

AML and MDS New Directions

Olatoyosi Odenike Professor of Medicine Director, Adult Leukemia Program The University of Chicago Medicine

Learning Objectives

 To understand the biologic and clinical heterogeneity of AML and MDS

• To discuss contemporary approaches for AML and MDS

• To discuss novel therapeutic targets in AML and MDS

Historical treatment landscape in AML

AML is heterogeneous and biologically complex

AML Risk Stratification/Prognosis

Table 5. 2017 ELN risk stratification by genetics

Risk category*	Genetic abnormality	
Favorable	t(8;21)(q22;q22.1); RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} † Biallelic mutated CEBPA	5-yr OS: 55-65%
Intermediate	Mutated NPM1 and FLT3-ITD ^{high} † Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} † (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡ Cytogenetic abnormalities not classified as favorable or adverse	5-yr OS: 24-41% 5-yr OS:
Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2,MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype,§ monosomal karyotypell Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD ^{high} † Mutated <i>RUNX1</i> ¶ Mutated <i>RUNX1</i> ¶ Mutated <i>ASXL1</i> ¶	5-14%

Other Poor Prognosis Groups

-AML arising from chronic myeloid neoplasms (MPN, MDS, CMML)

-AML with myelodysplastic changes

-treatment-related AML

Randomized outcomes for FDA-approved drugs for AML

AZA, azacitidine; ENA, enasidenib; GO, gemtuzumab ozogamicin; LDAC, low-dose cytarabine; Ven, venetoclax.
1. Stone M, et al. N Engl J Med 2017; **377:**454–464; 2. Lancet JE, et al. J Clin Oncol 2018; **36**:2684–2692; 3. Cortes et al, Leukemia 2019;33, 379-389;
4. Montesinos, P et al. N Engl J Med 2022; 1519-31 5. Lambert J, et al. Haematologica 2019; **104**:113–119; 6. Perl AE, et al. N Engl J Med 2019; **381**:1728–1740;
7. Wei AH, et al.NEJM 2020; 383, 2526; 8. DiNardo CD, et al. N Engl J Med 2020; **383**:617–629.

Approach to frontline treatment of AML

Modified from: Cahill and Odenike, Advances in Oncology 2021

Venetoclax is a potent and selective BCL2 inhibitor

1. Leverson JD, et al. *Sci Transl Med* 2015; 7:279ra40. 2. Czabotar, et al. *Nature Reviews* 2014;15:49-63. 3. Plati J, Bucur O, Khosravi-Far R. *Integr Biol (Camb)* 2011;3:279–296. 4. Certo M, et al. *Cancer Cell*. 2006;9(5):351-65. 5. Souers AJ, et al. *Nat Med*. 2013;19(2):202-8. 6. Del Gaizo Moore V et al. *J Clin Invest*. 2007;117(1):112-21.

Azacitidine+venetoclax in AML early phase experience

Subgroup	CR + CRi, n (%)		
All patients	97 (67)		
Cytogenetic risk Intermediate Poor	55 (74) 42 (60)		
Age ≥75 y <75 y	40 (65) 57 (69)		
AML De novo Secondary	73 (67) 24 (67)		

DiNardo et al, Blood 2019

Chyla et al, ASH 2019

Azacitidine+venetoclax confers a survival advantage: Results of Phase III VIALE-A trial (n=431).

CD DiNardo et al. N Engl J Med 2020;383:617-629; Pratz K, JCO, 2021

Of note, 60% enrolled in VIALE A were \geq 75y/o, 55% were ECOG 0-1, 45% had 2 or more reasons for ineligibility

Outstanding Questions

• Relative magnitude of benefit of lower intensity therapies in AML

For both fit and unfit populations

- In specific targeted subsets e.g IDH or FLT3 mutated AML unfit for intensive therapies
 - HMA/venetoclax versus triplet therapies?
- In very poor risk subsets-TP53 mutated subset
 - Role of novel agents/approaches under investigation
- Path to cure?
 - Transplantation; novel immunotherapeutic approaches; MRD erasers?

NCI Myeloid Malignancies Molecular Analysis for Therapy Choice Precision Medicine Trial myeloMATCH

 Collaborative effort between NCI, academic investigators and industry partners to accelerate the development of precision medicine trials through the NCTN for patients with myeloid malignancies

• Provision of a framework that facilitates the career development of early career investigators

myeloMATCH Launch date! May 16, 2024

¹ Older AML and unfit basket = Pts. ≥ 60 years of age and unfit AML of any age

² Younger AML = 18-59 years of age

Courtesy NCI myeloMATCH

Leveraging the ETCTN

Menin inhibition in AML

Menin inhibitors for rKMT2A / mNPM1 AML

Menin inhibitors

SNDX-5613 KO-539 JNJ-75276617 DSP-5336 BMF-219

Revumenib (SNDX-5613)

- Revumenib (SNDX-5613) is a potent, selective menin-KMT2A interaction inhibitor
- The menin-KMT2A interaction is a critical dependency in *KMT2Ar* (*MLL1r*) and *mNPM1* leukemias responsible for the leukemogenic gene expression
 - KMT2Ar: ~ 10% AML or ALL (~ 80% infant ALL)
 - *mNPM1*: ~ 30% AML
- Revumenib competitively binds a discrete, well-defined pocket within menin, where both wild-type KMT2A (MLL1) and KMT2A fusion proteins bind

Revumenib (SNDX-5613)

Response	Efficacy population (n=60)	KMT2Ar (n=46)	Mutated NPM1 (n=14)
Overall response*	32 (53%)	27 (59%)	5 (36%)
Median time to first morphologic response (range), months	0.95 (0.9–3.7)	0.95 (0.9-3.7)	0.99 (1.0–1.9)
Best response*			
CR/CRh	18 (30%)	15 (33%)	3 (21%)
CR	12 (20%)	9 (20%)	3 (21%)
CRh	6 (10%)	6 (13%)	0
Median time to CR or CRh (range), months	1.9 (0.9–4.9)	2.0 (0.9–4.9)	1.9 (1.0–1.9)
CRi	0	0	0
CRp	5 (8%)	5 (11%)	0
MLFS	9 (15%)	7 (15%)	2 (14%)
Partial remission	0	0	0
No response	19 (32%)	12 (26%)	7 (50)
Progressive disease	7 (12%)	6 (13%)	1(7%)
Missing	2 (3%)	1 (2%)	1(7%)
MRD' neg. rate within CR/CRh	14/18 (78%)	11/15 (73%)	3/3 (100%)
Median time to MRD' neg. among patients with CR/CRh (range), months	1.9 (0.9–4.9)	1.9 (0.9-4.9)	1.9 (1.0–2.8)

18

Study Schema: NCI 10596

Phase 1b Study of SNDX-5613 in combination with daunorubicin and cytarabine in Newly Diagnosed AML and

NPM1mutated/FLT3 wildtype or MLL/KMT2A Rearranged Disease

*Reinduction allowed if midcycle marrow with significant morphological residual disease without a hypocellular marrow

**Cytarabine is given as a continuous intravenous infusion (CIV) during induction and reinduction. During consolidation, cytarabine dosing will be given as 1 or 1.5g/m² based on age and creatinine clearance
 ***SNDX-5613 will be given per dose assignment

PI: Alice Mims, OSU

LSD1 inhibition in Myeloproliferative Neoplasms – Accelerated Phase / Blast Phase

Ph neg MPN AP/BP Outcomes since 2017: University of Chicago led multicenter cohort (n=202)

Patel A et al, Blood Advances, 2024

Phase II multicenter study of low dose subcutaneous decitabine in advanced myelofibrosis: NCI 6814

Decitabine in MF: Change in CD34+ progenitor cells-Responders Vs Non-Responders

Circulating CD34+ cells measured by flow cytometry at baseline, day 5 and day 12 of the first 2 cycles of therapy

LSD1 inhibition synergizes with DNMTi in myeloid neoplasia

Adapted from Duy C et al. *Cancer Discovery*. 2019

Sugino N, Leukemia 2017 Maes T, Cancer Cell 2018 Salamero et al, Lancet 2024

Randomized Phase II Study of ASTX727 (oral decitabine-cedazuridine) +/- iadademstat in MPN AP/BP: NCI 10675

PI: Dr. Anand Patel, University of Chicago

New Approaches in MDS

Stratification based on IPSS/IPSS-R

	Score	Risk Group	Median Survival in years	
SS	0	Low	5.7	
	0.5-1.0	Intermediate-1	3.5	
	1.5-2.0	Intermediate-2	1.2	Score=>1.5
	≥ 2.5	High	0.4	risk MDS
	Points	Risk Score	Median survival in years	
	≤1.5	Very Low	8.8	
PS -	> 1.5-3	Low	5.3	
E	>3-4.5	Intermediate	3.0	
	>4.5-6	High	1.6	*Score=>3.5
	>6	Very high	0.8	: Higher risk
				MDS

Adapted from: Greenberg P, Blood 1997, 89:2079, Greenberg PL, Blood 2012, 30:820, *Pfeilstocker M, Blood 2016, 128:902-910

Agent	*N	Overall Response Rate (CR/PR/HI)	Duration of response (months)	Overall Survival (months)	Author
Azacitidine	99	47%	13.1	20	Silverman
Azacitidine	179	49%	13.6	24.5	Fenaux
Decitabine	89	30%	10.3	14	Kantarjian
Decitabine	99	30%	10	19.4	Steensma
Azacitidine	75	46%	12	18	Prebet
Azacitidine	92	38%	10	15	Sekeres Silverman , JCO,2002, 2006 Fenaux, Lancet Oncol, 2009
CR rate in the 10-20% range across studies; *N=number on hypomethylating agent arm of trial					Kantarjian, Cancer, 2006 Steensma, JCO, 2009 Prebet, JCO, 2014 Sekeres, JCO, 2017

Selected Phase II/III Hypomethylating Agent Trials in MDS

Changing landscape in MDS?

 Desire to propel combinations forward that may deepen responses and improve outcomes?

• Possibility of FDA approval of one or more HMA-based (doublet) combinations at some point for HR-MDS?

Selected Randomized Phase III Trials in frontline management of HR-MDS

Drug	NCT Identification	Patient characteristics	Intervention	Study outcomes
Venetoclax	NCT04401748 (VERONA) Estimated primary completion date: 02/2025	Newly-diagnosed HR-MDS Estimated enrollment: 500	Venetoclax + AZA vs. placebo + AZA	Primary Outcome: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 36 Months) - Overall survival (OS) (Up to 5 years)
MBG453 (Sabatolimab)	NCT04266301 (STIMULUS- MDS2) Estimated primary completion date: 05/2027	Newly-diagnosed HR-MDS or CMML-2 Estimated enrollment: 500	MBG453+ AZA vs. placebo + AZA	Primary Outcome: - Overall Survival (Up to 5 years after last patient randomized)
Pevonedistat	NCT03268954 (PANTHER) Estimated Primary completion date: 07/2023	Newly-diagnosed HR-MDS, CMML, or Low-Blast AML Estimated enrollment: 502	Pevonedistat + AZA vs. AZA alone Open-label	Primary Outcome: - Event-Free Survival (From randomization until transformation to AML, or death due to any cause; up to 6 years)
Magrolimab	NCT04313881 (ENHANCE) Estimated primary completion date: 08/2022	Newly-diagnosed HR-MDS Estimated enrollment: 520	Magrolimab + AZA vs. AZA + placebo	Primary Outcomes: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 24 Months) - Overall survival (OS) (Up to 5 years)
APR-246	NCT03745716 Actual primary completion date: 11/2020	Newly-diagnosed TP53- mutated HR-MDS Estimated enrollment: 154	APR-246 + AZA Vs. AZA alone Open-label	Primary Outcome: - Complete response rate (CR) with APR 246 + azacitidine vs. azacitidine only
SY-1425 (Tamibarotene)	NCT04797780 Estimated Primary completion date: 07/2023	Newly-diagnosed RARA- positive HR-MDS Estimated enrollment: 190	SY-1425 + AZA Vs. placebo + AZA	Primary outcome: - Complete response rate (CR) with SY-1425 + azacitidine vs. azacitidine only

DNMTi based combination therapy – lessons learned

- Combinations need to be tolerable and lend themselves to chronic dosing over extended periods of time
- Optimal schedules/sequence need to be carefully evaluated
- Development and incorporation of reliable predictive biomarkers
 - Move towards subset specific therapy

Mutations Occur in the Majority > 90% of Patients with MDS

RNA Splicing ~ 64%

DNA methylation~45%

Chromatin modification ~27%

Transcription factor~15%

- Receptors/Kinases~15%
- RAS pathway~12%
- DNA repair~10%
- Cohesin~13%
- Other~10%
- No mutation~10%

RNA splicing:SF3B1, SRSF2, U2AF1, U2AF2, ZRSR2 DNA methylation: TET2, DNMT3A, IDH1/2 Chromatin modification: ASXL1, EZH2 Transcription factor: TP53, EVI1, RUNX1, GATA2 RAS/receptor kinase pathways:NRAS, KRAS, CBL, JAK2 Chart is based on data from 944 MDS patients -Haferlach et al, Leukemia 2014

Odenike et al, ASCO Ed Book, 2015

IDH1 Inhibition in *IDH1*^{mut} MDS.

Author	Phase	Patient Population	Treatment	No. of Patients	CR Rate (%)	ORR (%)
Idiome Study II Sebert et al, 2021		R/R HR-MDS	IVO	13	23	54
	II	HMA-naïve HR- MDS	IVO x 3 cycles; then IVO + Aza if no response	11	73	91
		LR-MDS failed prior ESA	IVO	2	50	50
Dinardo et al, 2022	I	R/R MDS	IVO	18	38.9	83
Watts et al, 2022	Ι	HMA-naïve and R/R HR-MDS	Oluta or Oluta + AZA	Oluta: 6 Oluta+AZA: 7	Oluta: 17 Oluta+AZA: 57	Oluta: 33 Oluta+AZA: 86

Sebert et al. ASH 2021; Dinardo et al. ASH 2022; Watts et al. Lancet Haematol 2022.

MDS Working Group Overview

*MSRP=myeloMATCH Screening and Reassessment Protocol

Looking to the future...targeted therapies in high risk myeloid neoplasms

- Subset specific therapy is here to stay
 - has been validated in AML
- In MDS and high risk MPNs
 - 90% harbor gene mutations
 - efforts need to be made to identify subsets that may benefit from specific approaches
- Accelerating clinical trial development by conducting focused early phase trials, and moving tolerable combinations more rapidly into the frontline setting.