Precision Oncology and Landmark Advances in GU Malignancies

Walter Stadler, MD, FACP

University of Chicago Medicine

Fred C. Buffett Professor of Medicine

Assoc. Dean for Clin. Science Res., Clinical Trials

Senior Advisor, Director Comprehensive Cancer Center

20th Annual California Cancer Consortium Conference, 8/24/24

GU Cancer Therapy: 1994

Standard of Care

Prostate Cancer

- "Hormone sensitive" vs "hormone refractory"
- Medical oncologist as bone pain doctor
- LHRH agonists rather than orchiectomy

Renal Cancer

- "Hypernephroma" as one disease
- Very few academic oncologists focused on this disease
- High dose IL2/(Interferon-α)

Bladder Cancer

- A "chemotherapy sensitive" disease
- MVAC (1980's)

Data in Context

Recognition of Genomic Predisposition

- Fraction of patients getting germline testing: <20% ٠ (of those meeting guidelines)
- Not enough genetic counselors

THE UNIVERSITY OF CHICAGO

Treating MD's will have to take testing responsibility ۲

Prostate Cancer: 11%

3

Any NGS Test in Metastatic Prostate & Bladder Cancer

A Metastatic prostate cancer					B Advanced urothelial carcinoma				
Variable	HR (95% CI)	Less NGS testing	More NGS testing	P value	Variable	HR (95% CI)	Less NGS testing	More NGS testing	P value
Socioeconomic status					Socioeconomic status				
5 (Highest)	1 [Reference]				5 (Highest)	1 [Reference]			
4	0.93 (0.84-1.03)	-	-	.14	4	0.95 (0.84-1.07)			.40
3	0.90 (0.82-1.00)	-		.050	3	0.97 (0.86-1.11)			.69
2	0.89 (0.80-0.99)	+		.03	2	0.87 (0.76-1.00)			.049
1 (Lowest)	0.74 (0.66-0.83)			<.001	1 (Lowest)	0.77 (0.66-0.89)			<.001
Race and ethnicity					Race and ethnicity				
White	1 [Reference]				White	1 [Reference]			
Asian	0.84 (0.63-1.11)		—	.22	Asian	1.06 (0.75-1.50)		-8	.73
Black	0.75 (0.67-0.84)	+		<.001	Black	0.76 (0.61-0.96)			.02
Hispanic or Latino	0.70 (0.60-0.82)	-1-		<.001	Hispanic or Latino	0.88 (0.70-1.10)			.26
Other	0.97 (0.88-1.07)	-	-	.54	Other	1.08 (0.96-1.22)	-		.18
Region					Region				
Midwest	1 [Reference]				Midwest	1 [Reference]			
Northeast	1.02 (0.90-1.17)	-	-	.73	Northeast	1.18 (0.99-1.41)		-	.07
South	1.05 (0.94-1.18)	-	-	.37	South	1.29 (1.12-1.49)			- <.001
West	0.81 (0.70-0.94)	-8-		.005	West	1.06 (0.88-1.28)		-	.55
Insurance					Insurance				
Commercial	1 [Reference]				Commercial	1 [Reference]			
Medicare or other government prograr	n 0.89 (0.82-0.98)	-		.01	Medicare or other government program	n 0.88 (0.78-0.99)		- - 	.03
Medicaid	0.53 (0.38-0.74)			<.001	Medicaid	0.72 (0.53-0.97)			.03
Other	1.10 (0.97-1.25)		-	.13	Other	1.06 (0.91-1.23)	_	-	.47
	Ó	0.5 1	.0 1.5	2.0		0	.5 1	.0	1.5
		HR (9	5% CI)				HR (9	5% CI)	

- Primary tumor
- Biopsy of metastatic site
- CTC
- ctDNA

- Primary tumor
 - Differences between biopsy & surgical specimen
 - Genomic evolution over time
 - Age of specimen
 - Location of specimen

- Biopsy of metastatic site
 - Bone biopsy successful in ~70% (experienced hands)
 - Bone biopsy decalcification affects NGS
 - Sampling error, intra-patient heterogeneity

CTC

- Multiple platforms
 - Epic Biosciences
 - Cell Search
 - Various other technologies
- CTC incidence low in early stage disease
- Sample sufficiency for sequencing
- Falling out of favor due to logistical difficulties

- ctDNA
 - Rapidly emerging and changing technology
 - Distinguishing clonal hematopoiesis of indeterminate potential (CHIP)
 - ctDNA incidence low in early stage disease
 - Sample sufficiency for sequencing

University of Chicago and Targeted Therapy

Charles B. Huggins Facts

Studies on Prostatic Cancer

I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate*

Charles Huggins, M.D., and Clarence V. Hodges, M.D.

(From the Department of Surgery, the University of Chicago, Chicago, Illinois) (Received for publication March 22, 1941)

Photo from the Nobel Foundation archive.

Charles Brenton Huggins The Nobel Prize in Physiology or Medicine 1966

Born: 22 September 1901, Halifax, Nova Scotia, Canada

Died: 12 January 1997, Chicago, IL, USA

Affiliation at the time of the award: University of Chicago, Ben May Laboratory for Cancer Research, Chicago, IL, USA

Prize motivation: "for his discoveries concerning hormonal treatment of prostatic cancer"

Prize share: 1/2

The Prostatologist's Endocrine Axis

AR Targeted Therapy Toxicity

• Financial:

- Orchiectomy vs chemical castration
- Brand name vs generic vs pharmacology guided dosing
- Fatigue
- Neuropsychiatric
 - Depression vs neurocognitive vs fatigue/activation
 - Rare seizures (enzalutamide, apalutamide)
 - Benefit with low-brain penetration? (darolutomide)

- Libido/sexual function (we are ignoring the partner)
- Osteopenia/Osteoporosis
 - $_{\circ}$ ~ Role of exercise, calcium, Vitamin D
 - Role for denosumab, zoledronate
- Sarcopenia
 - Part of fatigue syndrome
 - Role of exercise
- Frailty
- Metabolic syndrome
 - Diabetes
 - o Hyperlipidemia

Phase 3 Trials in Metastatic "Castrate Sensitive" PCa

Deeete	volve 2nd generati	on AD nothway	v inhihitor?	
TRIAL	ocetaxel only for high	Decetaxel	nets/visceral disea	sOS
	ased on ARASENS	spould not be u	SAR WOOLAR BS 0.001	HR = 0.66; p < 0.0001
TITAN Which	AR pathway inhibi	11%	HR = 0.48; p < 0.001	HR = 0.65; p < 0.0001
ARCHES O	utcomzeal detarniere :	sir h8 8%	HR = 0.39; p < 0.001	HR = 0.66; p < 0.0001
	biraterone + AR anta ifferencescange ex	agonist offers no plained by stuc	o advantage HR = 0.29, p < 0.001 ly design and enrollr	HR = 0.63; p < 0.0001 nent period
ARASENS D	ardutamida xsianza	alutnide study in	n progicess , p < 0.001	HR = 0.68; p < 0.001
CHAAR LEIA	data for biochemi NONE ow define?	cal recurrence	/nen-metastatic dis	Sease 0.72; p = .0018
• W	ho should get only	ADT?		

Lu-PSMA Therapy

- Eligibility
 - PSMA-positivity with ⁶⁸Ga-PSMA-11
 - Prior ARSI and at least 1 taxane (only 40% with 2 taxanes)
- Treatment
 - Up to 6 doses, every 4 weeks
 - Control = no taxane
- Issues
 - Coordination with Nuclear Medicine
 - Supply chain
 - Other PSMA targeted therapies emerging

PARPi Therapy: The Rucaparib Example

- Journal of Clinical Oncology 2020 2020 Aug 14: JCO2001035
- Clin Cancer Res 2020 Jun 1;26(11):2487-2496.

Prostate Cancer Conclusions

- Prostate cancer is an androgen receptor driven cancer and AR directed therapies will remain key
 - Combination and rogen ablation and an ARSI is standard for most castrate sensitive patients
 - No differences between methods to suppress testicular androgens & orchiectomy is cheapest
 - No significant difference between androgen synthesis inhibitor (abiraterone) & potent AR antagonists (enzalutamide, apalutamide, darolutamide)
- Hormonal therapy toxicity
 - Not significantly different between ADT and combination therapy (in good prognosis patients)
 - Short term LHRH agonist may not be so short
 - Needs better management
- The term "CRPC" needs to be retired
- "M0" is confusing and depends on imaging modality
- Taxanes play a role
 - No significant differences between docetaxel & cabazitaxel
 - Docetaxel is cheaper and cabazitaxel has a role post docetaxel
- Lu-PSMA now standard, but relative timing versus taxanes unclear
- PARPi plays a role, but mainly for BRCA2 mutations
- Other molecular targets and immunotherapy remain a promising tease

Bladder Cancer since 1994

- Treatment of high grade non-muscle invasive disease is undergoing a revolution
 - But mostly the purview of urologists
 - Will not be covered here
- For muscle invasive disease
 - Both chemo/RT and surgery are appropriate
 - Neoadjuvant CDDP based chemo remains the standard (for now)
 - In the absence of neo-adjuvant therapy, adjuvant pembrolizumab is the standard (for now)
- For metastatic disease
 - MVAC is (almost) dead
 - Enfortumab/pembrolizumab is the new standard of care
 - Gemcitabine/platinum still plays a role
 - Molecular targeted therapies available for FGFR & ERBB2/3 alterations

Pragmatic Guideline for Metastatic Bladder Cancer

Major emerging issue:

- Multiple agents in same class (PD1i, PARPi, Nectin 4, Trop 2, HER2, etc)
- Extremely expensive meds
- -> How select in absence of definitive comparison data.

Somatic Genomic Alterations with Potential Therapies

- FGFR mutations and alterations
 - Erdafitinib (FDA approved)
- ERBB2/3 alterations
 - Trastuzumab deruxtecan-nxki (FDA approved)
 - Afatinib
- BRCA2 alterations
 - PARPi???
- ERCC2 alterations
 - CDDP??

WHO Renal Cancer Classification

- Clear cell renal cell carcinoma
- Papillary renal cell carcinoma
- Oncocytoma
- Chromophobe renal cell carcinoma
- Collecting duct carcinoma
- Renal medullary carcinoma
- MiT family translocation renal cell carcinomas
- Mucinous tubular and spindle cell carcinoma

- Clear cell papillary renal cell carcinoma
- Succinate dehydrogenase deficient renal cell carcinoma
- Hereditary leiomyomatosis and renal cell carcinoma associated renal cell carcinoma
- Tubulocystic renal cell carcinoma
- Multilocular cystic renal neoplasm of low malignant potential
- Acquired cystic disease-associated renal cell carcinoma
- Renal cell carcinoma, unclassified
- Papillary adenoma

Normal Oxygen Clea Hyphoxies al cancer

THE UNIVERSITY OF CHICAGO

It's Not Quite That Simple

- VHL targets other proteins than just HIF
- There's more than one prolyl hydroxylase
- HIF is really a complex
 - Stable HIF- β
 - Labile HIF- $\!\alpha$
 - HIF-1 α OR HIF-2 α (HIF-3 α)
 - HIF-1 α acts as tumor suppressor in renal cancer
- Not all clear cell cancers have VHL inactivation

Kinase Interaction Map

Sorafenib

Sunitinib

Karaman, et al Nature Biotech. 26:127, 2008

Nivolumab CD3 T-Cell PD1 Occupancy

Ongoing studies evaluating dose and schedule

THE UNIVERSITY OF CHICAGO

JCO 28, no. 19 (July 1 2010)

Time (days)

HIF Inhibitor Belzutifan Ph 3 Study

Albiges LS005 ESMO 2023

* denotes statistical significance. Primary PFS endpoint was met at IA1 and was not formally statistically tested at IA2. Data cutoff date for IA1: November 1, 2022. Data cutoff date for IA2: June 13, 2023.

THE UNIVERSITY OF CHICAGO

Albiges LS005 ESMO 2023

Data cutoff date for IA1: November 1, 2022. Data cutoff date for IA2: June 13, 2023

Non-Clear Cell Renal Cancer

- Typically follow Clear Cell due to lack of definitive data
- "Sarcomatoid": Ipilimumab/Nivolumab
- Medullary: platinum based therapy
- Papillary Type 1: Cabozantinib
- "Papillary Type 2": Pembrolizumab/lenvatinib
- FH germline mutation: Bevacizumab/erlotinib
- Chromophobe: everolimus w/wo lenvatinib
- Translocation associated: Pembrolizumab/lenvatinib

RCC Conclusions

- Nephrectomy in metastatic patients should only be considered in very good risk patients
 - Perioperative therapy is not standard
- Ipilimumab/Nivolumab OR pembro/axitinib OR nivo/cabozantinib OR pembrol/lenvatinib are a first line standard
 - Surveillance, oligometastatic directed therapy, and single agent therapy appropriate for good prognosis pts
 - Sequential use of VEGFRi is appropriate
- Belzutifan is a 2nd/3rd line standard
- mTOR inhibitors have a minimal role
- Multiple combinations are being tested
- Therapy sequencing is very confusing
- Therapy for non-clear cell renal cancer is unclear

"Precision Oncology" for GU Cancers

- The AR is the target for prostate cancer
 The patient is more than their molecular data
 All refractory prostate cancer patients should get somatic testing
 Medical comorbidities
 "Every" advanced GU cancer patient should get testing for a germline
- predispositionalistates

 - East cheap, available Treatment as well as family implications
 - Exceptions be justified
- Non-clearing street sundlessing of and logation should get somatic testing
 - May not have treatment implications (yet)
 Social determinants of health
- All 2nd line urothelial cancer patients should get somatic testing

The right therapy for the right patient at the right time

Thanks to: My home base colleagues: Peter O'Donnell Randy Sweiss Russ Szmulewitz Akash Patnaik Mohammad Atiq Jonathon Trujillo My nurses and support staff My GU community colleagues My patients

