

"What is New for DLBCL & Hodgkin's Disease?"

Eduardo M. Sotomayor, MD VP and Executive Director, TGH Cancer Institute Professor, USF Health Morsani College of Medicine

Frontline Advanced DLBCL

Frontline Hodgkin's disease

FDA Approvals for Frontline DLBCL (2000-2016)

FDA Approvals for DLBCL (2017-2024)

POLARIX: Study design overview

*Western Europe, United States, Canada and Australia vs Asia vs Rest of World. BICR, blinded independent central review; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; EFSefficer, event-free survival for efficacy causes (time from randomization to the earliest occurrence of disease progression/relapse, death due to any cause, initiation of any non-protocol specified anti-lymphoma treatment, or biopsy-confirmed residual disease after treatment completion)

Tilly H, et al. New Engl J Med 2022;386:351-63.

$\begin{array}{l} HR \ 0.73 \ \ _{(p=0.02)} \\ \mbox{Pola-R-CHP} \rightarrow 27\% \ reduction \\ \mbox{in risk of progression,} \\ \ relapse \ or \ death^1 \end{array}$

 Relapsing or being refractory to 1L treatment remain the main causes of morbidity and mortality in DLBCL²

1.Tilly H, et al. New Engl J Med 2022;386:351–63; 2. Maurer MJ, et al. Ann Oncol 2018;29:1822–27.

- Most relapses in patients with previously untreated DLBCL occur in the first 2 years, and outcomes with salvage therapy remain poor for a variety of patients²
- Landmark analysis at 24 months showed a clinically meaningful improvement in the number of patients avoiding relapse with Pola-R-CHP vs R-CHOP

1.Tilly H, et al. New Engl J Med 2022;386:351–63; 2. Maurer MJ, et al. Ann Oncol 2018;29:1822–27.

Investigator-assessed PFS (global ITT population)

Tilly H, et al. New Engl J Med 2022;386:351–63.

Investigator-assessed PFS by subgroup

(global ITT, unstratified)

		Pola-R-CH	IP (N=440)	R-CHOP (N=439)		95%			
Baseline risk factors	Total N	n	2-year rate	n	2-year rate	HR	Wald CI	Pola-R-CHP better	R-CHOP better
Age group									
≤60	271	140	74.1	131	71.9	0.9	(0.6 to 1.5)	· · · · · · · · · · · · · · · · · · ·	
>60	608	300	77.9	308	69.5	0.7	(0.5 to 0.9)		
Sex								_	
Male	473	239	75.9	234	65.9	0.7	(0.5 to 0.9)		
Female	406	201	77.7	205	75.2	0.9	(0.6 to 1.4)	·	4
ECOGPS	707	074	70.4	000	74.0	0.0	(0.0 + 1.0)		
0-1	131	374	/ 0.4 67.0	303	71.2	0.8	(0.6 to 1.0) (0.5 to 1.4)		
2 IPI score	141	00	07.2	15	05.0	0.0	(0.5 (0 1.4)		-
IPL2	334	167	79.3	167	78.5	1.0	(0.6 to 1.6)		
IPI 3-5	545	273	75.2	272	65.1	0.7	(0.5 to 0.9)		1
Bulky disease							(
Absent	494	247	82.7	247	70.7	0.6	(0.4 to 0.8)		
Present	385	193	69.0	192	69.7	1.0	(0.7 to 1.5)		-
Geographic region								_	
W. Europe, US, Canada, Australia	603	302	78.6	301	72.0	0.8	(0.6 to 1.1)		
Asia	160	81	74.3	79	65.6	0.6	(0.4 to 1.5)		
Rest of world	116	57	70.8	59	67.3	0.9	(0.6 to 1.5)		
Ann Arbor stage									
I–II	99	47	89.1	52	85.5	0.6	(0.2 to 1.8)	• • • • • • • • • • • • • • • • • • •	
	232	124	80.7	108	73.6	0.8	(0.5 to 1.3)		
IV Receive I DH	548	269	/2.6	279	66.1	0.8	(0.6 to 1.1)		
	300	146	78.0	154	75.6	0.8	(0.5 to 1.3)		
SUIN	575	291	75.4	284	67.2	0.7	(0.5 to 1.0)		
No. of extranodal sites	010	201	10.4	204	01.2	0.1	(0.0 10 1.0)	· -	
0-1	453	227	80.2	226	74.5	0.8	(0.5 to 1.1)		
N2	406	040	72.0	010	65 Q	0.7	(0.5 to 1.0)		
Cell-of-origin									
GCB	352	184	75.1	168	76.9	1.0	(0.7 to 1.5)		
ABC	221	102	83.9	119	58.8	0.4	(0.2 to 0.6)	←	
Unclassified	95	44	73.0	51	86.2	1.9	(0.8 to 4.5)		
Unknown	211	110	73.8	101	64.3	0.7	(0.4 to 1.2)		
Double expressor by IHC	000	400	75.5	454	CD 4	0.0	(0.4 + 4.0)		
Neg DEI	290	139	/ 0.0	101	03.1	0.6	(0.4 to 1.0) (0.6 to 1.2)		
linknown	430	78	76.0	215	69.8	0.9	(0.6 to 1.3)		1
Double- or triple-hit lymphoma	131	70	10.0	15	00.0	0.0	(0.4 (0 1.3)	· · · · · · · · · · · · · · · · · · ·	_
Yes	45	26	69.0	19	88.9	3.8	(0.8 to 17.6)		
No	620	305	76.8	315	70.3	0.7	(0.5 to 1.0)		
Unknown	214	109	78.5	105	66.4	0.6	(0.4 to 1.1)		
								0.25 1	

Cell of Origin and Response to Polatuzumab Vedotin in DLBCL

Palmer et al. NEJM 2023

Frontline Trials in DLBCL (with Bispecifics or Venetoclax)

Bispecific Antibodies in B-cell NHL

The Original: Proof of Concept	The New Onesand more to come						
Blinatumomab ¹	Epcoritamab ²	Mosunetuzumab ³	Glofitamab⁴	Odronextamab⁵			
BiTE® α -Target single-chain antibody (scFv) Linker α -CD3 single-chain antibody (scFv)	CD20 CD3		High avidity binding to CD20 on B cells CD3 T-cell engagement reduces toxicity	Car Ca Ca Ca Ca Ca Ca Ca Ca Ca			
CD3 (scFV) x CD19 (scFV)	DuoBody- CD3 x CD20 BsAb	CD3 x CD20 Knobs-in-hole Fc BsAb	CD3 (Fab) x CD20 (Fab x2) Fc BsAb	CD3 x CD20 Common LC Fc BsAb			

- Numerous bispecific antibody structures exist
- Properties of the BsAbs vary by construct
- Distinguishing features of BsAbs include:
 - <u>"Off-the-shelf</u>"- rapid access, relative ease of delivery ^{6,7}
 - Adaptable lack of persistence and ability to modulate dosing may improve tolerability⁶

1. Queudeville M, et al. Onco Targets Ther. 2017;10:3567-3578. 2. Clausen MR, et al. J Clin Oncol. 2021;39(suppl 15):7518. 3. Budde LE, et al. Blood. 2018;132(suppl 1):399. 4. Hutchings M, et al. Blood. 2020;136(suppl 1):45-46. 5. Bannerji R, et al. Blood. 2020;136(Suppl_1):42-43. Presented at: ASH 2020. Abstract 400. 6. Husain B, et al. BioDrugs. 2018;32(5):441-464. 7. Schuster S. SurvivorNet. Bispecific antibodies: an off-the-shelf approach to treating lymphoma. Accessed June 23, 2022. https://www.survivornet.com/articles/bispecific-antibodies-an-off-the-shelf-approach-to-treating-lymphoma/

Improving on R-CHOP or Pola-R-CHP in DLBCL

Glofitamab + R-CHOP

- 56 pts (96% stage III/IV). Median IPI 3
- 6-8 cycles of R-CHOP with glofitamab dose ramp-up starting C2
 - Glofitamab maintenance for up to 1y
- 10.7% CRS, no G3/4
- Median 17m follow-up:
 - 84% CMR (91% remained in CMR at 1y)

Topp et al, ASH 2023 Abst #3085

Clinical cut-off date: April 4, 2023; DLBCL, diffuse large B-cell lymphoma; Glofit, glofitamab; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone.

• Epcoritamab + Pola-R-CHP

- Ongoing, open at TGH Cancer Institute
- Adding Epco with dose ramp-up to Pola-R-CHP
- 6 cycles of Pola-R-CHP+Epco followed by 2 cycles of Epco

Figure. Durability of response in patients with previously untreated DLBCL who received Glofit + R-CHOP

Pola + Glofitamab + Rituximab in Frontline DLBCL:

- Not eligible for R-CHOP
- First 10 pts:
 - Median age 79
 - 70% stage III/IV
 - 70% IPI 3-5
 - 1 G3 bleeding, 1 G3 AKI
 - 3 G1 CRS
 - no ICANS/neuropathy
- ORR 63%, CR 51%

<u>"Chemo-free" frontline therapy for elderly/frail DLBCL patients:</u> <u>Polatuzumab, Zanubrutinib & Rituximab</u>

- 12 pts, 9 non-GCB, 1 double-hit
- Age > 70 or 60-69 & ECOG 2-4
- 1 G3 transaminitis, 1 G3 pneumonitis
- 4 patients evaluable after C3: 100% CMR

Figure 1. Scheme of ZPR regimen study

Ren et al., ASH 2023 Abst #1747

Venetoclax + Pola-R-CHP

Figure. Objective response rate by PET-CT at EOT

- Cavalli study (Blood 2021) using 10d venetoclax with significant AEs
- Shorter course, <u>5-day venetoclax</u>:
 - 30 pts evaluable for response
 - BCL2+, R-IPI 2-5, 90% stage III/IV, 25% double/triple hit
 - Venetoclax 800mg x 5 days (C1D4, then D1 subsequent cycles)
 - 2 G5 AE (cardiac, sepsis), 10% febrile neutropenia

Patients

Frontline Trials in DLBCL (with CAR T cells)

ZUMA-12: Axi-Cel as Frontline Therapy for High Risk DLBCL:

3-year follow up (Chavez, JC et al. ASH 2023)

Medians for PFS and OS were not reached in efficacy-evaluable patients

Among patients who achieved a CR as best response, <u>3-year PFS: 84.4% and OS: 90.6%</u>

Chavez JC et al. ASH Meeting 2023

Earlier use of CAR T cells seems to further improve outcomes in DLBCL

14.6 m

Median PFS: Not reached

Median PFS 5.9 m 🏼 🕵

Westin, J. et Al. N Eng. J. Med 2023

Frontline Advanced DLBCL

Frontline Advanced Hodgkin's disease

Bv+AVD in advanced stage Hodgkin Lymphoma: <u>6-year OS</u>

Overall Survival Estimates (ITT Population)¹

<u>ASCO 2024 (S. Ansell et al)</u> <u>7year OS</u>: 93.5% with Bv+AVD vs. 88.8% with ABVD (HR: 0.62; 95% CI: 0.42,0.90) p=0.011

Bv+AVD in advanced stage Hodgkin Lymphoma: 6-year PFS

PFS per INV Follow-Up at 6 Years (ITT Population)¹

ECHELON-1 primary endpoint: Modified PFS per IRF at 2 years^{2,3}

- HR (95% CI): 0.77 (0.60, 0.98), P = 0.035; median follow-up: 24.6 months
- 23% reduction in event risk[†]

ECHELON-1 exploratory endpoint: PFS per INV analyzed at 6 years

- PFS per INV was defined as time from randomization to the first occurrence of disease progression or death¹
- Median progression-free survival was not reached in either arm¹

* PFS per INV at 6 years was a post-hoc exploratory analysis. This analysis was not powered to determine differences between treatment arms and offers supportive, but not conclusive, clinical information only.

<u>7year PFS</u>: 82.3% with Bv+AVD vs. 74.5% with ABVD (HR: 0.68; 95% CI: 0.53,0.86) p=0.001 PFS rates at 7 years indicate potential curability

Intergroup Study S1826

Herrera AF, et al. ASCO 2023, Plenary Session.

Intergroup Study S1826: PFS

Herrera AF, et al. ASCO 2023, Plenary Session.

Intergroup Study S1826: EFS

1-year EFS N-AVD 91% Bv-AVD 84%

EFS events: death, progression, non-protocol treatment before progression

EFS event	N-AVD	Bv-AVD
Non-protocol chemo before PD	9	6
Non-protocol immunotx before PD	1	0
Non-protocol RT prior to PD	1*	3**
Progression/Relapse	26	47
Death without progression	4	10
Total EFS Event	41	66

* Intended for RT, EOT DS=3, received RT anyways **1/3 intended for RT, 1 with EOT DS=2 and off tx due to AE then received RT, 2 with EOT DS=3 and received RT anyways

Intergroup Study S1826: OS

Cause of death	N-AVD	Bv-AVD
Infection	2	4
Sepsis	1	2*
Cardiac arrest	0	1
Pneumonitis	0	1
Dehydration, vomiting, cHL	0	1
cHL	1**	0
Unknown	1	2
Total OS events	4	11

* 1 death from COVID-19/sepsis

** never received treatment, ineligible on C1D1

Herrera AF, et al. ASCO 2023, Plenary Session.

GHSG HD21: BrECADD versus BEACOPP in advanced stage classical Hodgkin lymphoma

GHSG HD21 study design and primary endpoints

HD21 is an international randomized, open-label, phase 3 study of BrECADD versus eBEACOPP in adult patients < 60 yo with previously untreated, AS-cHL

Co-primary objectives:

- Demonstrate **superior tolerability** defined by treatment-related morbidity (TRMB) with BrECADD.
- Demonstrate **non-inferior efficacy** of 4-6 x BrECADD compared with 4-6 x BEACOPP determined by PFS (NI margin 6%, HR to be excluded 1.69)

Borchmann, P. et al. LBA7000, ASCO 2024

GHSG HD21: BrECADD versus BEACOPP

HD21 final analysis: BrECADD is superior to eBEACOPP (mFU 48 m)

Progression-free survival

Overall survival

Borchmann, P. et al. LBA7000, ASCO 2024

BrECADD versus BEACOPP: Key Findings

- 1. BrECADD is more active than eBEACOPP reaching
 - an unprecedentedly high 4-year PFS of 94.3%
 - with most patients (64%) receiving only 4 cycles (i.e. 12 weeks) of treatment.
- 2. BrECADD is better tolerated than eBEACOPP: TRMB relative risk 0.72 (p<0.0001) with
 - resolution of TRMB events in > 99% of patients at 12 months follow-up
 - a clinically highly relevant reduction of neuropathy and gonadal dysfunction
 - PET2-guided individualized BrECADD has a very favourable risk-benefit ratio. We thus recommend it as standard treatment option for AS-cHL.

Lymphoma Program at TGH Cancer Institute

Alan Kerr, MD Lymphomas/CLL

Nikesh Shah, MD Lymphomas /ALL

Eduardo M.Sotomayor, MD MCL

Megan Melody MD Hodgkin BMT/ CAR T cells

Pselane Coney, APRN

Brigett Muller, PA Lead APP

Rosa Ancaya, PA

THANK YOU !

esotomayor@tgh.org