

Metastatic Non-Small Cell Lung Cancer. A 2024 update.

Rafael Santana-Davila. MD. Associate Professor. Fred Hutch Cancer Center/ University of Washington

Background

- Several phase 3 studies have been reported in the last couple of years.
- Several FDA approvals have occurred in 2024.
- Field is in flux with no clear standards and many options.

Initial treatment

- Depends on clinical, molecular and patient characteristics.
- All patients should have NGS to look for driver mutations. Circulating CT-DNA and tissue based NGS are complimentary.

Treatment algorithms

PDL1>50

Published in: Martin Reck; Delvys Rodríguez-Abreu; Andrew G. Robinson; Rina Hui; Tibor Csőszi; Andrea Fülöp; Maya Gottfried; Nir Peled; Ali Tafreshi; Sinead Cuffe; Mary O'Brien; Suman Rao; Katsuyuki Hotta; Ticiana A. Leal; Jonathan W. Riess; Erin Jensen; Bin Zhao; M. Catherine Pietanza; Julie R. Brahmer; *Journal of Clinical Oncology* 2021 392339-2349. DOI: 10.1200/JCO.21.00174 Copyright © 2021 American Society of Clinical Oncology

PDL1>50

Published in: Marina C. Garassino; Shirish Gadgeel; Giovanna Speranza; Enriqueta Felip; Emilio Esteban; Manuel Dómine; Maximilian J. Hochmair; Steven F. Powell; Helge G. Bischoff; Nir Peled; Francesco Grossi; Ross R. Jennens; Martin Reck; Rina Hui; Edward B. Garon; Takayasu Kurata; Jhanelle E. Gray; Paul Schwarzenberger; Erin Jensen; M. Catherine Pietanza; Delvys Rodríguez-Abreu; *Journal of Clinical Oncology* 2023 411992-1998. DOI: 10.1200/JCO.22.01989

Copyright © 2023 American Society of Clinical Oncology

CTLA4 did nothing

Boyer, M. et al. J Clin Oncol 39, 2327–2338 (2021). PMID (33513313)

Treatment algorithms

Nippon study

Shiraishi Y. Lancet Respir Med. 2024 PMID: 39159638.

Subgroups

A Overall survival

	Events/patients			Unstratified HR (95% CI)
	Pembrolizumab	Nivolumab-ipilimumab	-	
Clinical stage				
IV	45/111	45/115		1.00 (0.66–1.51)
III or recurrent	15/36	12/33	o	0.84 (0.39-1.80)
Sex				
Male	46/116	43/120		0.92 (0.60-1.39)
Female	14/31	14/28		1·15 (0·55-2·41)
Histology				
Squamous cell carcinoma	13/32	13/33		1.02 (0.47-2.21)
Non-squamous cell carcinoma	47/115	44/115		0.94 (0.62-1.42)
PD-L1TPS				
<1%	22/61	29/58		1.44 (0.82-2.50)
1-49%	24/47	15/49		0.58 (0.30-1.10)
≥50%	6/25	5/23		0.93 (0.28-3.06)
Unknown	8/14	8/18		0.89 (0.33-2.38)
Age, years				
<75	49/125	47/123	D	1.01 (0.68-1.51)
≥75	11/22	10/25	o	0.65 (0.27–1.59)
ECOG performance status				
0	27/66	24/70		0.79 (0.46-1.37)
1	33/81	33/78		1.11 (0.69–1.80)
Smoking status				
Never	8/17	5/17 —		0.59 (0.19-1.81)
Current or former	52/130	52/131		1.02 (0.69–1.49)
		- <u>17</u>		

Adverse events

	Pembrolizumab group (n=144)			Nivolumab-ipilimun	Nivolumab-ipilimumab group (n=146)		
	Non-squamous cell carcinoma (n=112)	Squamous cell carcinoma (n=32)	Total (n=144)	Non-squamous cell carcinoma (n=114)	Squamous cell carcinoma (n=32)	Total (n=146)	
Grade 2 or worse	87 (78%)	29 (91%)	116 (81%)	96 (84%)	29 (91%)	125 (86%)	
Grade 3 or worse	43 (38%)	16 (50%)	59 (41%)	65 (57%)	22 (69%)	87 (60%)	
Grade 4 or worse	5 (4%)	2 (6%)	7 (5%)	12 (11%)	6 (19%)	18 (12%)	
Grade 5 (treatment-related death)	2 (2%)	1 (3%)	3 (2%)	9 (8%)	2 (6%)	11 (8%)	
Data are n (%).							

Conclusions Driver negative.

- Depends on PDL1 staining. Not a perfect biomarker.
- In PDL1>50. Immunotherapy alone is an option.
- In others depends on discussion with a patient to understand their values, goals, hope.

Mutation driven cancers

- When there is a target.
- In the majority of cases.
 - Better responses.
 - Better tolerance.
 - Still palliative.

Driver mutation driven NSCLC

FLAURA OG

Initial treatment of patients with metastatic EGFR+ lung cancer.

- Patient with EGFR +ve lung cancer have remarkable response to osimertinib; however, this are not long lived (median DOT 20.7 months) and eventually patients progress needing other forms of treatment.
- FLAURA2 was a phase 3 study that compared patients treated with osimertinib vs the experimental arm of osimertinb + carboplatin and pemetrexed.

Planchard, D. *et al.* Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. *N Engl J Med* **389**, 1935–1948 (2023).

Results

- Eligibility criteria. Del19 or L858R. Metastatic and asymptomatic CNS disease was allowed (41%).
- Primary endpoint. PFS.
- 557 patients were randomized.
- 76% completed the planned 4 cycles of platinum and a median of 12 cycles (range, 1 to 48) of pemetrexed.
- ORR did not differ (83 vs 76%)

Results

A Progression-free Survival According to Investigator Assessment (full analysis set)

PFS in patients with CNS disease

Jänne, P. A. *et al.* CNS Efficacy of Osimertinib With or Without Chemotherapy in Epidermal Growth Factor Receptor-Mutated Advanced Non-Small-Cell Lung Cancer. *J Clin Oncol* JCO2302219 (2023).

Overall survival

So now what?

- Clearly an option that improves PFS compared to osi alone. Unknown if this will translated into an OS advantage compared to sequential treatment.
- Who are the patient that would benefit from a more aggressive treatment? Large burden of disease?
 Significant CNS disease?
- Who are those patient that are likely to stay on osi for a few years, those years where less is more.

Ami + Lazertinib

- Amivantamab, an EGFR-MET bispecific antibody.
- Lazertinib is a 3rd gen TKI against EGFR.
- Active in the second line setting.
- RCT compared to osimertinib.

Cho, B. C. *et al.* Amivantamab plus Lazertinib in Previously Untreated EGFR - Mutated Advanced NSCLC. *New England Journal of Medicine*(2024).

Results

A Progression-free Survival in the Amivantamab-Lazertinib Group as Compared with the Osimertinib Group

B Progression-free Survival in Amivantamab-Lazertinib Group as Compared with the Osimertinib and the Lazertinib Monotherapy Groups

Adverse events

Table 3. Adverse Events.*				
Event	Amivantamab–Lazertinib (N=421)		Osimertinib (N=428)	
	All	Grade ≥3	All	Grade ≥3
	number of patients (percent)			
Any event	421 (100)	316 (75)	425 (99)	183 (43)
Any serious event	205 (49)		143 (33)	
Any event resulting in death		34 (8)		31 (7)
Event leading to interruption of any trial agent	350 (83)		165 (39)	
Event leading to dose reduction of any trial agent	249 (59)		23 (5)	
Event leading to discontinuation of any trial agent	147 (35)		58 (14)	
Adverse events reported in ≥15% of the patients in either group†				

Conclusions EGFR

- Clearly some patients do extremely well on Osi.
- However others are likely to benefit from escalation of therapy. Who and how?
- In my own practice I continue to use osi as the standard with a discussion with the patient about the other options.

ALK

Mok, T. et al. Ann Oncol 31, 1056–1064 (2020). PMID (32418886)

Lorlatanib

FIG 2. PFS by investigator assessment in the intention-to-treat population. HR, hazard ratio; NR, not reached; PFS, progression-free survival.

Solomon, B. J. et al. J Clin Oncol JCO2400581 (2024). PMID (38819031)

Adverse events

TABLE 2. Summary of AEs

Safety Population	Lorlatinib (n = 149)	Crizotinib (n = 142)
All-causality AEs, No. (%)		
Any grade	149 (100)	140 (99)
Grade 3/4	115 (77)	81 (57)
Grade 5	14 (9)	7 (5)
Serious	65 (44)	45 (32)
Leading to temporary drug discontinuation	92 (62)	68 (48)
Leading to dose reduction	34 (23)	21 (15)
Leading to permanent drug discontinuation	16 (11)	15 (11)

TABLE A4. Summary of CNS AEs in the Lorlatinib Group

	Lorlatinib (n = 149)				
Cluster Term	Any Grade	Grade 1	Grade 2	Grade 3	Grade 4
Any AEs, No. (%)	63 (42)	36 (24)	18 (12)	8 (5)	1 (1)
Cognitive effects ^a	41 (28)	25 (17)	11 (7)	5 (3)	0
Mood effects ^b	31 (21)	17 (11)	12 (8)	2 (1)	0
Speech effects ^c	9 (6)	6 (4)	2 (1)	1 (1)	0
Psychotic effects ^d	8 (5)	5 <mark>(</mark> 3)	1 (1)	1 (1)	1 (1)

Conclusions

- Multiple options where options were very limited.
- Back to being a good oncologist where we find out our patient's goals, hopes and values and recommend treatment based on these.

Thank you

rafaelsd@uw.edu rsantan2@fredhutch.org

UW Medicine