

Tycel J. Phillips, MD Associate Professor of Medicine City of Hope Comprehensive Cancer Center **Updates in Hematology**

Outline

- Lymphoma
- MM
- Myeloid Neoplasms

Bispecifics

¹Dufner V, et al. Blood Adv (2019) 3:2491; ²Goebeler ME, et al. J Clin Oncol (2016) 34:1104; ³Viardot et al. Blood (2016) 127(11):1410; ⁴Schuster SJ, et al. ASH 2019, Plenary Abstract 6; ⁵Hutchings M, et al. ASH 2020, Abstract 403; ⁶Bannerji R, et al. ASH 2020, Abstract 400; ⁷Hutchings M, et al. ASH 2020, Abstract 406

What is there currently?

DLBCL

- Approved agents
 - Epcoritamab
 - Glofitamab
- Investigational
 - Single agent
 - Odronextumab
 - Combinations

FL

- Two approved agents
 - Mosunetuzumab
 - Epcoritamab
- Future
 - Odro?
 - Combinations

Efficacy DLBCL

Drug	Ν	ORR	CR	PFS (median)	DOR	Approved
Epcoritamab	157	63%	39%	4.4 m	15.6 m	Yes
Glofitamab	291	52.6%	35%	4.9 m*	18.4 m	Yes
Odronextamab	130	49.2%*	30.8%*	4.4 m	10.2 m	No

Week 12 response assessment by independent central review	1/20 step-up regimen N=67	0.7/4/20 step-up regimen N=63
ORR	46.3% [95% CI: 34.0–58.9%]	42.9% [95% CI: 30.5–56.0%]
Complete response	26.9%	20.6%

Median opportunity of follow-up: 21.3 months (range 2.6–29.8)

Drug	post CAR-T patients	Refractory (<i>R</i>)	ORR	CR	CR (<i>R</i>)
Epcoritamab	61	46	54%	34%	28%
Glofitamab	52	N/A	N/A	35%	N/A
Odronextamab	31		48.4%*	32.3%	N/A

STARGLO: randomized Phase III trial in ASCTineligible patients with R/R DLBCL

Patients R/R DLBCL (N=274)

- R/R DLBCL NOS after ≥1 prior systemic therapy
- Patients with one prior line must be transplant ineligible
- ECOG PS 0-2

Stratification factors

- Relapsed vs refractory disease[‡]
- 1 vs \geq 2 prior lines of therapy

Glofit-GemOx (n=183)

Glofitamab plus gemcitabine and oxaliplatin* Step-up dosing in Cycle 1, 30mg administered on Day 1 from Cycle 2 onwards

Cycles 1–8 (21-day cycles)

R-GemOx (n=91)

Rituximab[†] plus gemcitabine and oxaliplatin Administered on Day 1 of each cycle

*Gemcitabine 1000mg/m² and oxaliplatin 100mg/m². In C1, Gpt administered on D1, GemOx on D2, followed by glofit 2.5mg on D8 and glofit 10mg on D15; in C2–8, glofit 30mg and GemOx are administered on D1. [†]Rituximab 375mg/m². [‡]Relapsed disease: recurrence following a response that lasted ≥6 months after completion of the last line of therapy; refractory disease: disease: disease: recurrence following a response that lasted ≥6 months after completion of the last line of therapy; refractory disease: disea

Glofitamab 30mg administered on Day 1 of each cycle

Cycles 9–12

Primary endpoint: overall survival

Statistically significant and clinically meaningful **OS benefit for Glofit-GemOx** vs R-GemOx

24-month OS not reported at the primary analysis as data were not sufficiently mature. *p-value is alpha controlled at the primary analysis and descriptive at updated analysis. CI, confidence interval; HR, hazard ratio; NE, not evaluable.

Epcoritamab

Trial Design: Pivotal EPCORE[™] NHL-1 Study

Epcoritamab in R/R FL

Phase 1/2 trait. #Patients enrolled in this trial (and excluded from trials of other T-cell-engaging therapies) included those with worse anemia, lymphopenia, and/or renal function. *Step-up dosing (SUD; priming [SUD 1] 0.16 mg and intermediate [SUD 2] 0.8 mg dosing before first full dose) and corticosteroid prophylaxis were used to mitigate CRS. *2 measurable (by CT/MRI) and FDG PET-positive lesions; radiographic disease evaluation was performed every 6 wk for the first 24 wk (6, 12, 18, and 24 wk), then every 12 wk (36 and 48 wk), and every 6 mo thereafter. *IMRD was assessed in peripheral blood using the clonoSEQ® (Adaptive Biotechnologies, Seattle, WA) next-generation sequencing assay. ClinicalTrials.gov: NCT03625037; EudraCT: 2017-001748-36.

CR was complete metabolic response (ie, PET negativity). CR, complete response; PBMC, peripheral blood mononuclear cell; PR, partial response. "Three patients (2%) were not evaluable. "Five patients (6%) were not evaluable. "Annee: 1.2-4.4 in C1 OPT, 1.0-3.0 in pivotal."

C1 Optimization Reduced Risk and Severity of CRS

	Pivotal Cohort N=128	C1 Optimization Cohort ^a N=50
CRS, n (%) ^b	85 (66)	24 (48)
Grade 1	51 (40)	20 (40)
Grade 2	32 (25)	4 (8)
Grade 3	2 (2)	0
Treated with tocilizumab, n/n (%)	31/85 (36)	6/24 (25)
Leading to epcoritamab discontinuation, n (%)	0	0
CRS resolution, n/n (%)	85/85 (100)	24/24 (100)
Median time to resolution, d (range)	2 (1–54)	3 (1–14)

- · Patient baseline characteristics were consistent between cohorts
- · C1 optimization substantially reduced rate and severity of CRS
- In both cohorts, CRS was mostly confined to C1
- Similar response rates were observed in the C1 optimization cohort
- There were no cases of ICANS in the C1 optimization cohort; 8 cases were observed in the pivotal cohort (all grade 1–2 and resolved; none led to discontinuation)

^aData cutoff: September 21, 2023. Median follow-up: 3.8 mo (range, 1.9–8.7). ^bGraded by Lee et al 2019 criteria.¹ **1.** Lee DW, et al. *Biol Blood Marrow Transplant*. 2019;25:625-38.

11

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strictly prohibited.

Summary of Response FL

Drug	Ν	ORR	CR	PFS 24 m	OS 24 m	mDOR
Mosunetuzumab	90	78%	60%	48%	87%	NR
Odronextamab	121	81.8%	75.2%	55.3%*	N/A	20.5 m
Epcoritamab	128	82%	63%	N/A	N/A	NR

*18 months

Drug	DOR 12 m	DOCR 12 m	DOR 24 m	DOCR 24 m	
Mosunetuzumab	67%	82%	53%*	63%	
Odronextamab	68.8%	72.2%	55%*	59.1%*	
Epcoritamab	N/A	N/A	N/A	N/A	
		*18 months			

- Two Bispecifics approved for R/R DLBCL and FL respectively
 - Drugs have far more similarities than differences
 - Whether indefinite vs. finite is best will be determined by time and further analysis of results
- Moving forward we are likely to get
 - An approval for odronextumab
 - Several combinations with chemotherapy and other antibody partners.
- With time and community usage of drugs we will get better idea of true ORR
 - REAL WORLD DATA

Figure 1. Golcadomide is a potent first-in-class lymphoma CELMoD with pleotropic MoA

Golcadomide binds directly to the CRL4^{CRBN} E3 ubiquitin ligase substrate receptor cereblon and induces the selective recruitment and ubiquitination of the target proteins Ikaros (IKFZ1) and Aiolos (IKFZ3), two key regulators of lymphoid development and differentiation, leading to proteasomal degradation, thus exerting direct cytotoxic and immunomodulatory effects

Allosteric regulation of cereblon¹ Inactive/open cereblon No Ikaros/Aiolos bound Active/closed cereblon Ikaros/Aiolos bound 75% Lenalidomide 25% 50% Iberdomide 50% 0% Golcadomid 100%

- Recent cryo-EM data indicates that the cereblon complex has both an open, inactive state and a closed, active state, and that IMiDs and CELMoDs drive the closed conformation¹
- Due to the unique binding modes of golcadomide, it is more efficient than lenalidomide at driving the closed conformation,¹ leading to deeper and more rapid degradation of Ikaros/Aiolos

1. Watson ER, et al. Science 2022;378:549-553.

CELMoD, cereblon E3 ligase modulator; CRBN, cereblon; cryo-EM, cryogenic electron microscopy; CUL4, cullin 4; DDB1, DNA damage-binding protein 1; IMiD, immunomodulatory drug; MoA, mechanism of action; ROC1, regulator of cullins 1; Ub, ubiquitin.

Figure 2. CC-99282-NHL-001 study design

Exploratory objective

Pharmacodynamics

 aRituximab dosing was 375 mg/m 2 IV on Days 1, 8, 15, and 22 of Cycle 1, and Day 1 of Cycles 2-5.

DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; IV, intravenous; LOT, line of therapy; MTD, maximum tolerated dose; PK, pharmacokinetics; R/R, relapsed or refractory RP2D, recommended phase 2 dose.

Figure 3. Disposition for individual efficacy evaluable patients at 0.2 and 0.4mg doses^a

Median duration of response was 7.5 months (range, 1.8–14.5), including a durable response
 > 14 months in 1 patient

^aEach bar shows time from treatment start to earliest of death date, cutoff date, and last known alive date. Continued response is defined as censored duration of response/duration of stable disease. First assessment shown for best overall response for ongoing patients and up to treatment discontinuation for discontinued patients. First efficacy assessment in C3 and every 2 cycles during active treatment.

Table 4. TEAEs related to golcadomide reported in ≥ 2 patients at the 0.2-mg and 0.4-mg doses

- In the safety population neutropenia was the most TEAE, occurring in 22 (50%) patients, all of which were grade 3/4
 - All neutropenia was considered related to golcadomide, comprising 10/24 (42%) patients treated at the 0.2-mg and 12/20 (60%) patients treated at the 0.4-mg dose level
 - Febrile neutropenia occurred in 2 (5%) patients, 1 patient at each dose level
 - Granulocyte colony-stimulating factors were used in 22 (50%) patients

	Golcadomi + RTX (ide 0.2 mg n = 24)	Golcadomide 0.4 mg + RTX (n = 20)		
TEAE, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Patients with at least one TRAE	16 (67)	11 (46)	14 (70)	12 (60)	
Neutropenia	10 (42)	10 (42)	12 (60)	12 (60)	
Diarrhea	4 (17)	0	0	0	
Constipation	2 (8)	0	2 (10)	0	
Anemia	1 (4)	0	3 (15)	3 (15)	
Asthenia	2 (8)	1 (4)	1 (5)	0	
Fatigue	1 (4)	0	2 (10)	1 (5)	
Pyrexia	1 (4)	0	2 (10)	1 (5)	
Lymphopenia	0	0	3 (15)	0	
Thrombocytopenia	0	0	3 (15)	3 (15)	

- Six patients had SAEs related to golcadomide; the only SAEs occurring in > 1 patient were pneumonia and pyrexia (both n = 2)
- Four grade 5 TEAEs occurred (infection, n = 3; tubulo-interstitial nephritis, n = 1); only 1 (pneumonia) was considered related to study treatment
- TEAEs led to golcadomide discontinuation in 5 (11%) patients (0.2 mg, n = 3; 0.4 mg, n = 2) and rituximab discontinuation in 5 (11%) patients

RTX, rituximab; SAE, serious adverse event; TEAE, treatment-emergent adverse event; TRAE, treatment-related adverse event.

MajesTEC-1: Phase I/II Study of Teclistamab for R/R MM After ≥3 Previous Lines of Therapy

Patients (%)

- ➤ Patients with R/R MM after ≥3 lines of therapy, including exposure to IMiD, PI, and anti-CD38 mAb
 - 77.6% triple-class refractory
 - 26% high-risk cytogenetics
 - 17% extramedullary disease
- Teclistamab: 1.5 mg/kg SQ weekly, after step-up doses

Event	All Patients (N = 165)
MRD negativity at 10 ⁻⁵ , n (%; 95% CI)	44 (26.7; 20.1-34.1)
Median DoR, mo (95% Cl)	18.4 (14.9-NE)
Median PFS, mo (95% CI)	11.3 (8.8-17.1)
Median OS, mo (95% CI)	18.3 (15.1-NE)

Moreau. NEJM. 2022;387:495.

MagnetisMM-1: Phase I Study of Elranatamab for R/R MM After Established Therapy

^Datients (%)

- Patients with R/R MM who progressed or are intolerant to IMiD, PI, and anti-CD38 mAb
 - 90.9% triple-class refractory
 - 27% high-risk cytogenetics
- Elranatamab: 215-1000 µg/kg SQ weekly or Q2W, with priming and/or premedication to reduce CRS

Event	Responders (N = 35)
Patients with sCR/CR and MRD negativity at 10 ⁻⁵ , n/N (%)	13/13 (100)
Patients with prior BCMA-targeted therapy and response, n/N (%)	7/13 (54)
9-mo event-free probability after response, % (95% CI)	77 (58-88)

Jakubowiak. ASCO 2022. Abstr 8014. Dalovisio. EHA 2022. Abstr P897.

BCMA x CD3 Bispecific Antibodies: Summary

Therapy	Characteristics	N	Population	Safety	Response	DoR/PFS/OS, Mo
Teclistamab ¹	 RP2D: 1.5 mg/kg SC once weekly 	165	 Median of 5 prior lines of tx 78% triple refractory 30% penta refractory 	 CRS 72% (0.6% G3/4) Neurotox 14% (0.6% G3/4) ICANS 3% Infections 76% 	ORR: 63% sCR/CR: 39% ≥VGPR: 59%	mDoR: 18.4 mPFS: 11.3 mOS: 18.3
Elranatamab ^{2, 3}	 215-1000 μg/kg SQ weekly or every 2 wk RP2D: 1000 μg/kg 	55	 Median of 6 prior lines of tx 91% triple refractory 24% prior BCMA-based tx 	 CRS 87%, no G3-4 (67% with priming and premeds) ICANS 20% ISR 56% 	ORR: 64% sCR/CR: 35% ≥VGPR: 58.2%	No mature data at 10.6 mo follow-up
Linvoseltamab (REGN5458) ^{4,5}	 IV weekly, then every other wk after Wk 16 3-800 mg dose escalation 	73	 Median of 5 prior lines of tx 89% triple refractory 38% penta refractory 	 CRS 38%, no G3/4 ICANS 4% 	ORR (all doses): 51% ORR (200-800 mg): 75% ≥VGPR (200-800 mg): 58%	mDoR: NR at median 3 mo follow-up
ABBV-383 (TNB-383B) ⁶	 IV fixed doses, once every 3 wk with no step dosing 0.025-120 mg dose escalation 	124	 Median of 5 prior lines of tx 82% triple refractory 35% penta refractory 	 CRS 57%, G3/4: 2% ICANS 2% Infections 41% 	ORR (all doses): 57% ORR (60 mg exp): 59% ≥VGPR (60 mg exp): 39%	mDoR: NR mPFS: 10.4
Pavurutamab (AMG 701) ⁷	IV weekly0.005-18 mg dose escalation	85	Median of 6 prior lines of tx62% triple refractory	 CRS 65% (9% G3) No ICANS reported 17% infection SAE 	ORR (all doses): 26% ORR (3-18 mg): 36% ORR (most recent cohort): 83%	No mature data at 6.5 mo follow-up

1. Moreau. NEJM. 2022;387:495. 2. Jakubowiak. ASCO 2022. Abstr 8014. 3. Dalovisio. EHA 2022. Abstr P897. 4. Zonder. ASH 2021. Abstr 160. 5. Zonder. IMS 2022. Abstr OAB-056. 6. D'Souza. JCO. 2022;[Epub]. 7. Harrison. ASH 2020. Abstr 181.

	Infection prevention before BCMA bispecific	Infection prevention during BCMA bispecific	Treatment of infection during BCMA bispecific ^a
Bacterial	Vaccinate if appropriate	IVIg q4 weeks	Based on sensitivities
Viral			
Zoster	Vaccinate if appropriate	VZV prophylaxis	Anti VZV therapeutic dosing
Influenza	Vaccinate if due	Hygiene	Antiviral
Hepatitis	Vaccinate if appropriate	Prophylaxis if evidence of Hep B exposure	Per ID input
CMV	N/A	Monitor CMV PCR q monthly	Treat if rising significantly or symptomatic
RSV	N/A	Hygiene	Consider inhaled ribavirin
COVID-19	Vaccinate/Boost	? Preventative monoclonal anti- bodies based on viral patterns Hygiene Consider monitoring Ab response and continue boosting	Oral or parenteral agents
Fungal	N/A	N/A	As indicated
PCP	N/A	PCP prophylaxis	Per ID Input

Table 3. Recommendations for prevention and management of infections for patients on BiAbs.

Abbreviations: ID, infectious disease; N/A, not applicable; RSV, respiratory syncytial virus; VZV, varicella zoster virus.

"Educate patients/caregivers about monitoring for signs and symptoms of infection. In setting of active infection, hold BCMA bispecific until recovery. Consider cytokine release syndrome, hemophagocytic lymphohistiocytosis, Epstein-Barr virus, *Clostridium difficile*, and unusual organisms in differential diagnosis; collaborate closely with ID team.

ORIGINAL ARTICLE

Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma

Ajai Chari, M.D., Monique C. Minnema, M.D., Jesus G. Berdeja, M.D., Albert Oriol, M.D., Ph.D., Niels W.C.J. van de Donk, M.D., Ph.D., Paula Rodríguez-Otero, M.D., Ph.D., Elham Askari, M.D., María-Victoria Mateos, M.D., Ph.D., Luciano J. Costa, M.D., Ph.D., Jo Caers, M.D., Ph.D., Raluca Verona, Ph.D., Suzette Girgis, Ph.D., Shiyi Yang, Ph.D., Rachel B. Goldsmith, Ph.D., Xiang Yao, Ph.D., Kodandaram Pillarisetti, M.Sc., Brandi W. Hilder, Ph.D., Jeffery Russell, M.D., Ph.D., Jenna D. Goldberg, M.D., and Amrita Krishnan, M.D.

Onychomadesis and palmoplantar keratoderma associated with talquetamab therapy for relapsed and refractory multiple myeloma Neha Narayan BA, Benjamin Williams MD, Brea Lipe MD, Anna De Benedetto MD

Novel Bispecific Antibodies

Therapy	Characteristics	Ν	Population	Safety	Response	mDoR, Mo
Talquetamab ^{1,} 2	 G protein-coupled receptor family C group 5 member D (GPRC5D) x CD3 bispecific 	n = 30 (405 µg/kg QW)	 Median of 6 prior lines of tx 77% triple 	 CRS 78% (1.4% G3/4) Infections: 47% (405 µg/kg); 39% (800 µg/kg) 	ORR: 70% sCR/CR: 30% ≥VGPR: 57%	10.2
	 antibody RP2D: 405 µg/kg SC once weekly or 800 µg/kg SC once every 2 wk 	n = 44 (800 µg/kg Q2W)	 77% triple refractory 24% penta refractory 	 Pig/kg) Neutropenia (51%), anemia (51%), thrombocytopenia (28%) 	ORR: 63.6% sCR/CR: 20% ≥VGPR: 57%	13.0
Cevostamab (BFCR4350A) _{3,4}	 FcRH5/CD3 bispecific T-cell engager Q3W IV infusions with single step up or double step-up expansions 	161	 Median of 6 prior lines of tx 85% triple refractory 68% penta refractory 	 CRS 81% (1.2% G3) ICANS 14% (0.6% G3) Neutropenia, anemia, thrombocytopenia most common heme A E 	ORR: 57% at 132-198 mg; 36% at 20-90 mg dose level	11.5

Summary

- Several Bispecifics in MM
 - Major difference between NHL is the longer hospital requirement with SUD
 - 48 72 hrs between doses
 - Unlike Lymphoma Bispecifics before CAR-T with BCMA agents impacts response to CAR
 - Importance of other targets
 - More side effects with Talquetamab
 - Longer ramp up with Cevostamab
- Infections complications a concerns
 - Possibly related to other treatments?
 - Mitigation of infections with IVIG

Venetoclax in AML

Molecular Subgroups

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for De (95% CI)	ath
	no. of events/	total no. (%)		
Cytogenetic risk				
Intermediate	84/182 (46.2)	62/89 (69.7)	⊢ ∎−-1	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)	F	0.78 (0.54-1.12)
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)	F	0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65)
IDH2	15/40 (37.5)	14/18 (77.8)		0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)	⊢ _ ∎1	0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)	► •	0.76 (0.40-1.45)
NPM1	16/27 (59.3)	14/17 (82.4)	F	0.73 (0.36-1.51)
		0.1	1.0	10.0
			Azacitidine plus Venetoclax Better Placebo	ne plus Better

FLT3 mutant

> Type 1 (-ITD/TKD)

- Midostaurin
- Gilteritinib
- Crenolanib
- > Type 2 (-ITD2)
 - Sorafenib
 - Quizartinib

Inhibitor	Quizartinib	Crenolanib	Gilteritinib
IC ₅₀ against FLT3 (nM)	1.1	1.3	0.29
Structure	MHH CHAR		
Kinase dendrogram	← FLT3		not available

IDH mutant

- Ivosidenib
- Olutasidenib

Response Rate

Response Category	lvosidenib+Azacitidine (N=72)	Placebo+Azacitidine (N=74)
Best response — no. (%)		
Complete remission	34 (47)	11 (15)
Complete remission with incomplete hematologic or platelet recovery	5 (7)	1 (1)
Partial remission	4 (6)	2 (3)
Morphologic leukemia-free state	2 (3)	0
Stable disease	7 (10)	27 (36)
Progressive disease	2 (3)	4 (5)
Could not be evaluated	1 (1)	2 (3)
Not assessed	17 (24)	27 (36)

OS

- Promising targeted agents in AML
- Importance of molecular testing at diagnosis/relapse

Lymphoma Center at COH

- Steve Rosen MD
- Larry Kwak MD PhD
- **Jasmine Zain MD**
- Alex Herrera MD •
- Tanya Siddiqi MD
- Matt Mei MD •
- Elizabeth Budde MD, PhD ۲
- Lili Wang PhD •
- Vu Ngo PhD
- Joo Song MD ٠

IYMPHOMA

SOCIETY[®]

- Geoff Shouse MD
- James Godfrey MD
- John Baird MD
- Swetha Kambhampati MD
- Niloufer Khan MD
- Avy Kallam MD
- Lu Chen PhD
- Alexey Danilov MD, PhD
- Leslie Popplewell MD
- **CRNs and CRCs**

Questions

