
Therapies for Advanced Stage EGFR-Mutated Lung Cancer

Collin Blakely, MD, PhD Associate Professor, UCSF

October 5th, 2024

FLAURA trial established Osimertinib as the standard 1st line therapy for metastatic EGFR-mutated NSCLC

Resistance inevitably occurs

Median PFS 18.9 months
Median OS 38.6 months

Decreased PFS benefit observed in patients with CNS metastases at baseline and in patients with EGFR p.L858R mutated tumors

SS Ramalingam et al. N Engl J Med 2020;382:41-50

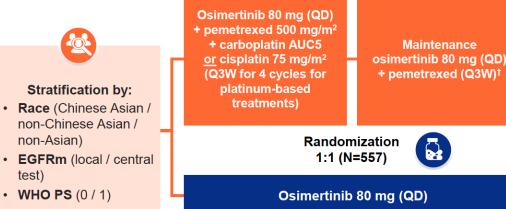
How to select the optimal strategy?

2L 3L **1L** ADCs* Amivantamab/Lazertinib* Osimertinib Amivantamab/Lazertinib* ADCs* Osimertinib + Carbo/Pem Carboplatin/Pemetrexed* Carbo/Pem Amivantamab + Carbo/Pem/Amivantamab* Lazertinib* Third-line chemo Carbo/Pem/ Amivantamab/Lazertinib*

Zosia Piotrowska, MD, MHS, ESMO Annual meeting 2023 plenary discussion

Marina Chiara Garassino @marinagarassino

t appr


FLAURA2 Phase III study design

Safety run-in period (N=30) Published in ESMO Open, 20211

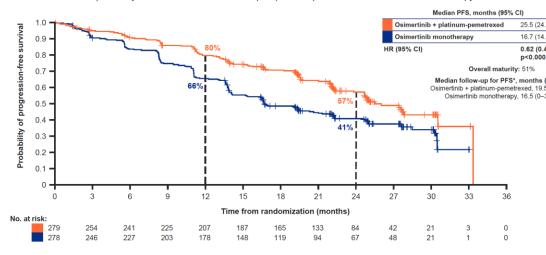
Patients with untreated locally advanced / metastatic EGFRm NSCLC

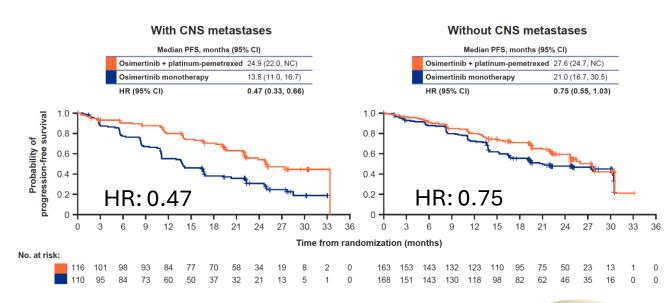
Key inclusion criteria:

- Aged ≥18 years (Japan: ≥20 years)
- Pathologically confirmed non-squamous NSCLC
- Ex19del / L858R (local / central test)
- WHO PS 0 / 1
- No prior systemic therapy for advanced **NSCLC**
- Stable CNS metastases were allowed*
- Brain scans at baseline (MRI / CT)

Follow-up:

RECIST 1.1 assessment at 6 and 12 weeks, then every 12 weeks until RECIST 1.1 defined radiological disease progression or other withdrawal criteria were met


- Primary endpoint: PFS by investigator assessment per RECIST 1.1^{‡§}
 - Sensitivity analysis: PFS by BICR assessment per RECIST 1.1
- Secondary endpoints: OS, ORR, DoR, DCR, HRQoL, safety (AEs by CTCAE v5) and PFS2[‡]


test)

Progression-free survival per investigator

Median PFS was improved by ~8.8 months with osimertinib plus platinum-pemetrexed vs osimertinib monotherapy

PFS per investigator in patients with / without CNS metastases at baseline*

FLAURA2: Resistance, and impact of baseline TP53 alterations in patients treated with first-line osimertinib with or without platinum-pemetrexed

James Chih-Hsin Yang,¹ Jacqulyne Robichaux,² David Planchard,^{3,4} Kunihiko Kobayashi,⁵ Chee Khoon Lee,⁶ Shunichi Sugawara,⁷ Tsung-Ying Yang,⁸ Tae Min Kim,⁹ Sang-We Kim,¹⁰ Noriko Yanagitani,¹¹ Aleksandra Markovets,¹² Preetida J. Bhetariya,¹² Lynne Poole,¹³ Yuri Rukazenkov,¹⁴ Ryan Hartmaier,² Pasi A. Jänne¹⁵

FLAURA2: Impact of tumor burden on outcomes of first-line osimertinib ± chemotherapy in patients with EGFR-mutated advanced NSCLC

Natalia Valdiviezo,¹ Jhanelle E. Gray, ² Pasi A. Jänne,³ Kunihiko Kobayashi,⁴ James Chih-Hsin Yang,⁵ Ying Cheng,⁶ Chee Khoon Lee,⁷ Shunichi Sugawara,⁸ Yan Yu,⁹ Tae Min Kim,¹⁰ Sarah Taggart,¹¹ Muna Albayaty,¹² Dana Ghiorghiu,¹³ David Planchard^{14,15}

Baseline characteristics and outcomes were broadly similar for the plasma analysis set and FAS

• In total, 167 paired plasma samples were included in this analysis

	FA	S ¹	Plasma analysis set		
Characteristic, %*	Osimertinib + chemotherapy (n=279)	Osimertinib monotherapy (n=278)	Osimertinib + chemotherapy (n=68)	Osimertinib monotherapy (n=99)	
Sex: male / female	38 / 62	39 / 61	31 / 69	43 / 57	
Age: median (range), years†	61 (26–83)	62 (30–85)	60 (34–82)	63 (30–85)	
Race: Asian / non-Asian	64 / 36	63 / 37	66 / 34	55 / 45	
EGFR mutation at randomization:‡ Ex19del / L858R	61 / 38	60 / 38	63 / 37	61 / 37	
Metastatic	95	97	99	100	
CNS metastases present at baseline	42	40	43	43	
Baseline tumor size: median (range), mm§	57 (10–284)	57 (11–221)	65 (11–219)	69 (12–221)	
Outcomes	Osimertinib + chemotherapy vs osimertinib monotherapy				
PFS: HR (95% CI)	0.62 (0.4	9, 0.79)¶	0.57 (0.41, 0.80)#		

Presented by: James Chih -Hsin Yang

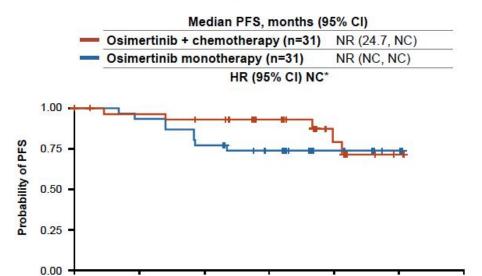
SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Acquired resistance mechanisms in plasma were broadly similar between treatment arms

		Plasma ai		
Functional groups	Acquired gene alteration, n (%)	Osimertinib + chemotherapy (n=68)	Osimertinib monotherapy (n=99)	FLAURA osimertinib monotherapy (n=109) ¹
ECED mutations	C797S	2 (3)	10 (10)	7 (6)
EGFR mutations	Other uncommon	1 (1)	4 (4)	5 (5)
DTV amplifications	MET amplification	8 (12)	11 (11)	17 (16)
RTK amplifications	ERRB2 amplification	3 (4)	1 (1)	2 (2)
	BRAF V600E	1 (1)	5 (5)	3 (3)
MAPK / PI3K mutations	KRAS mutation	2 (3)	8 (8)	3 (3)
MAPK / PISK mutations	PIK3CA mutation	5 (7)	6 (6)	6 (6)
	ERBB2 mutation	ND	1 (1)	ND
Call avala mana annulifications	CCND1 / E1 amplification	6 (9)	5 (5)	7 (6)
Cell cycle gene amplifications	CDK4 / 6 amplification	3 (4)	5 (5)	7 (6)
Fusions	RET	1 (1)	3 (3)	ND
	BRAF	2 (3)	3 (3)	ND
	ALK	ND	3 (3)	1 (1)
	Other*	3 (4)	6 (6)	_
RB1 loss (with TP53 alteration)*	•	2 (3)	4 (4)	_
No known acquired resistance a	alteration detected*	46 (68)	54 (55)	-

James Chih-Hsin Yang | FLAURA2: Resistance, and impact of baseline TP53 alterations in patients treated with 1L osimertinib ± platinum-pemetrexed

"Not reported in FLAURA. 1. Chmielecki J, et al. Nat Comm 2023;14:1070 EGFR, epidermal growth factor receptor; ND, not detected


Presented by: James Chih -Hsin Yang

The PFS benefit of osimertinib + chemotherapy versus osimertinib alone appeared to be similar irrespective of baseline TP53 status

TP53 wild-type at baseline

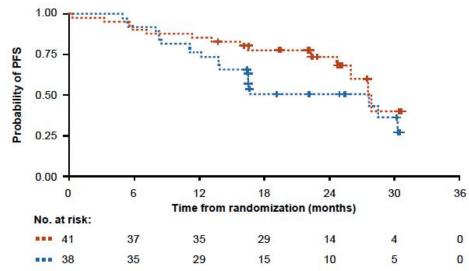
18

Time from randomization (months)

19

James Chih-Hsin Yang | FLAURA2: Resistance, and impact of baseline TP53 alterations in patients treated with 1L osimertinib ± platinum-pemetrexed

29


No. at risk:

31

31

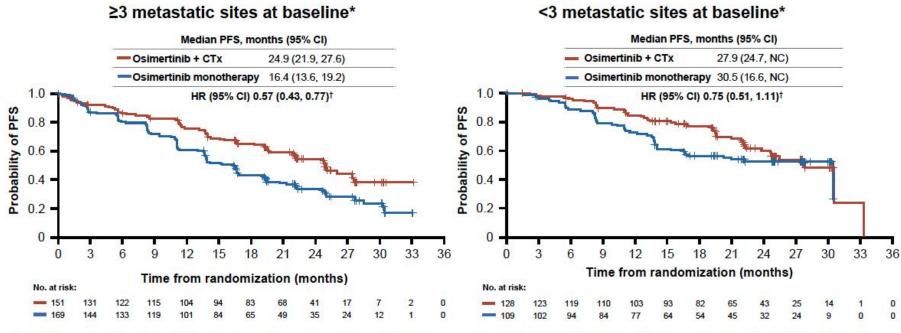
TP53 altered† at baseline

Data cut-off for clinical outcomes: Apr 03 2023. HR determined by unstratified log-rank method. 'HR not calculated where there were <20 events across both treatment arms; †TP53 alterations excluded variants with unknown oncogenic significance. Cl, confidence interval; CTx, chemotherapy; HR, hazard ratio; NC, not calculable; NR, not reached; PFS, progression-free survival;

Presented by: James Chih -Hsin Yang

12

24

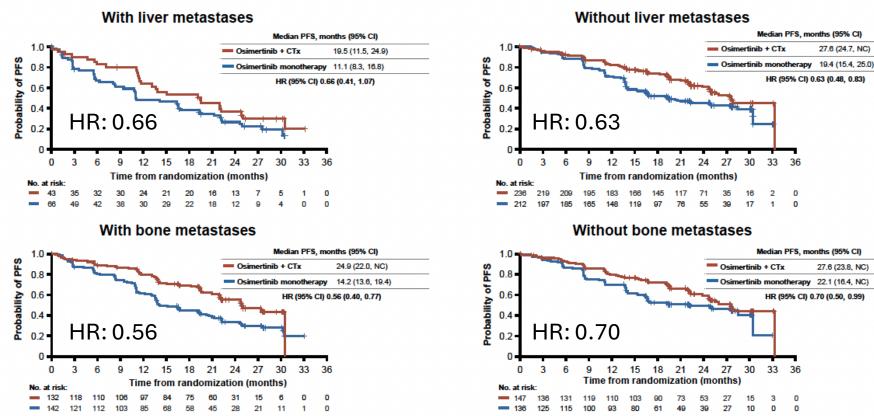

24

11

30

36

Osimertinib + CTx showed PFS benefit in patients with ≥3 metastatic anatomical sites at baseline vs osimertinib alone

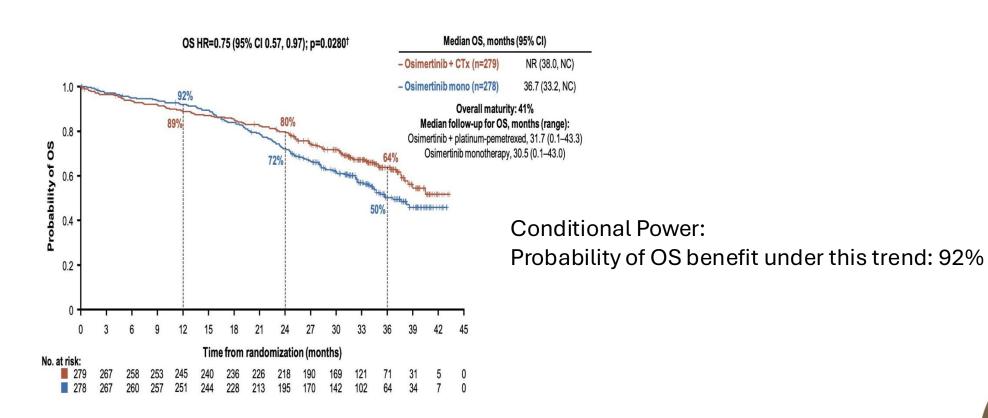


- A PFS benefit with osimertinib plus chemotherapy vs osimertinib alone was observed in patients with extra-thoracic metastases at baseline:^{†‡}
 - Intra-thoracic: median PFS (95% CI) was 26.0 months (21.9, NC) vs NC (16.7, NC), respectively; HR 0.97 (95% CI 0.59, 1.60)
 - Extra-thoracic: median PFS (95% CI) was 25.1 months (22.2, NC) vs 16.4 months (13.6, 19.4), respectively; HR 0.54 (95% CI 0.41, 0.71)

Presented by: Natalia Valdivezo

Osimertinib + CTx showed PFS benefit in patients with and without liver or bone metastases at baseline vs osimertinib alone

Presented by: Natalia Valdivezo



Patients with ≥ 3 metastastic sites may benefit the most from Osi + CTx

	Osimertinib PFS (months)	Osi + CTx PFS (months)	HR (95% CI)
With CNS Metastases	13.8 (11.0 -16.7)	24.9 (22.0 - NC)	0.47 (0.33-0.66)
Without CNS Metastases	21.0 (16.7 – 30.5)	27.6 (24.7 - NC)	0.75 (0.55-1.03)
TP53 altered	27.6 (13.9 – 30.3)	27.6 (24,7 - NC)	0.57 (0.29 – 1.12)
TP53 wild-type	NR	NR	NC
≥ 3 metastatic sites	16.4 (13.6 – 19.2)	24.9 (21.9 – 27.6)	0.57 (0.43 – 0.77)
< 3 metastatic sites	30.5 (16.6 – NC)	27.9 (24.7 - NC)	0.75 (0.51 – 1.11)
With Bone Metastases	14.2 (13.6 – 19.4)	24.9 (22.0 - NC)	0.56 (0.40 – 0.77)
Without Bone Metastases	22.1 (16.4 – NC)	27.6 (23.8 – NC)	0.70 (0.50 – 0.99)
With Liver Metastases	11.1 (8.3 – 16.8)	19.5 (11.5 – 24.9)	0.66 (0.41 – 1.07)
Without Liver Metastases	19.4 (15.4 – 25.0)	27.6 (24.7 – NC)	0.63 (0.48 – 0.83)

Should we wait for Overall Survival data?

Presented By: Marina Chiara Garassino

Lazertinib vs Osimertinib in 1L *EGFR*-mutant Advanced NSCLC: A Randomized, Double-blind, Exploratory Analysis From MARIPOSA

<u>Se-Hoon Lee</u>¹, Byoung Chul Cho², Hidetoshi Hayashi³, Enriqueta Felip⁴, Alexander I Spira⁵, Nicolas Girard⁶, Yu Jung Kim⁷, Yuriy Ostapenko⁸, Pongwut Danchaivijitr⁹, Baogang Liu¹⁰, Adlinda Alip¹¹, Ernesto Korbenfeld¹², Josiane Mourão Dias¹³, Ki Hyeong Lee¹⁴, Hailin Xiong¹⁵, Soon Hin How¹⁶, Ying Cheng¹⁷, Gee-Chen Chang¹⁸, James Chih-Hsin Yang¹⁹, Benjamin Besse²⁰, Michael Thomas²¹, Joshua C Curtin²², Jiarui Zhang²², John Xie²³, Tao Sun²³, Melissa Martinez²³, Seema Sethi²², Roland E Knoblauch²², Elizabeth Fennema²⁴, Mahesh Daksh²³, Mariah Ennis²², Joshua M Bauml²², Shun Lu²⁵

Amivantamab Plus Lazertinib vs Osimertinib in First-line *EGFR*-mutant Advanced NSCLC: Longer Follow-up of the MARIPOSA Study

Shirish M Gadgeel¹, Byoung Chul Cho², Shun Lu³, Enriqueta Felip⁴, Hidetoshi Hayashi⁵, Alexander I Spira⁶, Benjamin Besse⁷, Michael Thomas⁸, Scott Owen⁹, Yu Jung Kim¹⁰, Se-Hoon Lee¹¹, Josiane Mourão Dias¹², Yun-Gyoo Lee¹³, Yanqiu Zhao¹⁴, Yong Fang¹⁵, Nicolas Girard¹⁶, Zhe Liu¹⁷, Ping Sun¹⁸, Sulene Cunha Sousa Oliveira¹⁹, Hong Shen²⁰, Luis Paz-Ares²¹, Shingo Matsumoto²², Hiroshi Tanaka²³, Azura Rozila Ahmad²⁴, Timur Andabekov²⁵, Patrapim Sunpaweravong²⁶, Ozgur Ozyilkan²⁷, James Chih-Hsin Yang²⁸, Maya Gottfried²⁹, Osvaldo Hernandez³⁰, Martin Kimmich³¹, Diego Cortinovis³², Diego Lucas Kaen³³, Lizbett Vanessa García Montes³⁴, Sanjay Popat³⁵, Thomas Newsom-Davis³⁶, John Xie³⁷, Tao Sun³⁷, Elizabeth Fennema³⁸, Mahesh Daksh³⁷, Mariah Ennis³⁹, Seema Sethi³⁹, Joshua M Bauml³⁹, Danny Nguyen⁴⁰

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

MARIPOSA: Phase 3 Study Design

This is the first randomized, double-blind trial to prospectively evaluate 2 third-generation EGFR-TKI

Serial brain MRIs were required for all patients^a Key eligibility criteria Locally advanced or metastatic NSCLC Amivantamab-lazertinib tion (N=1074) Treatment-naïve for advanced disease (n=429; open-label) Documented EGFR Ex19del or L858R ECOG PS 0 or 1 · Asymptomatic brain metastases did not Osimertinib 80 mg PO QD require definitive treatment (n=429; blinded) 2:2:1 Random **Stratification factors** • EGFR mutation type (Ex19del or L858R) · Asian race (yes or no) Lazertinib 240 mg PO QD History of brain metastases (yes or no) (n=216; blinded) Focus of this presentation

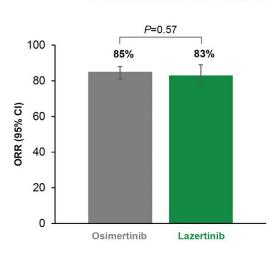
Primary endpoint: PFS by BICR per RECIST v1.1:

· Amivantamab-lazertinib vs osimertinib

Exploratory endpoints for lazertinib vs osimertinib reported here:

- PFS by BICR per RECIST v1.1
- ORR
- DoR
- TTSP
- · OS
- Safety

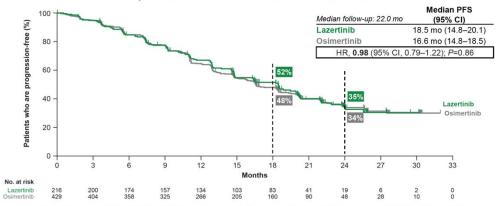
Lazertinib monotherapy arm was included to assess the contribution of components



SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Osimertinib and Lazertinib demonstrate similar activity

ORR and DoR by BICR


ORR and median DoR were comparable between lazertinib and osimertinib

BICR-assessed response, n (%) ^a	Osimertinib (n=429)	Lazertinib (n=216)		
ORR				
All responders	85% (95% CI, 81–88)	83% (95% CI, 77–88)		
Confirmed responders	76% (95% CI, 71–80)	75% (95% CI, 68–80)		
Best response ^b				
CR	15 (4)	9 (4)		
PR	335 (81)	168 (79)		
SD	42 (10)	23 (11)		
PD	11 (3)	9 (4)		
NE	11 (3)	5 (2)		
Median DoR ^c	16.8 mo (95% CI, 14.8–18.5)	16.6 mo (95% CI, 14.8–20.2		
Ongoing responses	151 of 314 (48)	77 of 160 (48)		

PFS by BICR

PFS was comparable between the lazertinib and osimertinib arms

PFS was comparable between lazertinib and osimertinib among prespecified subgroups including Asian race^a and EGFR mutation subtypes

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195% CI 0.655-1.781.

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195% CI 0.655-1.781.

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195% CI 0.785-1.371 1,655R HR 0.91 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.775-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

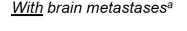
HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

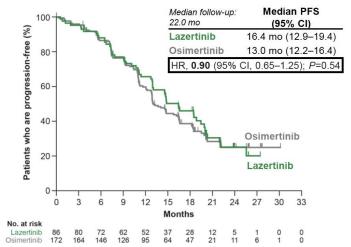
HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR 1.03 195%

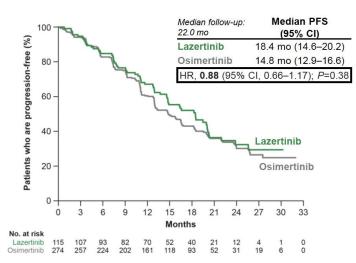
HR 102 195% CI 0.755-1.351 VP ton 19 deletion HR

BICR, blinded independent central review, CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; PFS, progression-free survival.

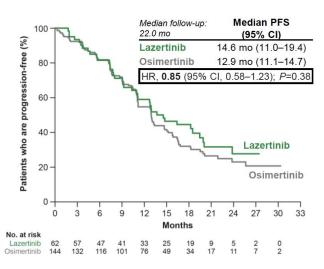




Osimertinib and Lazertinib demonstrate similar activity in high-risk subgroups

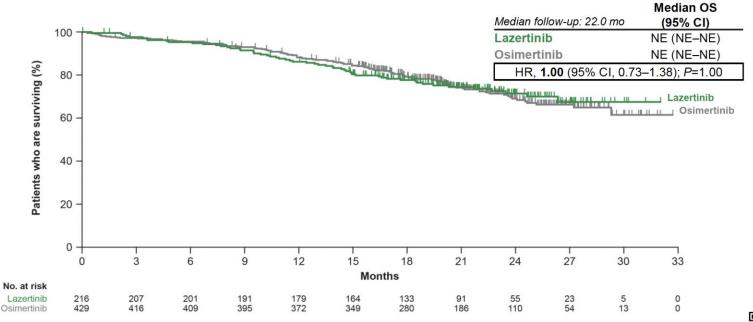

PFS by High-risk Subgroups

High-risk features, such as brain metastases, ctDNA shedding, and baseline TP53 co-mutations are common in patients with EGFR-mutated NSCLC.^{1–4} PFS results in these groups were comparable across arms



With detectable ctDNA at baseline^{a,b}

With TP53 co-mutations^{a,b}

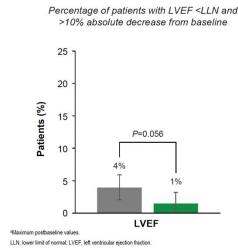


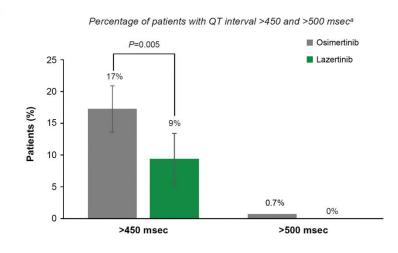
Osimertinib and Lazertinib demonstrate similar overall survival

Interim OS

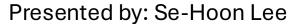
Early data demonstrated comparable survival outcomes between lazertinib and osimertinib

CI, confidence interval; HR, hazard ratio; NE, not estimable; OS, overall survival.



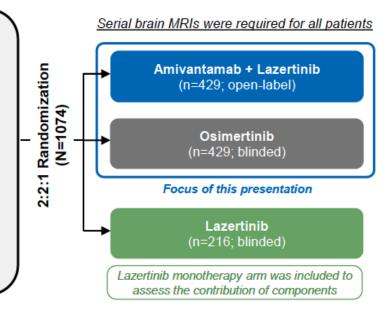


SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA


Osimertinib and Lazertinib have slightly different toxicity profiles

Most common TEAEs (≥20%) by preferred term, n (%)	Osimertinib (n=428)		Lazertinib (n=213)	
Related to EGFR inhibition	Grade 1-2	Grade ≥3	Grade 1-2	Grade ≥3
Diarrhea	187 (44)	3 (1)	64 (30)	4 (2)
Rash	128 (30)	3 (1)	91 (43)	4 (2)
Paronychia	119 (28)	2 (0.5)	59 (28)	2 (1)
Stomatitis	89 (21)	1 (0.2)	37 (17)	1 (0.5)
Dermatitis acneiform	55 (13)	0	45 (21)	0
Other				
COVID-19	94 (22)	9 (2)	39 (18)	3 (1)
Cough	88 (21)	0	36 (17)	1 (0.5)
Anemia	84 (20)	7 (2)	40 (19)	3 (1)
Thrombocytopenia	79 (18)	5 (1)	19 (9)	1 (0.5)
AST increased	53 (12)	5 (1)	42 (20)	3 (1)
ALT increased	49 (11)	8 (2)	44 (21)	6 (3)
Muscle spasms	32 (7)	0	49 (23)	1 (0.5)

- Osimertinib had higher rates of diarrhea (44% vs 32%), thrombocytopenia (20% vs 9%), and neutropenia (13% vs 3%) versus lazertinib
- Lazertinib had higher rates of rash (45% vs 31%), muscle spasms (23% vs 7%), and paresthesia (15% vs 6%) versus osimertinib


Phase 3 MARIPOSA Study Design

Key Eligibility Criteria

- Locally advanced or metastatic NSCLC
- Treatment-naïve for advanced disease
- Documented EGFR Ex19del or L858R
- ECOG PS 0 or 1

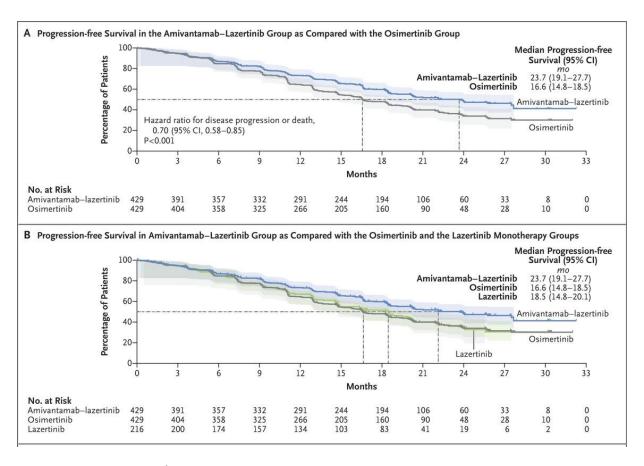
Stratification Factors

- EGFR mutation type (Ex19del or L858R)
- Asian race (yes or no)
- History of brain metastases (yes or no)

Primary endpoint of progression-free survival (PFS) by BICR per RECIST v1.1:

Amivantamab + lazertinib vs osimertinib

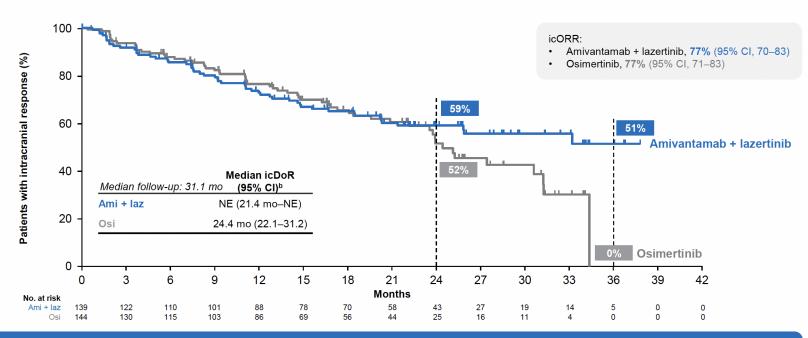
Endpoints reported in this presentationa:


- Intracranial PFS (icPFS)
- · Intracranial DoR (icDoR)
- · Intracranial ORR (icORR)
- · Time to treatment discontinuation (TTD)
- Time to subsequent therapy (TTST)
- PFS after first subsequent therapy (PFS2)
- · Overall survival

^aEndpoints not part of formal statistical testing; all *P*-values in this presentation are nominal

Presented by: Shirish Gadgeel

Amivantamab + Lazertinib demonstrated improved PFS compared to osimertinib in treatment naïve advanced EGFR-mutated NSCLC



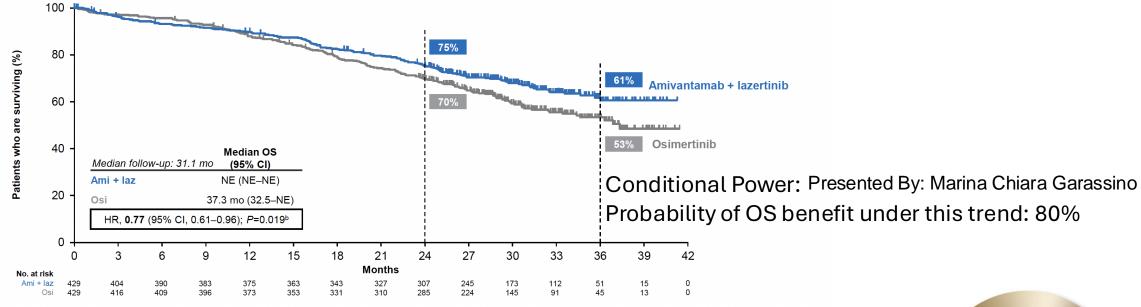
N Engl J Med. 2024 Jun 26. doi: 10.1056/NEJMoa2403614. Epub ahead of print. PMID: 38924756.

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Intracranial DoRa

icORR was 77% for both arms; however, amivantamab + lazertinib demonstrated greater durability of response, with improved icDoR vs osimertinib

antracranial DoR was defined as the time from the date of first documented intracranial response (CR or PR) until the date of documented intracranial progression or death, whichever occurred first, among patients with a history of brain metastases at screening who have intracranial CR or PR based on BICR using RECIST v1.1. Baseline brain MRI was required for all patients and performed ≤28 days prior to randomization; patients who could not have MRIs were allowed to have CT scans. Brain scan frequency was every 8 weeks for the first 30 months, then every 12 weeks thereafter for patients with a history of brain metastasis and every 24 weeks for patients with no history of brain metastasis. 95% CIs were estimated with Kaplan-Meier method.



Presented by: Shirish Gadgeel

Updated Overall Survival Analysis^a

A strong OS trend favoring amivantamab + lazertinib was observed

OS curves separate early and widen over time favoring amivantamab + lazertinib, with 61% of patients alive at 3 years vs 53% with osimertinib

a This analysis was requested by health authorities and had nominal alpha spend. A P-value of ≤0.00001 was required for statistical significance. P-value was calculated from a log-rank test stratified by mutation type (Ex19del or Exon 21 L858R), race (Asian or Non-Asian), and history of brain metastasis (present or absent). Hazard ratio was calculated from a stratified proportional hazards model.

Presented by: Shirish Gadgeel

Efficacy comparison of 1st line treatment options

	FLAURA2			MARIPOSA		
	Osimertinib	inib Osimertinib + FLAURA2 HR (95% CI)		Osimertinib	Amivantamab + Lazertinib	Mariposa HR (95% CI)
PFS	16.7 (14.1-21.3)	25.5 (24.7-NC)	0.62 (0.49-0.79)	16.6 (14.8-18.5)	23.7 (19.1-27.7)	0.70 (0.58-0.85)
OS	36.7 (33.2 –NC)	NR (38.0-NC)	0.75 (0.57-0.97)	37.3 (32.5-NE)	NE	0.77 (0.61-0.98)
Alive at 3 yrs	50%	64%		53%	61%	

Subgroup Analysis

	Mariposa HR* (95% CI)	FLAURA2 HR* (95% CI)
With CNS Mets	0.82 (0.62-1.09)	0.47 (0.33-0.66)
Without CNS Mets		0.75 (0.55-1.03)
Exon 19	0.65 (0.51-0.85)	0.60 (0.44-0.83)
L858R	0.78 (0.59-1.02)	0.63 (0.44-0.90)
ctDNA +	0.68 (0.53-0.86)	0.60 (0.45-0.80)
ctCNA -	0.72 (0.47-1.10)	0.95 (0.51-1.72)
TP53 altered	0.65 (0.48-0.87)	0.57 (0.29-1.12)
TP53 wild-type	0.75 (0.52-1.07)	NC
With Liver Mets	0.58 (0.37-0.91)	0.66 (0.41-1.07)
Without Liver Mets	0.74 (0.60-0.91)	0.63 (0.48-0.83

Adapted from: Marina Garassino

^{*} Compared to osimertinib

Toxicity comparison of 1st line treatment options

	Osimertinib		Osimertinib + Chemo		Amivantamab + Lazertinib	
AE (%)	Any	≥ grade 3	Any	≥ grade 3	Any	≥ grade 3
Any		27		64		75
Infusion reaction	0	0			63	6
Anemia	8	<1	46	20	23	4
Diarrhea	41	<1	43	3	29	2
Nausea	10	0	43	1	21	1
Fatigue	9	<1	28	3	17	1
Neutropenia	3	1	25	11	NR	NR
Thrombocytopenia	4	1	18	1	66	16
Stomatitis	18	<1	25	<1	29	1
Paronychia	27	<1	24	1	68	11
Rash	21	0	28	<1	62	15
Peripheral Edema	4	0	15	0	36	2
Pneumonitis		0		<1		2
Any VTE	9	4	NR	4	37	11
Cardiac disorder		2		4		1
Muscle spasms	7	0	NR	NR	17	<1

How to select the optimal strategy?

2L 3L **1L** ADCs* Amivantamab/Lazertinib* Osimertinib Amivantamab/Lazertinib* ADCs* Osimertinib + Carbo/Pem Carboplatin/Pemetrexed* Carbo/Pem Amivantamab + Carbo/Pem/Amivantamab* Lazertinib* Third-line chemo Carbo/Pem/ Amivantamab/Lazertinib*

Zosia Piotrowska, MD, MHS, ESMO Annual meeting 2023 plenary discussion

Marina Chiara Garassino @marinagarassino

appr

Summary and Conclusions

- 1. Osimertinib and lazertinib demonstrated similar efficacy, but slightly different toxicity as 1st line treatment for advanced EGFR-mutated NSCLC.
- 2. Osimertinib + chemotherapy and amivantamab + lazertinib showed improved PFS and trend towards OS compared to osimertinib monotherapy.
- 3. Patients with brain metastases at diagnosis may benefit the most from osimertinib + chemotherapy.
- 4. No clear subgroup benefited more from amivantamab + lazertinib compared to osimertinib + chemotherapy in cross-trial comparison.
- 5. Patients with no detectable ctDNA prior to treatment demonstrated the least benefit from 1st line combination therapies.
- 6. Differing toxicity profiles should be taken into account in treatment decisions.