Pancreatic, Biliary Tract and Hepatic Cancers Recent Advances

July 19, 2024

New Orleans Summer Oncology Conference

MITESH BORAD, M.D.

Professor of Medicine Mayo Clinic College of Medicine and Science

Program Leader - Novel Therapeutics Program Mayo Clinic Comprehensive Cancer Center

Nivolumab plus ipilimumab vs lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma: first results from CheckMate 9DW

Peter R. Galle,¹ Thomas Decaens,² Masatoshi Kudo,³ Shukui Qin,⁴ Leonardo Da Fonseca,⁵ Bruno Sangro,⁶ Hatim Karachiwala,⁷ Joong-Won Park,⁸ Edward Gane,⁹ Matthias Pinter,¹⁰ David Tai,¹¹ Armando Santoro,¹² Gonzalo Pizarro,¹³ Chang-Fang Chiu,¹⁴ Michael Schenker,¹⁵ Aiwu He,¹⁶ Qi Wang,¹⁷ Caitlyn Stromko,¹⁷ Joseph Hreiki,¹⁷ Thomas Yau¹⁸

¹University Medical Center, Mainz, Germany; ²Univ. Grenoble Alpes, CHU Grenoble Alpes, Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France; ³Kindai University Hospital, Osaka, Japan; ⁴Nanjing Tianyinshan Hospital of China Pharmaceutical University, Nanjing, China; ⁵Instituto do Cancer do Estado de São Paulo, ICESP, São Paulo, Brazil; ⁶Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain; ⁷Cross Cancer Institute, Edmonton, Canada; ⁸National Cancer Center, Goyang, Republic of Korea; ⁹Auckland City Hospital, Auckland, New Zealand; ¹⁰Medical University of Vienna, Vienna, Austria; ¹¹National Cancer Centre, Singapore, Republic of Singapore; ¹²Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, and IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; ¹³Bradford Hill Centro de Investigacion Clinica, Recoleta, Chile; ¹⁴China Medical University Hospital, Taichung, Taiwan; ¹⁵Centrul de Oncologie Sf. Nectarie, Craiova, Romania; ¹⁶MedStar Georgetown University Hospital, Washington, DC; ¹⁷Bristol Myers Squibb, Princeton, NJ; ¹⁸Queen Mary Hospital, Pok Fu Lam, Hong Kong

CheckMate 9DW study design

 CheckMate 9DW is a global, phase 3, randomized, open-label study of NIVO in combination with IPI compared with LEN or SOR as 1L treatment in patients with unresectable HCC^a

Among 325 patients treated with LEN/SOR: 275 (85%) received LEN and 50 (15%) received SOR

• At data cutoff (January 31, 2024), median (range) follow-up^h was 35.2 (26.8-48.9) months

Baseline characteristics

All randomized	NIVO + IPI	LEN/SOR
	(n = 335)	(n = 333)
Median age (range), years	65 (20-86)	66 (20-89)
≥ 65 years	173 (52)	184 (55)
Male, n (%)	271 (81)	277 (83)
Region, n (%)		
Asia	133 (40)	147 (44)
North America/Europe	144 (43)	145 (44)
Rest of the world	58 (17)	41 (12)
Etiology, n (%) ^{a,b}		
HBV	114 (34)	115 (35)
HCV	90 (27)	96 (29)
Uninfected	124 (37)	119 (36)
Child-Pugh score, n (%) ^c		
5	254 (76)	263 (79)
6	72 (21)	58 (17)
ECOG PS 1, n (%) ^d	102 (30)	89 (27)
BCLC stage, n (%) ^e		
≤ B	89 (27)	88 (26)
C	246 (73)	242 (73)
MVI/EHS, n (%) ^b		
MVI	77 (23)	92 (28)
EHS	188 (56)	172 (52)
MVI/EHS	221 (66)	217 (65)
AFP ≥ 400 ng/ml, n (%)	108 (32)	113 (34)
Prior locoregional therapy, n (%)	142 (42)	158 (47)

^a7 patients in the NIVO + IPI arm and 3 patients in the LEN/SOR arm were reported as having both HBV and HCV as risk factors for HCC; these patients did not have active co-infection with HBV and HCV. ^bPer CRF. ^cScore \geq 7: NIVO + IPI, n = 9; LEN/SOR, n = 11. Not reported: LEN/SOR, n = 1. ^dNot reported: LEN/SOR, n = 1. ^eUnknown: LEN/SOR, n = 3.

Overall survival

- Statistically significant and clinically meaningful OS benefit with NIVO + IPI vs LEN/SOR
 - Longer median OS and long-term survival benefit with higher OS rates at 24 and 36 months

Median (range) follow-up, 35.2 (26.8-48.9) months. Median OS is estimated using Kaplan-Meier methodology. HR and 95% CI from stratified Cox proportional hazard model. HR is NIVO + IPI over LEN/SOR. Symbols represent censored observations. ^aTwo-sided *P* value from stratified log-rank test. Boundary for statistical significance: *P* value \leq 0.0257.

Overall survival subgroup analysis

		Median OS, mo		Unstratified	
Category	Subgroup	NIVO + IPI	LEN/SOR	HR	Unstratified HR (95% CI)
Overall (N = 668)		23.7	20.6	0.79	i
Age, years	< 65 (n = 311)	26.8	22.7	0.78	
	≥ 65 (n = 357)	18.8	18.2	0.81	
Sex	Male (n = 548)	23.0	21.1	0.83	
	Female (n = 120)	26.9	17.3	0.63	
Region	Asia (n = 280)	34.0	22.5	0.75	
	North America/Europe (n = 289)	22.9	19.8	0.83	
	Rest of world (n = 99)	18.8	12.4	0.67	
ECOG PS ^a	0 (n = 476)	27.9	22.5	0.78	 ¦
	1 (n = 191)	16.4	15.3	0.78	
Child-Pugh score ^b	5 (n = 517)	27.9	23.2	0.80	_
	6 (n = 130)	18.3	10.3	0.61	İ
Etiology ^{c,d}	HBV (n = 229)	23.5	22.3	0.84	
	HCV (n = 186)	33.0	17.8	0.68	
	Uninfected (n = 243)	19.3	18.4	0.84	
MVIc	Yes (n = 169)	22.9	15.4	0.59	I
	No (n = 499)	23.9	21.9	0.89	_
EHS ^c	Yes (n = 360)	18.7	16.6	0.82	
	No (n = 308)	33.5	22.5	0.72	
MVI/EHS ^c	Yes (n = 438)	19.4	17.7	0.80	
	No (n = 230)	33.5	23.0	0.74	
Baseline AFP, ng/ml	< 400 (n = 447)	25.9	23.8	0.86	
	≥ 400 (n = 221)	16.4	12.1	0.69	
BCLC at baseline ^e	≤ B (n = 177)	33.5	27.1	0.72	
	C (n = 488)	20.3	17.8	0.81	
					0.125 0.25 0.5 1 2

Median (range) follow-up, 35.2 (26.8-48.9) months. HRs and 95% CIs from unstratified Cox proportional hazard model. HR is NIVO + IPI over LEN/SOR. HR is not computed for subset categories with 10 or less patients per treatment arm. aNot reported, n = 1. bScore ≥ 7 , n = 20; not reported, n = 1. Per CRF. dReported as having both HBV and HCV as risk factors for HCC, n = 10; these patients did not have active co-infection with HBV and HCV. BVN, n = 3.

Response and duration of response

• Statistically significant and clinically meaningful improvement in ORR with NIVO + IPI vs LEN/SOR, with a higher complete response rate (7% vs 2%, respectively) and durable responses

Median (range) follow-up, 35.2 (26.8-48.9) months. Symbols represent censored observations. ^aAssessed by BICR based on RECIST v1.1. ^bTwo sided *P* value from stratified Cochran-Mantel-Haenszel test. Boundary for statistical significance: *P* value \leq 0.025. ^cIncludes non-CR/non-PD: NIVO + IPI, n = 6 (2%); LEN/SOR, n = 7 (2%). Non-CR/non-PD refers to patients with persistence of one or more non-target lesion(s). ^dNumber of confirmed responders.

Progression-free survival

• Numerically higher PFS rates with NIVO + IPI vs LEN/SOR at 18 and 24 months

Median (range) follow-up, 35.2 (26.8-48.9) months. Median PFS is estimated using Kaplan-Meier methodology. HR and 95% CI from stratified Cox proportional hazard model. HR is NIVO + IPI over LEN/SOR. Symbols represent censored observations. ^aAssessed by BICR based on RECIST v1.1.

Treatment-related adverse events

All treated patients, n (%)	NIVO + IPI (n = 332)	LEN/SOR (n = 325)
Median (range) duration of treatment, mo	4.7 (< 1 to 24.4)	6.9 (< 1 to 45.8)

	NIVO + IPI (n = 332)		LEN/SOR (n = 325)		
All treated patients, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
TRAEsª					
Any TRAEs	278 (84)	137 (41)	297 (91)	138 (42)	
Serious TRAEs	94 (28)	83 (25)	47 (14)	42 (13)	
TRAEs leading to discontinuation	59 (18)	44 (13)	34 (10)	21 (6)	
Treatment-related deaths ^b	12 (4) ^c		3 (<	1) ^d	

TRAEs occuring in \geq 10% of patients

^aIncludes events reported between first dose and 30 days after last dose of study therapy. ^bTreatment-related deaths were reported regardless of time frame. ^cTRAEs leading to death in the NIVO + IPI arm included immune-mediated hepatitis (n = 4), hepatic failure (n = 3), hepatic insufficiency (n = 1), decompensated cirrhosis (n = 1), diarrhea-colitis (n = 1), autoimmune hemolytic anemia (n = 1), and dysautonomia (n = 1). ^dTRAEs leading to death in the LEN/SOR arm included hepatorenal syndrome (n = 1), ischemic stroke (n = 1), and acute kidney injury (n = 1).

Immune-mediated adverse events

		NIVO + IPI (n = 332)				
All treated patients, n (%)	Any grade	Grade 3/4	Received high- dose steroids	Leading to discontinuation		
Patients with IMAEs ^a	191 (58)	93 (28)	96 (29)	42 (13)		
Hepatitis	63 (19)	51 (15)	56 (17)	19 (6)		
Hypothyroidism/thyroiditis	62 (19)	1 (< 1)	2 (< 1)	0		
Rash	51 (15)	14 (4)	10 (3)	1 (< 1)		
Hyperthyroidism	36 (11)	2 (< 1)	3 (< 1)	0		
Diarrhea/colitis	28 (8)	15 (5)	27 (8)	9 (3)		
Adrenal insufficiency	18 (5)	6 (2)	2 (< 1)	4 (1)		
Hypophysitis	9 (3)	4 (1)	3 (< 1)	4 (1)		
Pneumonitis	7 (2)	3 (< 1)	6 (2)	3 (< 1)		
Nephritis and renal dysfunction	5 (2)	3 (< 1)	3 (< 1)	2 (< 1)		
Hypersensitivity	4 (1)	0	3 (< 1)	0		
Diabetes mellitus	2 (< 1)	2 (< 1)	0	0		

• The majority of IMAEs were grade 1 or 2, were manageable, and did not result in treatment discontinuation

^aIMAEs are specific events considered as potential immune-mediated events by investigator, occurring within 100 days after the last dose of study treatment, regardless of causality, and, with the exception of endocrine events, are treated with immune-modulating medication

	Atezo + Bev ^{1,3}	Durva + Treme ²	Durva ²	lpi + Nivo ⁴
OS (mth)	19.2	16.4	16.6	23.7
2 year OS	NR	40.5%	39.6%	49%
3 year OS	NR	30.7%	24.7%	38%
4 year OS.	NR	25.2%	19.3%	N/A
PFS (mth)	6.9	3.78	3.65	9.1
RR	30%	20.1%	17%	36%
DOR (mth)	18.1	22.3	16.8	30.4
TTR (mth)	NR	2.17	2.09	2.2

1. Finn et al NEJM 2020 ; 2. Abou-Alfa et al NEJM Evid 2022; 3. Cheng et al J Hep 2022 ; 4. Galle et al ASCO 2024

EMERALD-1: a Phase 3, randomized, placebocontrolled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization

Riccardo Lencioni^{*1}, Masatoshi Kudo², Joseph Erinjeri³, Shukui Qin⁴, Zhenggang Ren⁵, Stephen L Chan⁶, Yasuaki Arai⁷, Jeong Heo⁸, Anh Mai⁹, Jose Escobar¹⁰, Yamil Alonso Lopez Chuken¹¹, Jung-Hwan Yoon¹², Won Young Tak¹³, Tanita Suttichaimongkol¹⁴, Mohamed Bouattour¹⁵, Shi-Ming Lin¹⁶, Magdalena Żotkiewicz¹⁷, Stephanie Udoye¹⁸, Gordon J Cohen¹⁸, **Bruno Sangro^{*19}**

¹Department of Diagnostic and Interventional Radiology, University of Pisa School of Medicine, Pisa, Italy; ²Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; ³Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Cancer Center of Nanjing, Jinling Hospital, Nanjing, China; ⁵Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; ⁶State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China; ⁷Department of Diagnostic Radiology, National Cancer Center, Chuo-ku, Tokyo, Japan; ⁸Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; ⁹General Surgery Department, Nhan Dan Gia Dinh Hospital, Ho Chi Minh City, Vietnam; ¹⁰Hospital San Lucas Cardiológica del Sureste, Chiapas, Mexico; ¹¹I Can Oncology Centre, New León, Mexico; ¹²Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ¹³Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; ¹⁴Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; ¹⁵Medical Oncology, AP-HP Hôpital Beaujon, Paris, France; ¹⁶Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; ¹⁷Oncology Biometrics, Late Oncology Statistics, AstraZeneca, Warsaw, Poland; ¹⁸Global Medicines Development, AstraZeneca, Gaithersburg, MD, USA; ¹⁹Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Pamplona, Spain

*Co-principal investigators

ASCO Gastrointestinal Cancers Symposium

PRESENTED BY: Riccardo Lencioni, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

EMERALD-1 study design

EMERALD-1 was a global, double-blind, placebo-controlled Phase 3 study

*Upper endoscopy to evaluate varices and risk of bleeding was required within 6 months of randomization. †Prior use of TACE or TAE is acceptable if it was used as part of therapy with curative intent, but not if it was used as the sole modality in curative therapy. ‡Durvalumab / placebo started ≥7 days after TACE. \$DEB-TACE or cTACE. Participants will receive up to 4 TACE procedures within the 16 weeks following Day 1 of their first TACE procedure. ^{II}Only new lesions consistent with progression that were not eligible for TACE occurring prior to the first on study imaging at 12 weeks were considered progression events; standard mRECIST progression criteria were used after the 12-week imaging.

BICR, blinded independent central review; cTACE, conventional transarterial chemoembolization; ECOG, Eastern Cooperative Oncology Group; DEB-TACE, drug-eluting bead-transarterial chemoembolization; HCC, hepatocellular carcinoma; mRECIST, modified Response Evaluation Criteria in Solid Tumors; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PS, performance status; Q3W / Q4W, every 3 / 4 weeks; QoL, quality of life; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial embolization; TACE, tr

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Riccardo Lencioni, MD

EMERALD-1 study schema

Number and timings of TACE at the investigator's discretion:

#GI24

• 1–4 TACE procedures within 16 weeks

Combination therapy begins after the final TACE procedure

 Median (range) start of combination systemic therapy: 14 (2–113) weeks post first dose of TACE at Day 0

*Durvalumab / placebo started at least 7 days after TACE; doses moved to accommodate TACE if necessary. Durvalumab 1500 mg. Durvalumab / placebo Q4W until ≥14 days after last TACE. †Durvalumab 1120 mg. Bevacizumab 15 mg/kg. Durvalumab / bevacizumab / placebos Q3W. ‡Investigator-determined mRECIST-defined radiological disease progression. \$Participants with mRECIST-defined progression may continue to receive study treatment, including additional TACE, at the discretion of the investigator and participant, and in consultation with the AstraZeneca study physician.

cTACE, conventional transarterial chemoembolization; DEB-TACE, drug-eluting bead-transarterial chemoembolization; mRECIST, modified Response Evaluation Criteria in Solid Tumors; PD, progressive disease; TACE, transarterial chemoembolization; Q3W / Q4W / Q9W, every 3 / 4 / 9 weeks.

ASCO[°] Gastrointestinal Cancers Symposium

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PRESENTED BY: Riccardo Lencioni, MD

Participant disposition

The majority of participants had 1 or 2 TACE procedures with or without durvalumab

*Number of TACE procedures given prior to disease progression. Some participants had additional TACE procedures beyond progression, while remaining on the study. †Participants in arm C (placebos + TACE) received placebo for durvalumab. ‡57.5% no longer ongoing study: 51.2% due to death; 5.8% due to withdrawal by participant; 0.5% due to other. 160.0% no longer ongoing study: 51.7% due to withdrawal by participant; 0.5% due to other. 160.0% no longer ongoing study: 51.7% due to withdrawal by participant. "Other reasons for 'discontinued study treatment' include AEs, participant decision, severe non-compliance to protocol, development of study-specific discontinuation criteria, lost to follow-up, due to COVID-19 pandemic, or other. **10.9% due to AEs; 7.3% due to participant decision; 5.2% due to other. ¹¹22.8% due to AEs; 12.4% due to participant decision; 4.7% due to other. ¹¹8.0% due to AEs; 12.5% due to participant decision; 6.0% due to other. ¹¹2.8% due to participant decision; 6.0% due to AEs; 12.4% due to participant decision; 6.0% due to AEs; 12.4% due to participant decision; 6.0% due to AEs; 12.4% due to participant decision; 6.0% due to AEs; 12.4% due to participant decision; 6.0% due to AEs; 12.4% due to AEs; 12.4\% due to AEs; 12.4 benefitting from treatment.

AE, adverse event; B, bevacizumab; D, durvalumab; TACE, transarterial chemoembolization

#GI24 Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PRESENTED BY: Riccardo Lencioni, MD

6

PFS with D+B + TACE versus placebos + TACE: primary endpoint

Median PFS was improved by 6.8 months with D+B + TACE versus placebos + TACE

Median (range) duration of follow-up in censored participants, D+B + TACE 16.7 (0.03–47.1) months, Placebos + TACE 10.3 (0.03–44.3) months. Median (95% CI) duration of follow-up in all participants using the reverse Kaplan-Meier method, D+B + TACE 22.2 (16.7–27.3) months, Placebos + TACE 26.3 (16.7–30.4) months. PFS was assessed by BICR (RECIST v1.1)

*The threshold of significance for this analysis was 0.0435 based on the α spend at the PFS interim analysis (2.27%) and the actual number of events at PFS final analysis

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mo, months, PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization.

#GI24 PRES

PRESENTED BY: Riccardo Lencioni, MD

8

PFS with D+B + TACE versus placebos + TACE in key subgroups

PFS benefit with **D+B + TACE** was generally consistent across subgroups

		Favors D+B + TACE	Favors Placebos + TACE	D+B + TACE (n=204), n / N (%)	Placebos + TACE (n=205), n / N (%) HR (95% CI)
All participants:				136 / 204 (66.7%)	149 / 205 (72.7%)	0.77 (0.61-0.98)
Geographical region	Japan H		•	12 / 15 (80.0%)	11 / 15 (73.3%)	1.03 (0.45-2.39)
51 5	Asia non-Japan	•	1	68 / 107 (63.6%)	77 / 107 (72.0%)	0.74 (0.53-1.02)
	Other	•	-1	56 / 82 (68.3%)	61 / 83 (73.5%)	0.74 (0.51-1.07)
TACE technique	DEB-TACE	•	1	55 / 83 (66.3%)	67 / 85 (78.8%)	0.71 (0.50-1.02)
	cTACE	•		81 / 121 (66.9%)	82 / 120 (68.3%)	0.80 (0.59-1.09)
Portal vein invasion	Vp1 or Vp2+ / -Vp1		•	H 13 / 16 (81.3%)	10 / 13 (76.9%)	1.12 (0.48-2.76)
	None			123 / 188 (65.4%)	139 / 192 (72.4%)	0.73 (0.57-0.93)
Sex	Male			106 / 162 (65.4%)	116 / 163 (71.2%)	0.70 (0.53-0.91)
	Female			30 / 42 (71.4%)	33 / 42 (78.6%)	0.96 (0.58-1.58)
BCLC stage	A H	•		28 / 51 (54.9%)	31 / 49 (63.3%)	0.72 (0.43-1.21)
	В			82 / 117 (70.1%)	91 / 122 (74.6%)	0.71 (0.52-0.95)
	С			26 / 35 (74.3%)	25 / 31 (80.6%)	0.96 (0.55-1.68)
Etiology of liver disease*	HBV	•	—	48 / 75 (64.0%)	48 / 74 (64.9%)	0.82 (0.55–1.23)
	HCV H	•	-	30 / 42 (71.4%)	44 / 54 (81.5%)	0.68 (0.43-1.09)
	Non-viral	•		58 / 86 (67.4%)	57 / 76 (75.0%)	0.74 (0.51-1.08)
Screening ECOG PS	0			109 / 167 (65.3%)	128 / 175 (73.1%)	0.70 (0.54–0.90)
	1		•	27 / 37 (73.0%)	21/30 (70.0%)	1.08 (0.61–1.94)
Baseline PD-L1 [†]	<1%	•		71 / 93 (76.3%)	67 / 88 (76.1%)	0.87 (0.62–1.21)
	≥1%	•		41/61 (67.2%)	47 / 64 (73.4%)	0.66 (0.43-1.01)
AFP	≤400 ng/mL			95 / 146 (65.1%)	107 / 150 (71.3%)	0.72 (0.54-0.94)
	>400 ng/mL			40 / 57 (70.2%)	42 / 55 (76.4%)	0.86 (0.56-1.33)
HAP score	A			41 / 66 (62.1%)	41 / 64 (64.1%)	0.76 (0.49–1.17)
	В Н	•		50 / 74 (67.6%)	56 / 75 (74.7%)	0.66 (0.45-0.98)
	Ç H	•	—I	27 / 41 (65.9%)	37 / 48 (77.1%)	0.73 (0.44–1.21)
	D		•	16 / 20 (80.0%)	15 / 18 (83.3%)	1.12 (0.55-2.29)
Tumor burden at baseline	Within up-to 7 criteria (≤7)	•	4	63 / 97 (64.9%)	68 / 102 (66.7%)	0.73 (0.52-1.03)
	Beyond up-to-7 criteria (>7			73 / 106 (68.9%)	81 / 103 (78.6%)	0.78 (0.56-1.07)
ALBI at baseline	Grade 1			78 / 117 (66.7%)	87 / 126 (69.0%)	0.74 (0.55–1.01)
	Grade ≥2	•		58 / 87 (66.7%)	62 / 79 (78.5%)	0.76 (0.53–1.09)
0.1	0.25	0.5 1	1.5 2	1 I I 3 4 5		
		PFS HR (95	5% CI)	R450% 822 88		

Size of circles are proportional to the number of events. *One participant in each arm had both HBV and HCV. Neither of these participants experienced a PFS event. *Baseline PD-L1 TAP expression.

AFP, alpha-fetoprotein; ALBI, albumin-bilirubin; B, bevacizumab; BCLC, Barcelona Clinical Liver Cancer; CI, confidence interval; cTACE, conventional transarterial chemoembolization; D, durvalumab; DEB-TACE, drug-eluting bead-transarterial chemoembolization; ECOG, Eastern Cooperative Oncology Group; HAP, hepatoma arterial-embolization prognostic; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, hazard ratio; PD-L1, programmed cell death ligand-1; PFS, progression-free survival; PS, performance status; TACE, transarterial chemoembolization TAP, tumor area positivity.

#GI24 PRESENT

PRESENTED BY: Riccardo Lencioni, MD

PFS with D + TACE versus placebos + TACE: secondary endpoint

PFS was not significantly improved with **D** + **TACE** versus placebos + **TACE**

Placebos + TACE 26.3 (16.7–30.4) months.

PFS was assessed by BICR (RECIST v1.1)

#GI24

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mo, months, PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization.

PRESENTED BY: Riccardo Lencioni, MD

ORR using BICR per RECIST v1.1

ORR was improved with both D + TACE and D+B + TACE versus placebos + TACE

*Responses included confirmed complete or partial response

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; LQ, lower quartile; ORR, objective response rate; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization; UQ, upper quartile

ASCO[°] Gastrointestinal Cancers Symposium

PRESENTED BY: Riccardo Lencioni, MD

12

Most common maximum Grade 3 or 4 TEAEs

Incidence of maximum Grade 3 or 4 AEs was low across all arms, with no unexpected safety signals

AE, n (%)	D + TACE (n=232)	D+B + TACE (n=154)	Placebos + TACE (n=200)
Hypertension	5 (2.2)	9 (5.8)	1 (0.5)
Anemia	10 (4.3)	7 (4.5)	3 (1.5)
Acute kidney injury	4 (1.7)	6 (3.9)	0
Proteinuria	0	6 (3.9)	0
Post-embolization syndrome	8 (3.4)	5 (3.2)	8 (4.0)
Hepatic encephalopathy	1 (0.4)	5 (3.2)	3 (1.5)
Ascites	4 (1.7)	4 (2.6)	3 (1.5)
Hyponatremia	1 (0.4)	4 (2.6)	0
Esophageal varices hemorrhage	0	4 (2.6)	1 (0.5)

AEs occurring in \geq 2% of participants by preferred term in any arm.

AE, adverse event; B, bevacizumab; D, durvalumab; TACE, transarterial chemoembolization; TEAE, treatment-emergent adverse event.

PRESENTED BY: Riccardo Lencioni, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PANCREATIC CANCER - KRAS

KRAS MUTANT ~90% KRAS WILD TYPE ~10%

PANCREATIC CANCER - KRAS

SMITH ET AL, BJC 2010

PANCREATIC CANCER - KRAS

HUANG ET AL, SIG TRANS AND TARG THER 2021

KRAS TARGET SITES FOR NEXT-GEN THERAPIES

ZHU ET AL, MOLECULAR CANCER 2022

KRAS G12C IN PANCREATIC CANCER - SOTORASIB

RESPONSE RATE : 21% (N=38)

PFS: 4 MONTHS

DCR: 84%

OS: 6.9 MONTHS

TTR: 1.5 MONTHS

DOR: 5.7 MONTHS

SAFETY : DIARRHEA, NAUSEA, FATIGUE, RASH

STRICKLER ET AL, NEJM 2023

KRAS G12C IN PANCREATIC CANCER AND BTC - ADAGRASIB

RESPONSE RATE PANCREATIC CA : 33.3% (N=21)

RESPONSE RATE BILIARY TRACT CA: 47.1% (N=12)

PFS: 5.4 MONTHS

OS:8 MONTHS

SAFETY : DIARRHEA, NAUSEA, FATIGUE, VOMITING

BEKAII-SAAB ET AL, J CLIN ONC 2023

KRAS G12D IN PANCREATIC CANCER – MRTX1133

HALLIN ET AL, NATURE MED 2022

KRAS G12D IN PANCREATIC CANCER – MRTX1133

HALLIN ET AL, NATURE MED 2022

Preliminary Clinical Activity of RMC-6236, a First-in-Class, RAS-Selective, Tri-Complex RAS^{MULTI}(ON) Inhibitor in Patients with KRAS-Mutant Pancreatic Ductal Adenocarcinoma (PDAC) and Non-Small Cell Lung Cancer (NSCLC)

Kathryn C. Arbour¹, Salman Punekar², Ignacio Garrido-Laguna³, David S. Hong⁴, Brian M. Wolpin⁵, Meredith Pelster⁶, Minal Barve⁷, Alexander N. Starodub⁸, David Sommerhalder⁹, Sumit Kar¹⁰, Stephanie Chang¹⁰, Ying Zhang¹⁰, Zeena Salman¹⁰, Xiaolin Wang¹⁰, W. Clay Gustafson¹⁰, Alexander I. Spira¹¹

¹Memorial Sloan Kettering Cancer Center, New York, USA; ²New York University Medical Center, New York, USA; ³University of Utah Health – Huntsman Cancer Institute, Salt Lake City, UT, USA; ⁴The University of Texas MD Anderson Cancer Center, Houston, USA; ⁵Dana Farber Cancer Institute, Boston, USA; ⁶Sarah Cannon Research Institute, Nashville, USA; ⁷Mary Crowley Cancer Research Center, Dallas, USA; ⁸The Christ Hospital – Hematology & Oncology, Cincinnati, USA; ⁹NEXT Oncology[™], San Antonio, USA; ¹⁰Revolution Medicines, Inc., Redwood City, USA; ¹¹Virginia Cancer Specialists, NEXT Oncology, Fairfax, USA.

RMC-6236 is a First-in-Class, RAS^{MULTI}(ON) Inhibitor

- RMC-6236 is a novel, oral, non-covalent RAS^{MULTI}(ON) inhibitor that is selective for the active, GTP-bound or ON state of both mutant and wild-type variants of the canonical RAS isoforms
- Preclinical studies have demonstrated deep and sustained regressions across multiple RAS^{MUT} tumor types, particularly PDAC and NSCLC harboring KRAS^{G12X} mutations

KRAS^{G12X} defined as mutation at codon 12 which encodes glycine (G) to X where X = A, D, R, S, or V. CYPA, cyclophilin A; GTP, guanosine triphosphate; KRAS, Kirsten rat sarcoma viral oncogene homolog; Mut, mutant; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RBD, RASbinding domain.

RMC-6236-001 Phase 1 Study Design

Key Eligibility Criteria

- Advanced solid tumors with KRAS^{G12X} mutations (currently excluding KRAS^{G12C})
- Received prior standard therapy appropriate for tumor type and stage
- ECOG PS 0-1
- No active brain metastases

Key Endpoints

- Safety and tolerability¹
- Pharmacokinetics
- Anti-tumor activity

DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group Performance Status; QD, once daily.

MADRID 2023

^a220 mg cleared DLT evaluation and a dose of 200 mg was selected for further expansion/optimization.
KRAS^{G12X} defined as mutation at codon 12 which encodes glycine (G) to X where X = A, D, R, S, or V.
Spira A, et al. Presentation at AACR-NCI-EORTC International Conference On Molecular Targets And Cancer Therapeutics; abstract #33378.

Patient Demographics and Baseline Characteristics

	$NSCLC^{a} N = 46 PDAC^{a} N = 65$	
Age, median (range), years	65 (31–83)	64 (30–86)
Female, n (%)	25 (54)	31 (48)
ECOG PS, n (%)		
0	11 (24)	20 (31)
1	35 (76)	45 (69)
Smoking status, n (%)		
Current	2 (4)	2 (3)
Past	28 (61)	14 (22)
Never	16 (35)	49 (75)
Number of prior anti-cancer	2 (1–6)	3 (1–7)
therapies, median (range)		
Select type of prior anti-cancer		
therapy/regimens, n (%)		
Checkpoint inhibitor ^b	44 (96)	-
Platinum-based chemotherapy	46 (100)	-
FOLFIRINOX	_	45 (69)
Gemcitabine + nab-paclitaxel	-	49 (75)

Data Extracted 12 Oct 2023.

Summary of Treatment-Related Adverse Events

Patients with NSCLC and PDAC Treated at ≥80 mg QD (N = 111)					
Maximum severity of treatment-related AEs	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade
TRAEs occurring in ≥10% of patients, n (%)					
Rash ^a	58 (52)	25 (23)	7 (6)	0	90 (81)
Nausea	40 (36)	11 (10)	0	0	51 (46)
Diarrhea	28 (25)	14 (13)	1 (1)	0	43 (39)
Vomiting	30 (27)	7 (6)	0	0	37 (33)
Stomatitis	13 (12)	9 (8)	2 (2)	0	24 (22)
Fatigue	11 (10)	6 (5)	0	0	17 (15)
Other select TRAEs, n (%)					
ALT elevation	8 (7)	1 (1)	0	0	9 (8)
AST elevation	8 (7)	0	0	0	8 (7)
Electrocardiogram QT prolonged	1 (1)	0	0	0	1 (1)
TRAEs leading to dose reduction ^b , n (%)	0	10 (9)	5 (5)°	0	15 (14)
TRAEs leading to treatment discontinuation, n (%)	0	0	0	1 (1) ^d	1 (1)

- Median time on treatment was 2.1 months (range: 0.2–10.9).
- No fatal TRAEs were observed.

^aIncludes preferred terms of dermatitis acneiform, rash maculopapular, rash, rash pustular, erythema, rash erythematous; multiple types of rash may have occurred in the same patient; ^bThe most common reason for dose reduction was rash; ^cGrade 3 TRAEs leading to reduction were rash (n = 4), including one patient with a dose reduction due to rash and decreased appetite, and stomatitis (n = 1); ^dOne Grade 4 TRAE occurred in a patient with PDAC at the 80 mg dose level who had a large intestine perforation at the site of an invasive tumor that reduced in size while on treatment.

Data Extracted 12 Oct 2023.

KRAS^{G12X} PDAC: Best Response

Tumor Response (per RECIST 1.1)					
Best overall response	e, n (%)				
PR	9 (20)				
SD	31 (67)				
PD	3 (7)				
NE ^b	3 (7)				
ORR, n (%)	9 (20)				
Confirmed, n	5				
DCR (CR+PR+SD), n (%)	40 (87)				

*Unconfirmed PR per RECIST 1.1. ^aPatients who received first dose of RMC-6236 at least 8 weeks prior to data extract date.

^bTwo patients died prior to first post-baseline scan; 1 patient had scan after 11 days of treatment and subsequently died due to PD.

Data Extracted 12 Oct 2023.

KRAS^{G12X} PDAC: Duration of Treatment and Responses

Data Extracted 12 Oct 2023.

Case Report: Patient with KRAS^{G12R} **PDAC**

Demographics and Baseline
Characteristics

- 57-year-old man
- Diagnosed with PDAC in 2022

Treatment History

- Prior therapies
 - Gemcitabine/nab-paclitaxel/ canakinumab/spartalizumab
 - FOLFIRINOX

RMC-6236 Treatment Course

- Started at 160 mg QD
- Partial response achieved at Week 6 (confirmed); ongoing

Baseline

On-Treatment, Week 12

Target Lesion: Segment 2 Liver

Target Lesion	Baseline	On Treatment
1. Segment 2 liver	45 mm	26 mm
2. Lung (medial basilar left lower lobe nodule)	17 mm	6 mm
3. Lung (right lower lobe nodule)	10 mm	6 mm
Sum of Diameters	72 mm	38 mm (−47% ↓)
Overall Response (RECIST 1.1)		PR

Data Extracted 12 Oct 2023.

Conclusions

- RMC-6236 is an oral, first-in-class, RAS-selective, RAS^{MULTI}(ON) inhibitor.
- At clinically active doses, RMC-6236 was generally well tolerated.
- RMC-6236 demonstrated encouraging anti-tumor activity in patients with previously treated NSCLC and PDAC across several dose levels and KRAS^{G12X} genotypes, including KRAS mutant genotypes G12D, G12V, and G12R.
- Reduction in KRAS VAF in ctDNA correlated with clinical response across tumor types.
- The dose escalation and dose optimization portion of the study is ongoing and includes plans for monotherapy expansion into additional solid tumor cohorts.
- Preliminary safety and clinical activity data support the ongoing development of RMC-6236 as a single agent and future explorations of RMC-6236 in combination with RMC-6291, immunotherapy, and other anti-cancer therapies.

KRAS : FROM UNDRUGGABLE TO DRUGGABLE

PARIKH ET AL, J HEMAT ONC 2022

IMPLICATIONS AND FUTURE DIRECTIONS

- 1. Immune checkpoint doublets are efficacious in HCC
- 2. Immune checkpoint inhibitors with TACE can be used in earlier stage HCC
- 3. KRAS G12C inhibitors have demonstrated efficacy in pancreatic and biliary tract cancers
- 4. RAS ON inhibitors have shown efficacy in pancreatic cancer

QUESTIONS ?