

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

BEST OF WCLC 2024

Click to edit Master title style

Author

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse.

Officially Licensed by the IASLC 2024

Best of WCLC 2024 ALK, ROS1 and BRAF + Lung Cancer

Mohana Roy, MD Clinical Assistant Professor Stanford University School of Medicine mohanar@stanford.edu

ALK

2007	
Discovery of	
EML4-ALK	
translocation	

2012 Crizotinib (PROFILE-1014)

2017 Alectinib (ALEX)

2020 Brigatinib (ALTA-1L) 2021 Lorlatinib (CROWN)

BEST OF

What is Next? What Sequencing Should We Use?

-Further analysis and safety for Lorlatinib



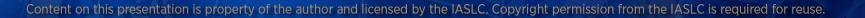
First-line lorlatinib showed prolonged benefit after 5 years of follow-up in the global phase 3 CROWN study

 After 5 years of follow-up, median PFS^a was NR (95% CI, 64.3 months-NR) with lorlatinib and 9.1 months (95% CI, 7.4-10.9 months) with crizotinib (HR, 0.19; 95% CI, 0.13-0.27)¹

Median time to IC progression^a was NR (95%) CI, NR-NR) with Iorlatinib and 16.4 months (95% CI, 12.7-21.9 months) with crizotinib (HR, 0.06; 95% CI, 0.03-0.12)¹

^aBy investigator assessment. 1. Solomon BJ, et al. J Clin Oncol. 2024 May 31: JCO2400581.

5


SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Patterns of progression with lorlatinib and insights into subsequent anticancer therapy efficacy in advanced <u>ALK</u>+ NSCLC

Tony S.K. Mok,¹ Benjamin J. Solomon,² Maria Rosario Garcia Campelo,³ Yi-Long Wu,⁴ Guillermo Streich,⁵ Milada Zemanova,⁶ Gérard Zalcman,⁷ Alessandra Bearz,⁸ Gee-Chen Chang,⁹ Matteo Setti,¹⁰ Anna Polli,¹⁰ Yasushi Goto¹¹

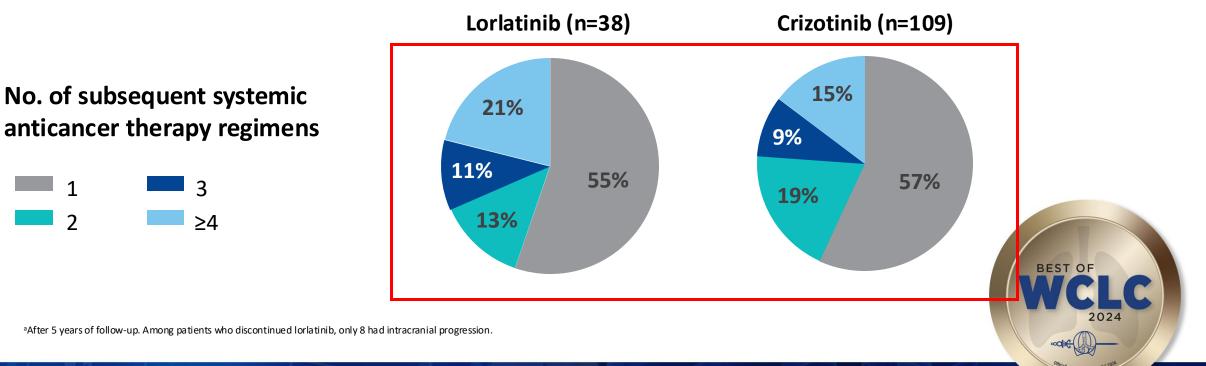
Kinetics and Management of Adverse Events Associated With Lorlatinib After 5 Years of Follow-Up in the CROWN Study

Todd M. Bauer,¹ Benjamin J. Solomon,² Julien Mazieres,³ Dong-Wan Kim,⁴ Diego Cortinovis,⁵ Takako Inoue,⁶ Richu Sharma,⁷ Holger Thurm,⁸ Anna Polli,⁹ Geoffrey Liu¹⁰ BEST OF

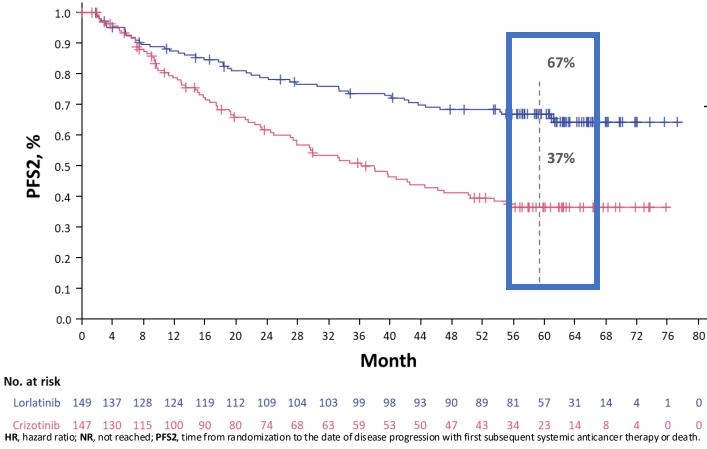
Clinical and molecular characteristics of early progressors (≤12 months) on lorlatinib vs those who remained progression free after 5 years

Clinical Characteristics	Early progressors (n=28)ª	Nonprogressors (n=45)ª	Total (n=73)
Age, mean (SD), years	60.5 (12.9)	56.1 (14.0)	57.8 (13.7)
Sex, n (%)			
Male	16 (57)	24 (53)	40 (55)
Female	12 (43)	21 (47)	33 (45)
Race, n (%) ^b			
Asian	15 (54)	28 (62)	43 (59)
White	12 (43)	16(36)	28 (38)
ECOG performance status, n (%)			
0	11 (39)	23 (51)	34 (47)
1	15 (54)	22 (49)	37 (51)
2	2 (7)	0	2 (3)
Brain metastases at baseline, n (%)			
Yes	6 (21)	10(22)	16(22)
No	22 (79)	35 (78)	57 (78)
Tumor burden at baseline, mm			NA
Mean (SD)	84.9 (45.7)	54.7 (34.4)	NA

Molecular profiling, n (%) ^c	Early progressors (n=28)ª	Nonprogressors (n=45) ^a
Confirmed ALK positive	14 (50)	35 (78)
EML4-ALK variant 1	6 (21)	10 (22)
EML4-ALK variant 2	0	5 (11)
EML4-ALK variant 3	5 (18)	11 (24)
EML4-ALK other variant	3 (11)	7 (16)
Other ALK fusion	0	2 (4)
Unconfirmed ALK positive ^d	14 (50)	10 (22)
TP53 mutation detected	16 (57)	10 (22)

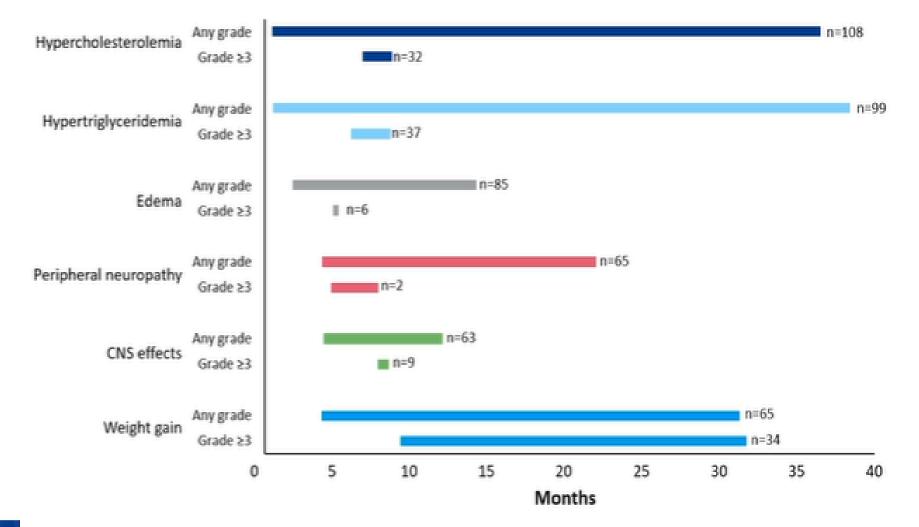


Tony S.K. Mok | Patterns of progression with lorlatinib and insights into subsequent anticancer therapy efficacy in advanced ALK+ NSCLC


Subsequent systemic anticancer therapy

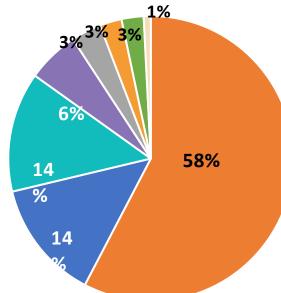
- After 5 years of follow-up, 75 of 149 (50%) patients had discontinued lorlatinib and 135 of 142 (95%) had discontinued crizotinib^a
- 38 of 149 (26%) patients in the lorlatinib arm and 109 of 147 (74%) in the crizotinib arm had ≥1 subsequent systemic anticancer therapy

PFS2 was longer in patients who received lorlatinib vs crizotinib as the study treatment


	Lorlatinib (N=149)	Crizotinib (N=147)
Duration of follow-up for PFS2, median (95% CI), months	61.4 (59.2-62.5)	58.4 (56.8-61.9)
PFS2 events, n (%)	48 (32)	78 (53)
PFS2, median (95% CI), months	NR (NR-NR)	37.9 (27.4-50.1)
HR (95% CI)	0.43 (0.3	0-0.62)

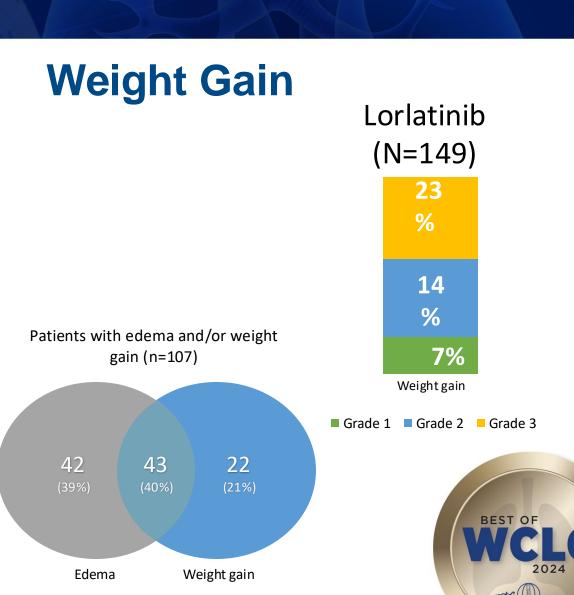
Tony S.K. Mok | Patterns of progression with lorlatinib and insights into subsequent anticancer therapy efficacy in advanced ALK+ NSCLC

Symptom Timeline



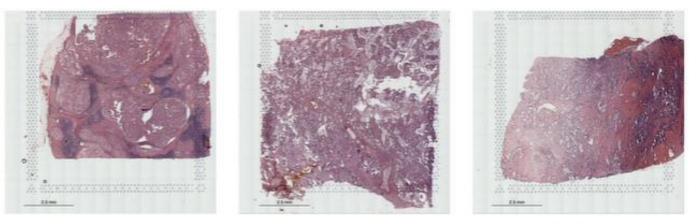
2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA


CNS Events

No medical intervention

Dose interruption only
Dose interruption + con med
Dose reduction + dose interruption
Dose reduction only
Permanent treatment discontinuation
Dose reduction + dose interruption + con med


Total CNS evens (n=118)

Ensartinib

Patients on ensartinib experienced PFS greater than 65 months despite ALK related resistance mechanisms

	Patient 1	Patient 2	Patient 3
Outcome on ensartinib	Stable disease	Partial response	Complete response
Cycles of ensartinib*	73	70	82
Sample notes	Lymph node metastasis	Lung	Lung
	N.		

*Biopsies were taken prior to ensartinib therapy

My Conclusions

- After 5 years of follow-up, median PFS^a was NR vs 9.1 months for lorlatinib vs crizotinib
 - Most AEs occur within 4 months, significant ones usually within 9 months
 - Hyperlipidemia occurs quickly after start of treatment
 - Weight gain is common (44%), 58% of CNS AEs did not need intervention
- PFS2 was longer in those who received lorlatinib compared to crizotinib
 - Does not answer where alectinib, brigatinib, and ensartinib fit in

ROS1

2007 Discovery of ROS1 rearrangement 2016 Crizotinib Ce (PROFILE- (AS 1001)

2017 Ceritinib (ASCEND-5) 2019 Entrectinib (STARTRK-2)

2019 Lorlatinib

2020 Repotrectinib (TRIDENT-1)

BEST OI

What is Next? What Sequencing Should We Use?

-Taletrectinib

-Unectrinib

-Lorlatinib (re-studied)

Taletrectinib

TRUST-II (NCT04919811) Phase 2 Trial of <u>Taletrectinib</u> in ROS1+ <u>NSCLC^a</u>



- TKI Naïve (n=55)
 - 20% with prior chemotherapy, 34% brain metastasis
- TKI Pretreated (n=50)
 - 38% prior chemotherapy, 56% brain metastasis

Taletrectinib Responses in TKI-Naive ROS1+ NSCLC^{a,b} **Response Rate**

Median follow-up: 15.8 mo (range: 3.6-29.8)

TKI Naive (n=54)

85.2 (72.88,

93.38)

87.9 (71.80,

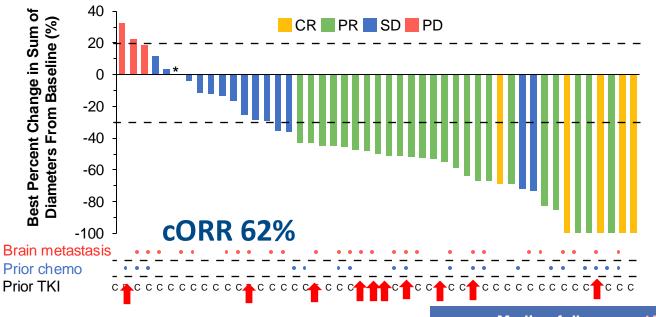
96.60)

81.0 (58.09, 94.55)

2 (22.2)

4 (44.4)

BEST OF


Data cutoff: June 7, 2024. aResponse evaluable population (patients with ≥1 measurable lesion at baseline who received ≥1 dose of taletrectinib). Patients with confirmed BOR as not evaluable are not displayed in the waterfall plots. *One patient had a best percent change of 0%. BOR, best overall response; CI, confidence interval; cORR, confirmed objective response rate; CR, complete response; IC, intracranial; DOR, duration of response; NR, not reached; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor.

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. Geoffrey Liu | Efficacy and Safety of Taletrectinib in Patients with ROS1+ Non-

Taletrectinib Responses in TKI-Pretreated ROS1+ NSCLC^{a,b}

Response Rate	TKI Pretreated (n=47)
cORR, % (95% CI)	61.7 (46.38, 75.49)
Asia ORR (n=21)	57.1 (34.02, 78.18)
Non-Asia ORR (n=26)	65.4 (44.33, 82.79)

Measurable baseline brain metastases	TKI Pretreated (n=16)
IC-ORR, % (95% CI)	56.3 (29.88, 80.25)
CR, n (%)	1 (6.3)
PR, n (%)	8 (50.0)

Median follow-up: 15.7 mo (range: 3.9–29.8)

Data cutoff: June 7, 2024. aResponse evaluable population (patients with ≥1 measurable lesion at baseline who received ≥1 dose of taletrectinib). bPatients with confirmed BOR as not evaluable are not displayed in the waterfall plots. *One patient had a best percent change of 0%. C, crizotinib; CI, confidence interval; cORR, confirmed objective response rate; CR, complete response; E, entrectinib; IC, intracranial; DOR, duration of response; NR, not reached; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor.

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. Geoffrey Liu | Efficacy and Safety of Taletrectinib in Patients with ROS1+ Non-Small

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

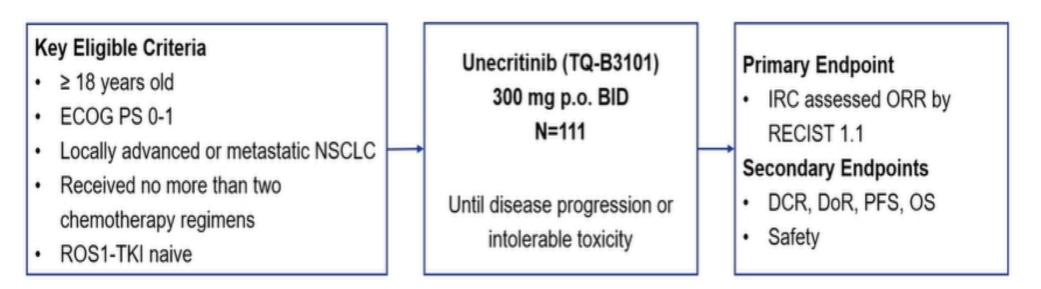
Taletrectinib Safety: TEAEs in ≥15% of Patients (N=159)

	Any grade, n (%)	Grade ≥3, n (%)
Increased ALT	108 (67.9)	24 (15.1)
Increased AST	107 (67.3)	11 (6.9)
Diarrhea	90 (56.6)	1 (0.6)
Nausea	82 (51.6)	3 (1.9)
Vomiting	53 (33.3)	2 (1.3)
Constipation	40 (25.2)	0 (0)
Anemia	32 (20.1)	7 (4.4)
Dysgeusia	31 (19.5)	0 (0)
Increased blood CPK	29 (18.2)	6 (3.8)
Dizziness	27 (17.0)	0 (0)
Prolonged QT	24 (15.1)	5 (3.1)

GI toxicities: Majority were Grade 1

7.5% of patients had a TEAE leading to treatment discontinuation; **1.3% were treatment-related**

Rates of neurologic TEAEs were low (dysgeusia: 19.5%; dizziness: 17.0%); none were grade ≥3



Data cutoff: June 7, 2024. AE, adverse event; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatinine phosphokinase; TEAE, treatment-emergent adverse event

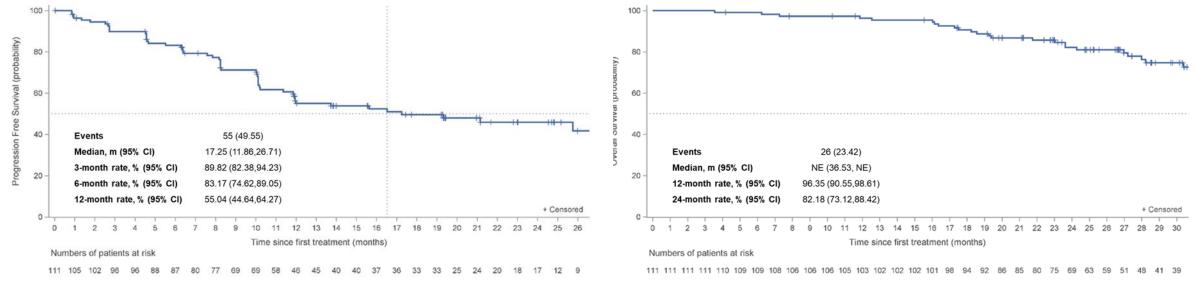
Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. Geottrey Liu Efficacy and Safety of Taletrectinib in Patients with ROS1 + Non-Small

Unectritinib

- The ORR assessed by investigator (RECIST 1.1) is for sensitivity analysis.
- A sample size of 111 patients achieving >85% power to detect a difference of 0.15 (P0=0.50, P1=0.65) using an 2 sided binomial test with a significance level of 0.05.

BEST OF

A total 111 Chinese patients entered the study from 29 sites in China between Nov, 2019 to Jan, 2021.



Efficacy

	Overall populations (N=111)	Baseline brain metastases (N=33)	Prior chemotherapy (N=48)
ORR, % (95% CI)	81.08 (72.55,87.89)	72.73 (54.48,86.70)	79.17 (65.01,89.53)
Median DoR, m (95% CI)	20.30 (12.88,26.12)	9.23 (7.36,11.04)	20.30 (11.04,NE)
Median PFS, m (95% CI)	17.25 (11.86,26.71)	10.09 (5.52,11.89)	19.32 (10.12,NE)
Median OS, m (95% CI)	NE (36.53, NE)	28.22 (19.25,36.53)	NE (30.39,NE)

Progression-Free Survival by IRC

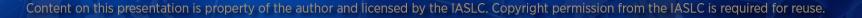
Overall Survival

Data cut-off: June 20, 2022

DoR, duration of response; IRC, independent review committee; NE, not evaluable; ORR, objective response rate; OS, overall survival; PFS, progression free survival.

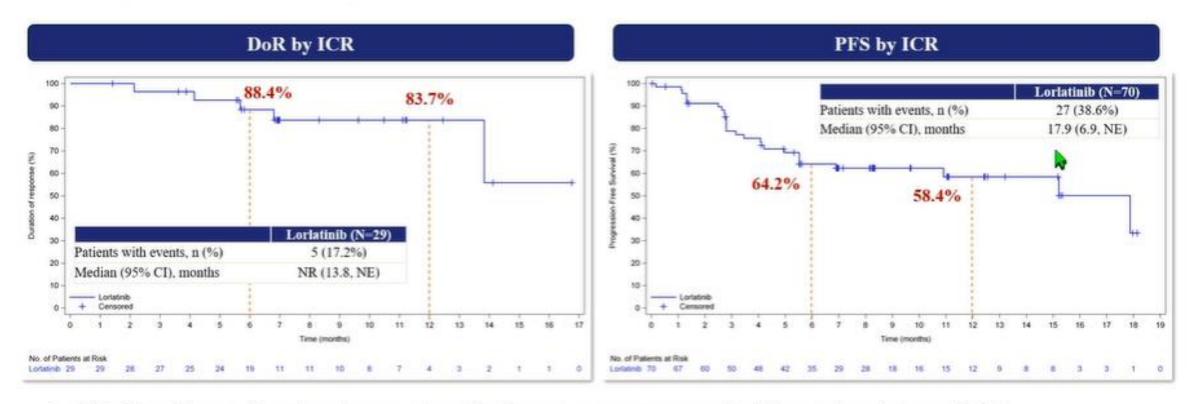
Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for reuse. Ziming Li Unecritinib in Patients with ROS1 Positive Advanced Non-Small Cell Lung Cancer: Updated

What about Lorlatinib?


A Phase II Study of Lorlatinib in Advanced ROS1+ NSCLC Pre-treated with Crizotinib and Platinum-Based Chemotherapy

Presenter: Yi-Long Wu

Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China


Huajun Chen¹; Zhiyu Huang²; Longhua Sun³; Xingya Li⁴; Likun Chen⁵; Juan Li⁶; Zhengfei Zhu⁷; Wu Zhuang³; Kaihua Lu⁹; Yongchang Zhang¹⁰; Ke Wang¹¹; Yanfan Chen¹²; Dingzhi Huang¹³; Jun Zhao¹⁴; Yong He¹⁵; Peng Zhang¹⁶; Xiangjiao Meng¹⁷; Yingying Du¹⁸; Yubiao Guo¹⁹; Xiaorong Dong²⁰; Anwen Liu²¹; Junling Li²²; Shundong Cang²³; Qiang Wang²⁴; Hangjun Dai²⁴; Teng Fang²⁴; Sheng Yao²⁴; Qingmei Shi²⁴; Jason Yang²⁴; Yi-Long Wu¹

BEST OF

Efficacy: DoR and PFS by ICR

- Of the 29 participants with confirmed response, the median time to tumor response assessed by ICR was 1.4 months (range 1.2-8.4).
- Median OS was not reached at a median follow-up of 9.4 months. 12-month OS rate was 73.2% (95% CI: 60.1%, 82.6%).

	Comparator Arm	PFS	OS	Intracranial Response	Major Side Effects
Ceritinib	CHEMO	19.3 months	NR		
Crizotinib	NA	19.2 months	NR	20%	
Entrectinib	NA	19 months	NR	55%	
Lorlatinib	NA	21 months	NR	60%	
Repotrectinib	NA	35.7 months ORR 79%	NR	89%	
Taletrectinib	NA	? ORR 85%	?	67%	Grade 3 LFTs (15%) GI side effects grade 1
Unectritinib	NA	17.25 months ORR 81%	?	72% (small n of 33	Grade 3 AEs 51%

Content on this presentation is property of the author and licensed by the IASLC. Copyright permission from the IASLC is required for all control is property of the author and licensed by the IASLC.

My Conclusions

- Two effective ROS1 inhibitors were presented
 - Taletrectinib had compelling overall response rates in TKI naïve and pre-treated populations
- Lorlatinib in patients with pretreatment with crizotinib and chemotherapy, still can have significant activity, with a median PFS of 17 months
- With current data, standard of care still likely repotrectinib

Figure reprinted from Solomon BJ, et al. J Clin Oncol. 2024: JCO2400581. Copyright © 2024, Wolters Kluwer Health

ALK, anaplastic lymphoma kinase; BICR, blinded independent central review; HR, hazard ratio; IC, intracranial; NR, not reached; NSCLC, non-small cell lung cancer; OS, overall survival; PFS, progression-free survival; PFS2, time from randomization to the date of disease progression with first subsequent systemic anticancer therapy or death; TTP, time to progression. ^aBy investigator assessment. 1. Solomon BJ, et al. *J Clin Oncol.* 2024 May 31:JCO2400581.

BRAF

1985		2017	2018 Immunothera	2023
Discovery of BRAF in mice studies	2015 Vemurafenib	Dabrafenib and Trametinib – FDA approval	py use in BRAFV600E mutant NSCLC	Encorafenib and Binimetinib

BEST OI

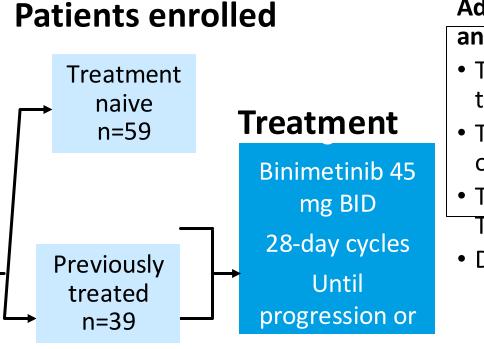
What is Next? What Sequencing Should We Use?

-Updated Data on BRAF inhibitors

Updated safety analysis of encorafenib plus binimetinib in patients with BRAF V600E-mutant metastatic NSCLC from PHAROS study

Egbert Smit,¹ Myung-Ju Ahn,² Ibiayi Dagogo-Jack,³ Enriqueta Felip,⁴ Francesco Gelsomino,⁵ Bruce E. Johnson,⁶ Melissa Johnson,⁷ Marcelo V. Negrao,⁸ Michael Offin,⁹ Suresh Ramalingam,¹⁰ Rachel Sanborn,¹¹ Anne Tsao,⁸ Keith Wilner,¹² Ann Alcasid,¹³ Tiziana Usari,¹⁴ Xiaosong Zhang,¹⁵ <u>Gregory Riely</u>⁹

 ¹Leiden University Medical Center, Leiden, Netherlands; ²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ³Massachusetts General Hospital, Boston, MA, USA; ⁴Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁵IRCCS Azienda Ospedaliero-Universitaria diBologna, Bologna, Italy;
⁶Dana-Farber Cancer Institute, Boston, MA, USA; ⁷Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN, USA;
⁸The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁰Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹¹Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; ¹²Pfizer, La Jolla, CA, USA; ¹³Pfizer, Collegeville, PA, USA; ¹⁴Pfizer, Milan, Italy; ¹⁵Pfizer, South San Francisco, CA, USA



PHAROS: a phase 2, open-label study (NCT03915951)

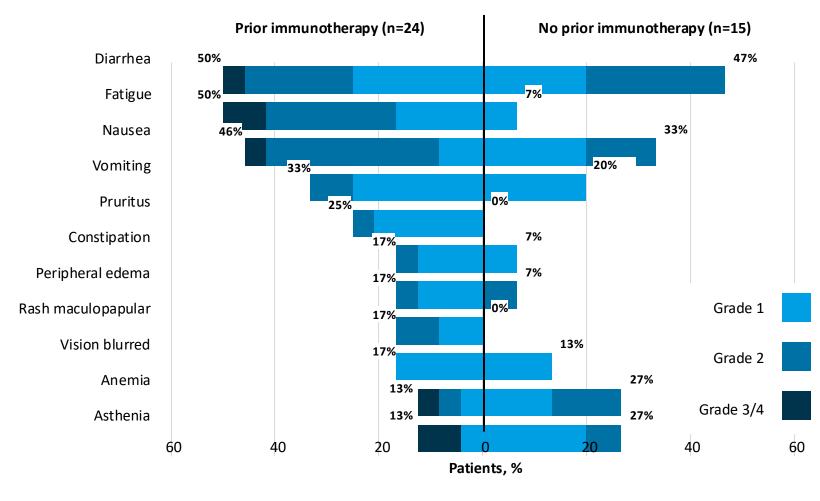
Key eligibility criteria

- BRAF V600E-mutant metastatic NSCLC^a
- ECOG performance status 0 or 1
- No *EGFR* mutation, *ALK* fusion, or *ROS1* rearrangement
- ≤1 prior line of treatment in the advanced setting
- No prior treatment with BRAF or MEK inhibitor
- No symptomatic brain metastases

Additional safety analyses included:

- TRAE profile by treatment line
- TRAE profile by history of prior immunotherapy
- Time to onset of specific TRAE clusters
- Dose modifications

BRAF mutation testing was determined by PCR- or NGS-based assay and sent to a central laboratory.
Other reasons for ending treatment were withdrawal of consent, initiation of subsequent anticancer therapy, or death.
ALK, anaplastic lymphoma kinase; BID, twice daily; BRAF, v-Raf murine sarcoma viral oncogene homolog B; DOR, duration of response; ECOG, Eastern Coope ative Oncology Group; EGFR, epidermal growth factor rection; PDA, US Food and Drug Administration; MEK, mitogen-activated protein kinase; NE, not estimable; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; ORR, objective response rate; PCR, polymerase chain reaction; PFS, progression, fre survival; QD, once daily; ROS1, proto-oncogene receptor tyrosine-protein kinase 1; TRAE, treatment-related adverse event.
Riely GJ, et al. J Clin Oncol. 2023;41(21):3700-3711. 2. Braftovi (encorafenib). Prescribing information. Array BioPharma, Inc; 2018. Accessed June 11, 2024. https://labeling.pfizer.com/ShowLabeling.aspx?id=12988.



Treatment ongoing and median duration of treatment

	Primary analysis cutoff (September 22, 2022) ¹			alysis cutoff 9, 2023)
	Treatment naive (n=59)	Previously treated (n=39)	Treatment naive (n=59)	Previously treated (n=39)
Freatment ongoing, n (%)	25 (42)	8 (21)	19 (32)	4 (10)
Encorafenib treatment duration, median (range), months	15.1 (0-35.1)	5.4 (0.1-31.2)	16.3 (0-45.5)	5.5 (0.1-41.0)
Binimetinib treatment duration, median (range), months	14.4 (0-35.1)	5.4 (0.1-31.2)	16.3 (0-45.5)	5.5 (0.1-41.0)
Patients who have received >2 years of treatment, n (%)	14 (24)	3 (8)	24 (41)	4 (10) BEST OF
1. Riely GJ, et al. <i>J Clin Oncol.</i> 2023;41(21):3700-3711.				

T. Riely GJ, et al. J Clint Oncol. 2023;41(21):3700-3711.

TRAEs (≥15%) in previously treated patients with or without prior immunotherapy

BEST OF

2024

2024 World Conference on Lung Cancer

SEPTEMBER 7-10, 2024 | SAN DIEGO, CA USA

Thank you!

