Advances in Cellular Therapies for Cancer

CAR T cell Therapy

Mohamed Abou-el-Enein, MD, PhD, MSPH Executive Director, USC/CHLA Cell Therapy Program Director, USC/CHLA cGMP Facility Associate Professor of Clinical Medicine (Oncology), Pediatrics, and Stem Cell Biology & Regenerative Medicine

August 25, 2024

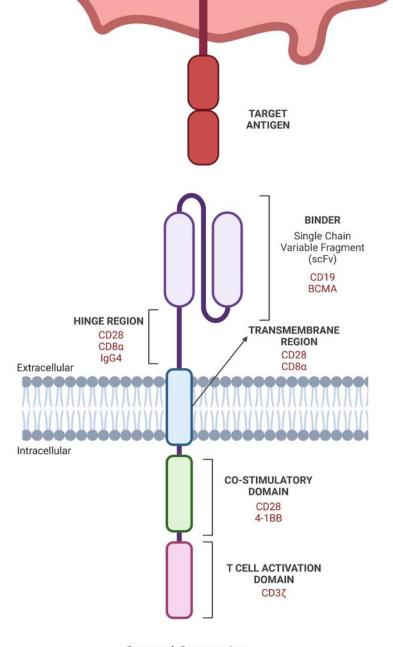
California Cancer Consortium Conference

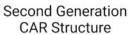
Agenda

- Introduction to CAR T Cell Therapy and Its Clinical Applications
- Key Challenges in CAR T Cell Therapy Development

□ Safety: Addressing Second Primary Malignancies

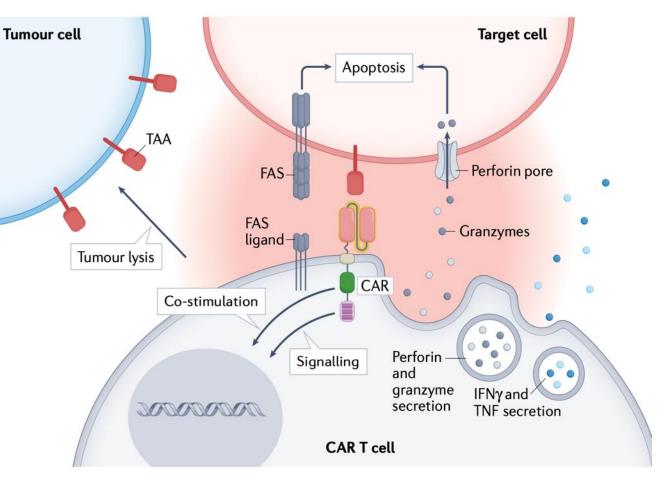
□ Scalability: Enhancing Production and Accessibility


- Innovative Solutions and Current Developments
- Efficacy in Solid Tumors: Breaking Barriers



Principles of CAR T cells

- CAR T cells: Personalized immunotherapy using patient's own T cells, genetically engineered to target specific tumor antigens for cancer treatment.
- Chimeric Antigen Receptor (CAR) Structure:
 - Binder: Ensures antigen recognition, specificity, and affinity
 - Hinge region: Provides flexibility and maintains optimal distance to the target
 - Transmembrane Region: Contributes to receptor stability and function
 - Co-stimulatory Domain: Augments T cell function, metabolism, and persistence
 - T cell activation domain: Facilitates downstream T cell activation and functional responses



Principles of CAR T cells

• CAR T Cell Killing Mechanism:

- Recognize Tumor-Associated Antigen (TAA)
- Form Immune Synapse with Target Cell
- Release Cytotoxic Granules
- Induce Target Cell Apoptosis
- Trigger Cytokine Release & Immune Activation
- Main target: CD19, specifically expressed on Bcells
- Remarkable success in hematological B-cell malignancies as a third line of treatment in Lymphoma and Leukemia
- Recently approved CAR T-cells targeting BCMA for Multiple Myeloma

Flugel et al. Nat. Rev. Clin. Oncol. 2022

FDA Approved CAR T cells in Hematological Malignancies

• 2017	tisagenlecleuce		Acute lymphoblastic leukemia (ALL) (B-cell precursor) Large B-cell lymphoma (LBCL) Follicular lymphoma (FL)
	axicabtagene ciloleucel		Large B-cell lymphoma (LBCL) Follicular lymphoma (FL)
• 2020	brexucabtagen autoleucel	e	Mantle cell lymphoma Acute lymphoblastic leukemia (ALL) (B-cell precursor)
• 2021	lisocabtagene maraleucel		Large B-cell lymphoma (LBCL) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL)
	idecabtagene vicleucel		Multiple Myeloma (MM)
• 2022	ciltacabtagene autoleucel		Multiple Myeloma (MM)
USCUniversity of Southern California Children's LOS ANGELES		Children's Hospital Los Angeles	Approval restricted to patient populations and treatment line

CAR T Cells in Lymphoma: Pivotal Trials

Product	Disease	Trial	Line of treatment	Trial Phase	Overall Response	Event Free Survival	CRS	Neuro- toxicity	Reference
Tisa-cel	LBCL	JULIET (2018)	3rd	Phase II	52% (CR 40%)	NR	22%	12%	Schuster et al., 2019
		BELINDA (Primary endpoint unmet)	2nd	Phase III Kymriah vs SC	38.3% vs 53.8%	=3m	61.3%	10.3%	Bishop et al., 2022
	FL	ELARA (2022)	3rd	Phase II	86.2% (CR 69.1%)	NR	48.5%	4.1%	Fowler et al. 2022
Axi-cel	LBCL	ZUMA-1 (2017)	3rd	Phase II	82% (CR 54%)	5.7m	93%	64%	Neelapu et al., 2017
		ZUMA-7 (2022)	2nd	Phase III Yescarta vs SC	83% (CR 65%) vs 50% (CR 32%)	8.3m vs 2m	92%	60%	Locke et al., 2022
		ZUMA-12 (Primary endpoint met)	1st	Phase II	CR 78%	73% at 12m	100%	73%	Neelapu et al., 2022
	FL	ZUMA-5 (2021)	3rd	Phase II	91% (CR 60%)	NR	88%	81%	Jacobson et al., 2021

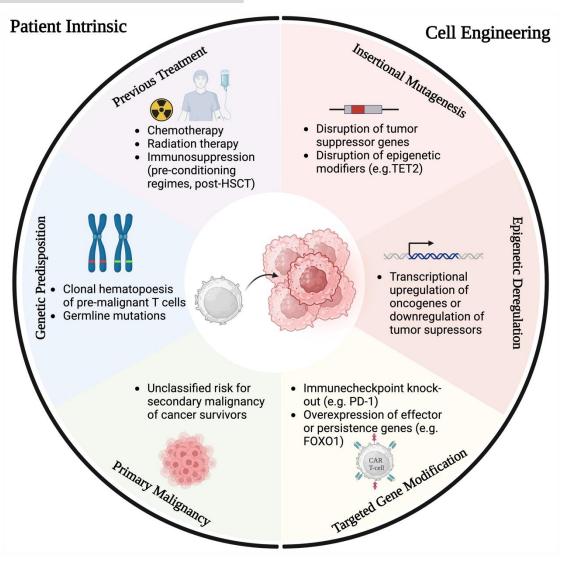
LBCL; large B-cell lymphoma, FL; follicular lymphoma

CAR T Cells in Lymphoma: Pivotal Trials

Product	Disease	Trial	Line of treatment	Trial Phase	Overall Remission	Event Free survival	CRS	Neuro- toxicity	Reference
Brexu-cel	MCL	ZUMA-2 (2020)	2nd	Phase II	85% (59% CR)	NR	91%	63%	Wang et al., 2020
Liso-cel	LBCL	TRANSCEND NHL 001 (2021)	3rd	Phase I	73% (CR 53%)	NR	42%	30%	Abramson et al. 2020
		TRANSFOR M 2022 (Primary endpoint met)	2nd	Phase III Breyanzi vs SC	CR 66% vs CR 39%	10.1m vs 2.3m	49%	12%	Kamdar et al. 2022

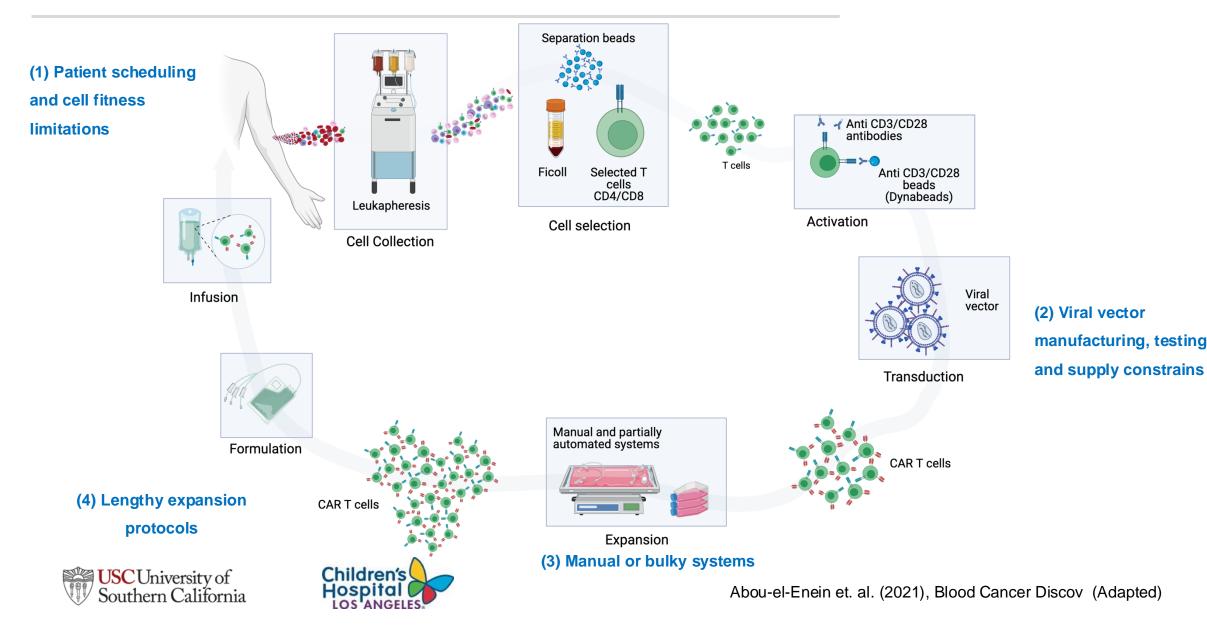
CAR T Cells in Leukemia: Pivotal Trials

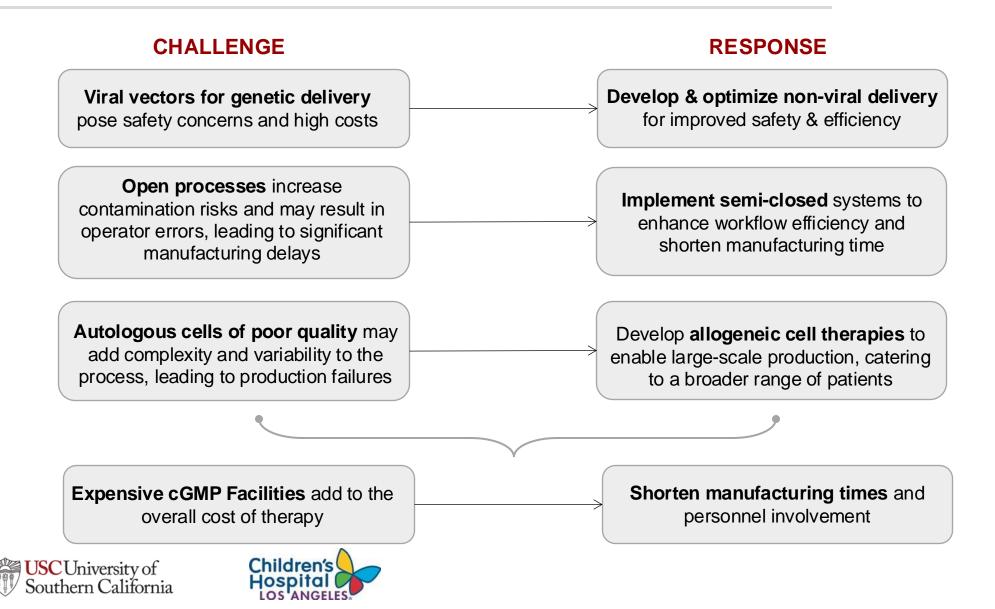
Product	Disease	Trial	Line of Treatmen t	Trial Phase	Overall Remission	Event Free Survival	CRS	Neuro- toxicity	Reference
Tisa-cel	ALL (Pediatric and young adults)	ELIANA (2017)	3 rd	Phase I- II	82.5% (CR 63% + CRi 19%)	73%	77%	40%	Maude et al., 2018
Brexu-cel	ALL (Adults)	ZUMA -3 (2021)	3 rd	Phase II	56% CR	NR	92%	87%	Shah et al. 2021
Liso-cel	CLL and SLL	TRANSCEND CLL004 (2023)	3 rd	Phase I- II	18% CR	NR	9%	18%	Siddiqi et al. 2023


B-ALL; B-cell acute lymphoblastic leukemia, CLL; Chronic Lymphocytic Leukaemia SLL: Small Lymphocytic Lymphoma

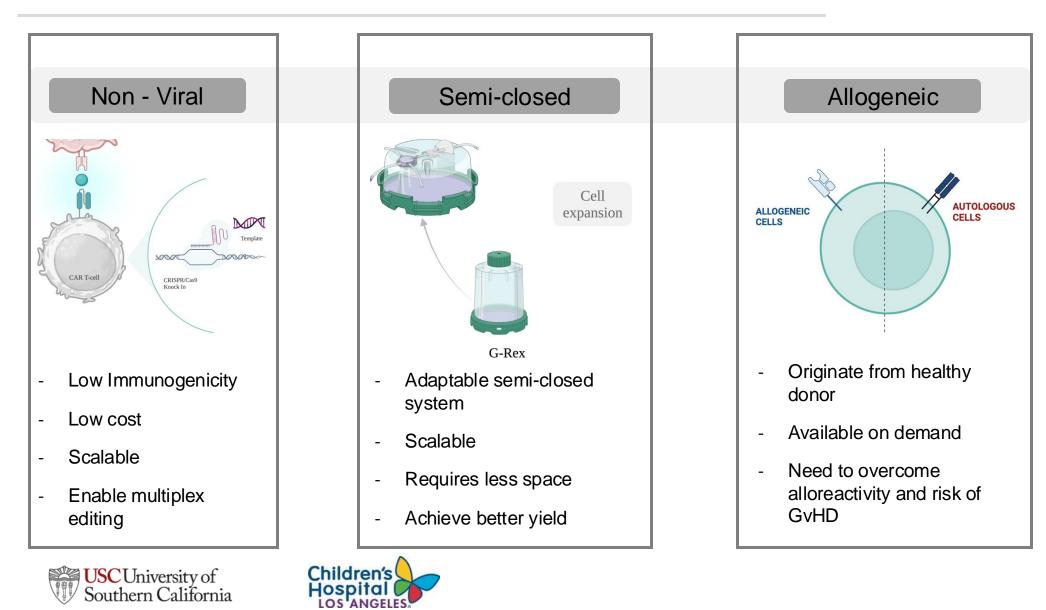
Key Challenges: CAR⁺ T-cell Second Primary Malignancies

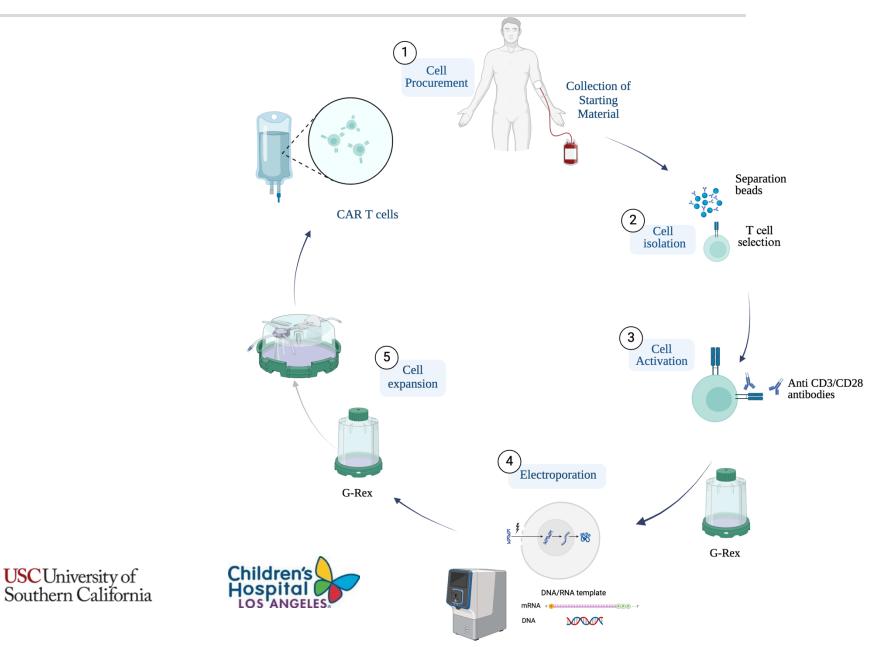
- Nov 2023: 22 cases of secondary T-cell malignancies following CAR T-cell therapy
- **Potential cause:** Combination of <u>pre-existing and</u> <u>CAR T-cell genetic engineering derived genetic</u> and epigenetic alterations (e.g. use of viral vectors).
- <u>Not all of these cases have been definitively</u> <u>linked to CAR T cell treatment.</u>
- **Mitigation:** Requires multifaceted strategies, including patient education, stringent genomic monitoring, and continued regulatory oversight and surveillance.
- **Solution:** Next-generation CARs with enhanced targeting and safety features.

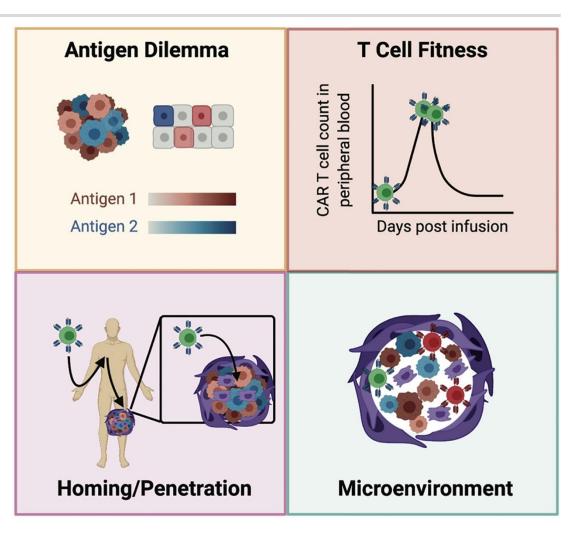




Abou-el-Enein et. al. (2024), Blood Cancer Discov


Key Challenges: Scaling CAR T Cell Manufacturing


Innovative Solutions and Current Developments


Innovative Solutions and Current Developments

Innovative Solutions and Current Developments

Limited Efficacy in Solid Tumors

Wagner et al. Mol. Ther. 2020

Limited Efficacy in Solid Tumors

- Lack of specific tumor antigen →
 Target expression in healthy tissue
- Risk of healthy tissue destruction
 (OTOT)
- Risk: Reduced safety and efficacy
- Current efforts: CAR T cells with enhanced specificity; dualtargeting CARs, logic-gated CARs, or affinity-tuned CARs.

📕 High 📕 Medium 📕 Low 🗌 Not detected

Flugel et al. Nat. Rev. Clin. Oncol. 2022

Promise of CAR T in Solid Tumors

ORIGINAL ARTICLE | BRIEF REPORT

f X in ⊠

Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma

Authors: Bryan D. Choi, M.D., Ph.D., Elizabeth R. Gerstner, M.D., Matthew J. Frigault, M.D., Mark B. Leick, M.D. 몓 Christopher W. Mount, M.D., Ph.D., Leonora Balaj, Ph.D., Sarah Nikiforow, M.D., Ph.D., Bob S. Carter, M.D., Ph.D. 🕑 , William T. Curry, M.D., Kathleen Gallagher, Ph.D., and Marcela V. Maus, M.D., Ph.D. 💿 Author Info & Affiliations

Published March 13, 2024 | N Engl J Med 2024;390:1290-1298 | DOI: 10.1056/NEJMoa2314390 | VOL. 390 NO. 14

Target: EGFR

Article

GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas

https://doi.org/10.1038/s41586-022-04489-4	Robbie G. Majzner ^{1,2,3,13} , Sneha Ramakrishna ^{1,2,13} , Kr				
Received: 2 August 2021	Harshini Chinnasamy ¹ , Liora M. Schultz ^{1,2} , Rebecca Rebecca Mancusi ⁶ , Anna C. Geraghty ⁶ , Zinaida Go				
Accepted: 28 January 2022	Shawn M. Gillespie ⁶ , Angus Martin Shaw Toland ⁸ , .				
Published online: 7 February 2022	Esther H. Nie ⁶ , Isabelle J. Chau ⁶ , Maria Caterina Ro Christina Baggott ¹ , Sharon Mavroukakis ¹ , Emily Eg				
Open access	Sean Green ² , Michael Kunicki ^{1,2} , Michelle Fujimoto				
Check for updates	Sreevidya Kurra², Katherine E. Warren⁵, Snehit P Timothy T. Cornell⁰, Sonia Partap⁶, Paul G. Fishe Gerald Grant¹º, Bita Sahaf¹², Kara L. Davis¹², Stev				

risten W. Yeom⁴, Shabnum Patel¹, a M. Richards^{1,2}, Li Jiang⁵, Valentin Barsan^{1,2}, ood^{1,3,7}, Aaron Y. Mochizuki⁶, Jasia Mahdi⁶, Agnes Reschke^{1,2}, otiroti², Christopher W. Mount⁶, geler¹, Jennifer Moon¹, Courtney Erickson¹, o^{1,2}, Zach Ehlinger², Warren Reynolds², abhu¹, Hannes Vogel⁸, Lindsey Rasmussen⁹, , Cynthia J. Campen⁶, Mariella G. Filbin⁵, n A. Feldman¹, Crystal L. Mackall^{1,2,3,11,14 \vee} &} Michelle Monje^{1,2,6,8,10,12,14}

Acknowledgments

USC/CHLA Cell Therapy Center

Alix Vaissie Amaia Cadinanos-Garai Xia Wu Michael Woo Vivian Quach Jackson Lange Ivan Segovia Chiara Baraldi Nanor Deirbadrossian Christian Flugel Anson Cheung Cristina Fernandez James Choung

Alpha Clinic

Thomas Buchanan Allan Wayne Juliane Glaeser Elia Plascencia Cort Brinkerhoff

Norris Comprehensive Cancer Center

Caryn Lerman Steven Grossman Heinz-Josef Lenz Christopher Loertscher

USC/CHLA Cell Therapy Program

USC University of Southern California

Keck School of Medicine of USC

Advances in Cellular Therapies for Cancer

CAR T cell Therapy

Thank you!

Dr. Mohamed Abou-el-Enein <u>mabouele@usc.edu</u>

Follow us on LinkedIn & Twitter: USC/CHLA Cell Therapy Program

