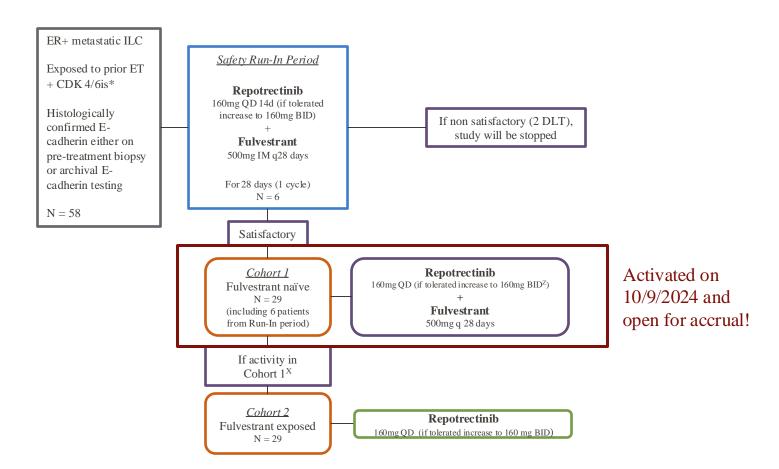
E-cadherin synthetic lethal effects operate in vivo in E-cadherin-defective breast tumors

In Vivo, ROS1 inhibitor produce profound anti-tumor effect in multiple models of E-cadherin-defective breast cancer.

Repotrectinib

Orally administered TKI

Small microcyclic inhibitor of ROS1, NTRK and ALK

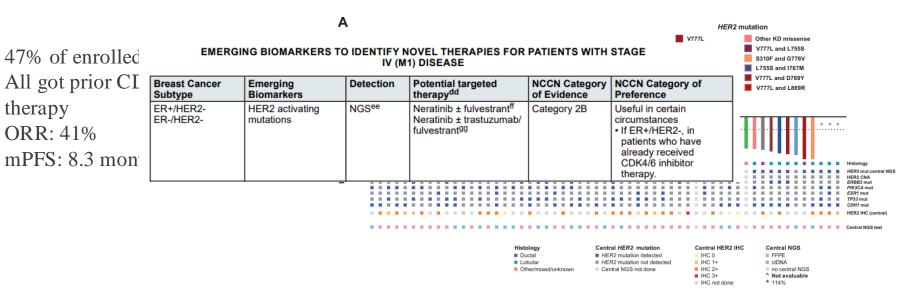

Compared to Crizotinib and Entrectinib it has >90-fold greater potency against ROS1

Repotrectinib demonstrates early clinical activity in ROS1+ mNSCLC with high ORR, prolonged mDOR and mPFS

Well tolerated: Most AEs grade ½. Most common AE is grade 1 dizziness (58.4%)

Granted FDA approved for ROS1-positive metastatic NSCLC on November 15 2023

REPLOT Trial: REPotrectinib +/- Fulvestrant in metastatic invasive LObular carcinoma patients who were exposed to endocrine Therapy + CDK4/6is



therapy

ORR: 41%

Targeting *HER2* Mutation in mILC

- HER2 mutations are enriched in mILC compared to IDC (15% vs 5%) [1]
- The SUMMIT trial looked at Niratinib efficacy in HER2-mutant breast cancer [2]

- Mouabbi JA et al., Breast Cancer Res. 2022
- Jhaveri et al., Ann Oncol. 2023

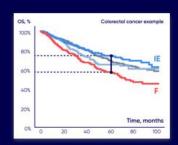
Immunotherapy in ILC: Unfinished Symphony, The Story Continues...

This indicates that certain mILC patients with an immunogenic phenotype may benefit from immunotherapy.

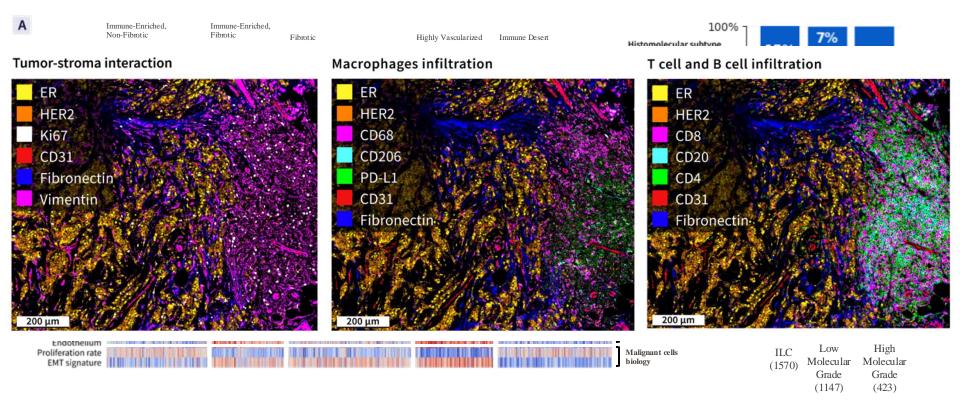
Tumor Microenvironment Types (TME)

A component of BostonGene Tumor Portrait™ test

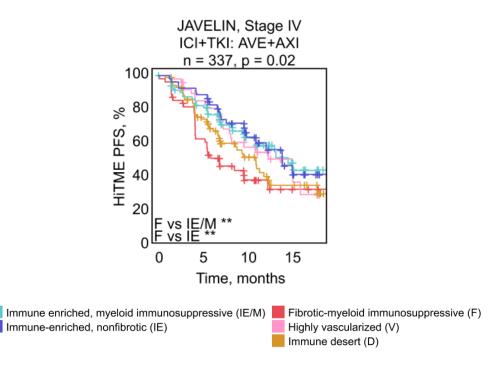
- BostonGene identified 4 distinct Tumor Microenvironment Subtypes by analyzing 29 functional gene expression signatures
- There are 4 portrait types associated with disease prognosis
- This model is prognostic in multiple cancer types



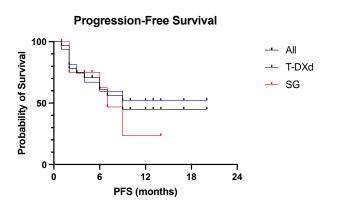
Cancer Cell

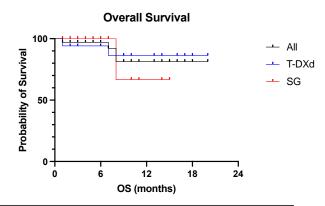

Editors' picks in 2021 — Cuttingedge areas of cancer research and oncology in 2021

The proprietary model was published in Cancer Cell


Bagaev et al., Cancer Cell, 2021

Promising ILC Treatments – Targeting the Tumor Microenvironment


IO/TKI combo in ccRCC



Efficacy of Single-Agent Chemotherapy in Endocrine Therapy-Refractory mILC

	PFS			
	Hazard ratio (95% CI)	P-value	Overall P-value	
Chemotherapeutic agent				
Capecitabine vs taxane	0.63 (0.48-0.82)		<.001*	
Age	0.99 (0.98-1.00)		.161	
Race				
Black vs White	2.04 (1.22-3.41)	.006	.074	
Hispanic vs White	1.08 (0.69-1.69)	.745		
Asian vs White	1.44 (0.71-2.94)	.310		
Other vs White	0.78 (0.29-2.11)	.627		
Metastatic presentation				
De Novo vs Recurrent	1.08 (0.79-1.49)		.620	
Number of metastases				
1 vs 3 or more	0.62 (0.45-0.86)	.004	.007*	
2 vs 3 or more	0.72 (0.54-0.97)	.003		
Location of metastatic site				
Non-Visceral vs Visceral	0.83 (0.64-1.07)		.152	
Number of prior endocrine t	herapies			
1 vs 4	2.59 (1.39-4.82)	.003	.004*	
2 vs 4	2.97 (1.57-5.63)	.001		
3 vs 4	1.96 (1.00-3.86)	.051		
Exposure to prior CDK4/6i				
No vs yes	1.1 (0.79-1.54)		.577	
Prior exposure to taxanes in	early stage			
No vs yes	1.25 (0.97-1.60)		.087	

Efficacy of Antibody-Drug Conjugates in Endocrine Therapy-Refractory mILC

	All (n=34)	T-DXd (n=17)	SG (n=17)
mPFS (mo)	9	NR	7
6-month PFS	61%	60%	62%
12-month PFS	45%	52%	23%
mOS (mo)	NR	NR	NR
12-month OS	81%	86%	66%

MD Anderson Cancer Center | Acknowledgment

"If I have seen further, it is by standing on the shoulders of giants." – Sir Isaac Newton

My Giants

- Rachel Layman
- Funda Meric-Bernstam
- Debu Tripathy
- Mo Rimawi
- Kent Osborne
- Gabriel Hortobagyi

- To all ILC patients and their family that participated directly or indirectly
- Lobular Breast Cancer Alliance Advocacy
- Donors: Cynthia Jones and Ann Clark

Mentors

- Amy Hassan
- Bora Lim
- Vincente Valero
- Paula Pohlmann
- Aman Buzdar
- Carlos Barcenas
- Suzanne Fuqua
- Rachel Schiff
- Carrie L Dul
- Daniel Lebovic
- Tarik Hadid
- Raymond Hilu
- Matthew Ellis
- Nizar Tannir
- Nagi El Saghir

THE UNIVERSITY OF TEXAS

MDAnderson Cancer Center

Making Cancer History®

My Clinical Team

- Amber Potter
- Kelsey Wolfe
- Angela Douglas
- Angela Muhammad-Ali

MDAnderson Cancer Center

Making Cancer History®