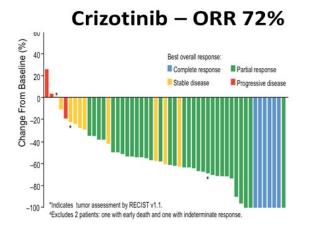


OTHER DRIVER MUTATIONS: ROS-1, BRAF, MET AND RET

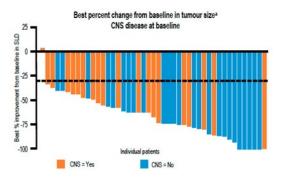
ERMINIA MASSARELLI, MD, PHD, MS

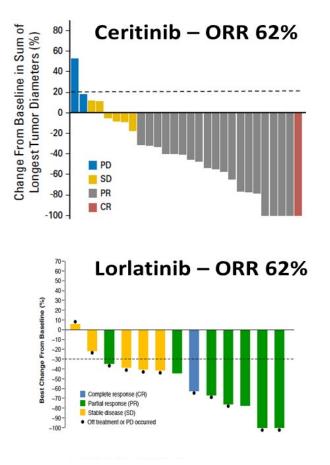
Professor Division Chief of Thoracic Oncology Department of Medical Oncology & Therapeutics Research City of Hope

Mutations in NSCLC

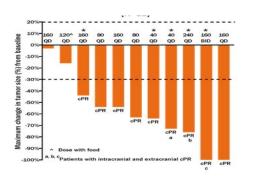


EGFR sensitizing Gefitinib; Erlotinib; Afatinib; Osimertinib; Dacomitinib
<i>ALK</i> Crizotinib; Alectinib; Ceritinib; Lorlatinib; Brigatinib
ROS1 Crizotinib; Cabozantinib; Ceritinib; Lorlatinib; Entrectinib; Repotrectinib
BRAF Vemurafenib, Dabrafenib; Dabrafenib + Trametinib Encorafenib+Binimetinib
NTRK1 Entrectinib; Larotrectinib; loxo-195; DS-6051b; repotrectinib
HER2 Trastuzumab emtansine; Afatinib; Transtuzumab deruxtecan XMT-1522; TAK-788; DS-8201a
<i>RET</i> Selpercatinib; Cabozantinib; Apatinib; Vandetanib; Ponatinib; Lenvatinib Pralsetinib
<i>MET</i> Crizotinib; Cabozantinib; Capmatinib; Savolitinib; Tepotinib; Merestinib; Glesatinib
KRAS Sotorasib ; Adagrasib; Divarasib
MEK1 Trametinib; Selumetinib; Cobimetinib


Characteristics of *ROS-1* **Altered NSCLC**


- ➤ 1-2% of all NSCLC
- > Mainly adenocarcinoma, but also has been reported in pleomorphic carcinoma
- Solid pattern adenocarcinoma
- > Signet ring
- ➤ Mainly non-smokers (~80%)
- ➤ Mainly female patients (~70%)
- IHC screening with FISH confirmation or rt-PCR

ROS-1 Inhibitors: Front-line



Entrectinib – ORR 77%

Repotrectinib – ORR 82%

- High ORR but small N
- Dose doesn't impact ORR
- Efficacy vs. fusions partners is unknown

ROS-1 Inhibitors: CNS Activity

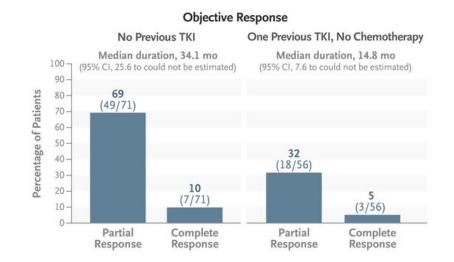
Lorlatinib Entrectinib Repotrectinib TKI naive TKI naïve Pretreated icRR: 55%. Ic-DOR: 12.9 mo. ent from baseline in SLD icRR: 67% icRR: 100% icRR: 75% 25 (N=11) 6-mo ic-DOR: 50% 40% Z 30%lange From Ba 20% 20% 10%-160 80 160 40 10% 40 240 160 -25 BID QD QD QD QD QD BID 0%. 0% -10% -10% Pretreated -50 --20%--20%-**RR: 53%** -30%-% improv -30% 70 -60 -50 -10 -20 -10 --10 --20 --30 --40 --50 --60 --70 --80 --90 --90 --10 --10 --90 --10 --90 --10 --90 --10 --90 --10 --90 --10 --90 --10 --90 ---40%-6-mo ic-DOR: 60% cPR -75 -40%--50% -50%--60% st cPR a/b -60%g -100 --70% -80% --70%-CNS = Yes CNS = No -90% --80% cPR -100% --90%

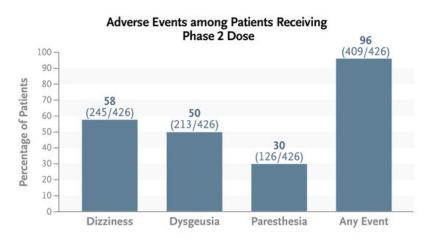
-100%-

Repotrectinib in ROS-1 NSCLC

The NEW ENGLAND JOURNAL of MEDICINE

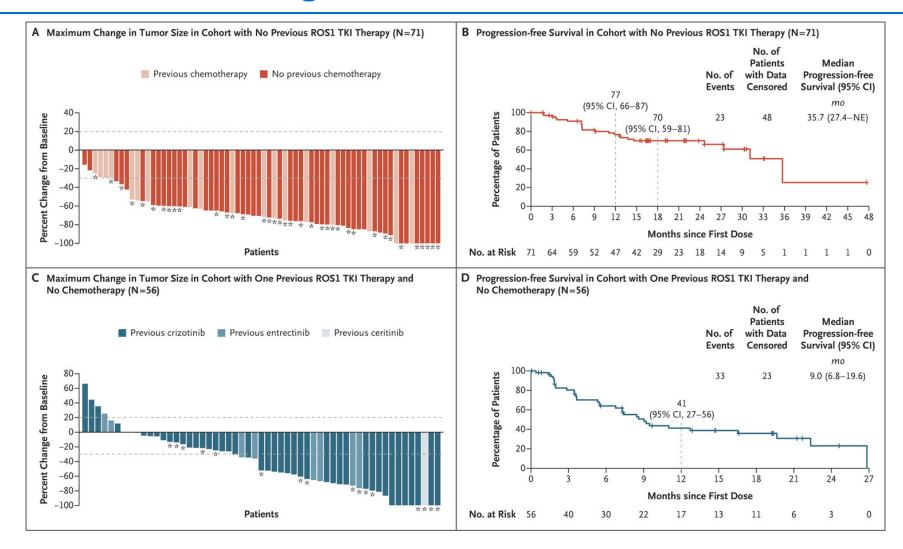
RESEARCH SUMMARY

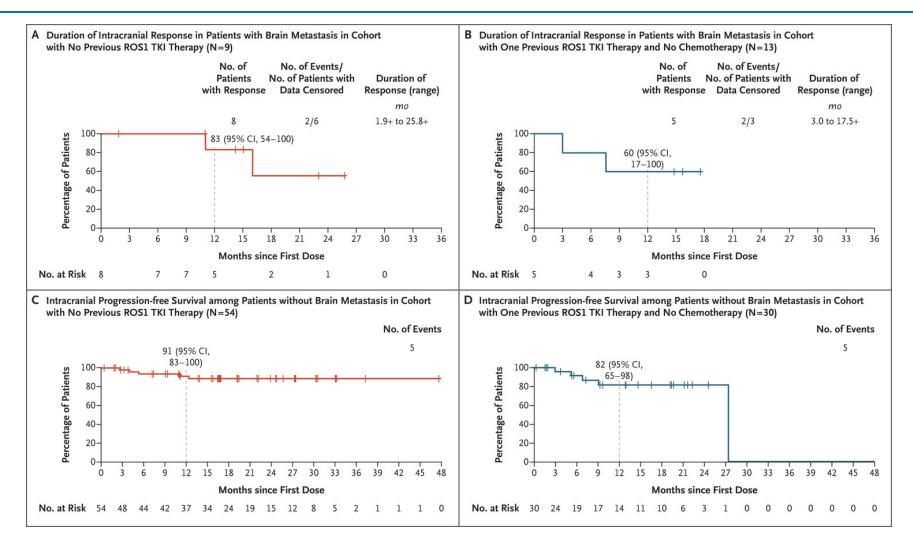

Repotrectinib in ROS1 Fusion-Positive Non-Small-Cell Lung Cancer


Drilon A et al. DOI: 10.1056/NEJMoa2302299

CLINICAL PROBLEM

ROS1 fusions occur in up to 2% of patients with nonsmall-cell lung cancer (NSCLC). Early-generation ROS1 tyrosine kinase inhibitors (TKIs) have antitumor activity, but resistance mutations develop in at least half the patients. Repotrectinib is a next-generation ROS1 TKI that has shown preclinical activity against ROS1 fusion-positive cancers, including those with resistance mutations.

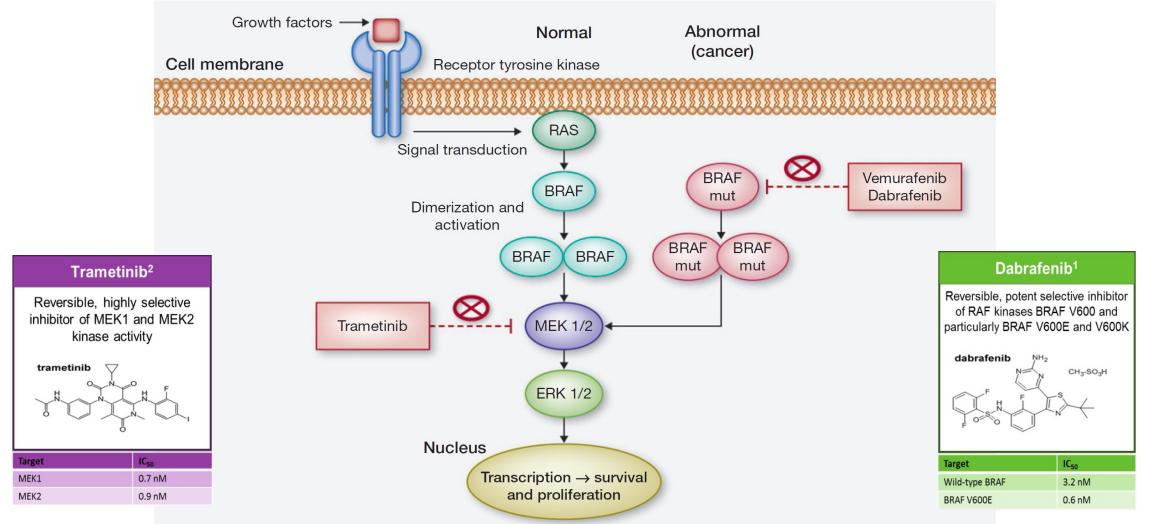

PHASE 1 PHASE 2	160 mg Once Daily Twice Daily	 Disease progression Unacceptable toxic
Repotrectinib	MONTH 2 2 4 5 5 4 5 5 5 6 7 12 1 4 2 5 4 5 5 5 6 7 12 1 4 2 5 2 2 2 2 2 1 4 2 5 2 7 6 7 6 7 12 1 4 2 5 2 7 6 7 6 7 10 1 7 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Withdrawal of
	20 21 22 23 24 25 26 7 7 7 78	consent



6

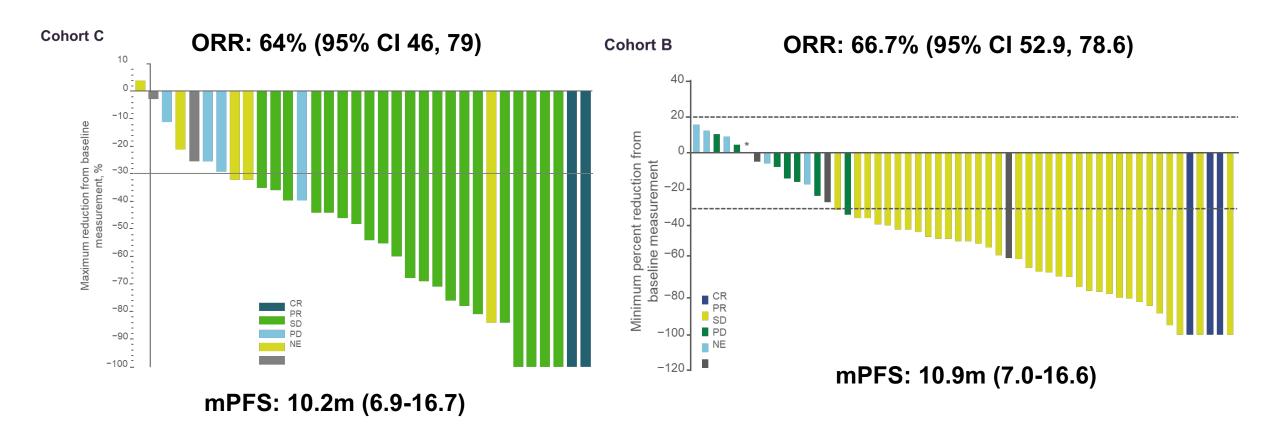
Repotrectinib in *ROS-1* NSCLC: Efficacy in Change in Tumor Burden and Progression-Free Survival

Repotrectinib in *ROS-1* NSCLC: Duration of Intracranial Response & Intracranial PFS



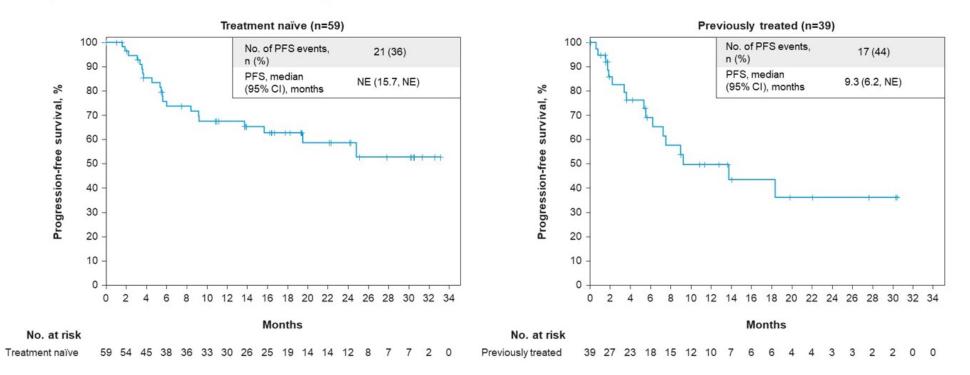
ROS-1 Conclusions

- Many approved drugs in the first-line setting, most recently Repotrectinib
- ROS-1 TKI selection: Repotrectinib as first-line?
 - Other drugs of interest: Crizotinib, Entrectinib
 - Repotrectinib has demonstrated longest duration of disease control
- TKI side effects: benefit at what cost?

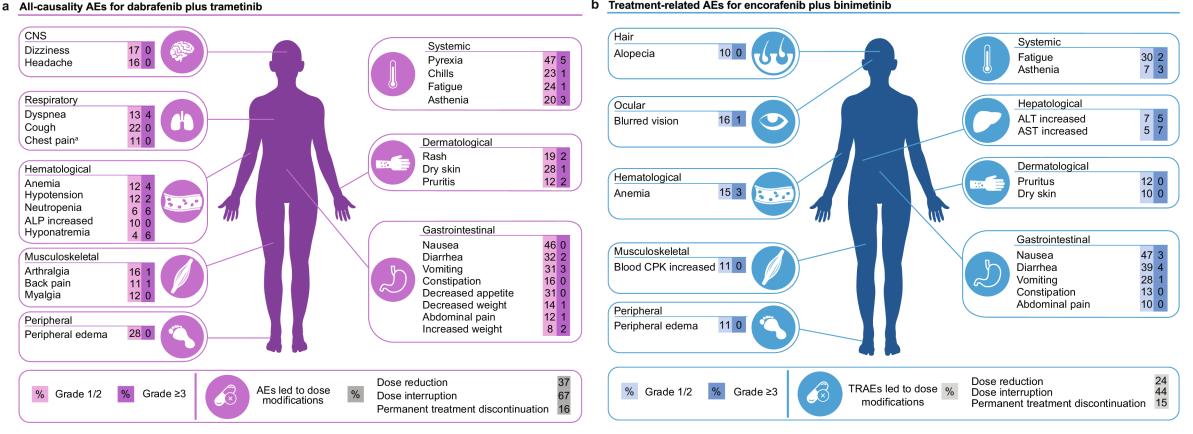


Mechanism of Action for Dual MAPK Pathway Inhibition with Dabrafenib + Trametinib to Overcome ERK Escape Mechanism

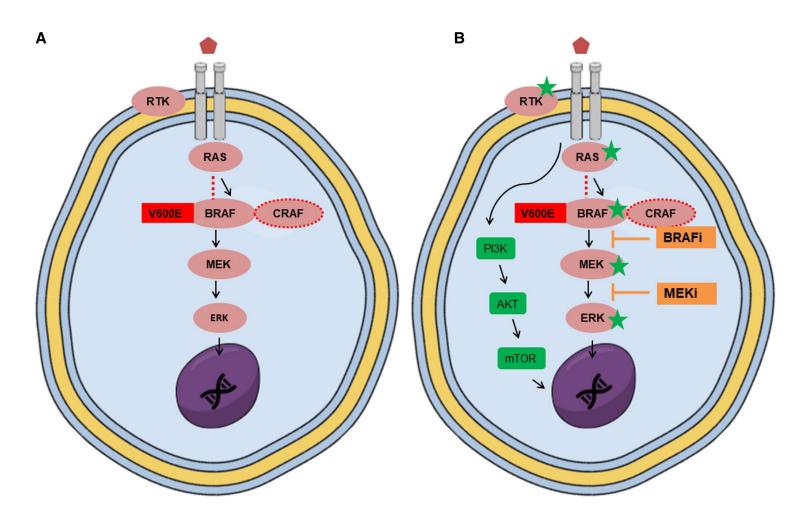
🛣 Cityof Hope.


BRF113928 Study: Maximum Change in Target Lesion by Best Confirmed Response with Dabrafenib + Trametinib in 1L/2L

11


PHAROS: Phase 2 Encorafenib Plus Binimetinib in Patients With *BRAFV600* Metastatic NSCLC

Progression-free survival by IRR


 The median duration of follow-up for PFS by IRR was 18.2 months (95% CI, 16.4, 22.3 months) in treatment-naïve patients and 12.8 months (95% CI, 9.0, 19.8 months) in previously treated patients

BRAF Inhibitors Adverse Events

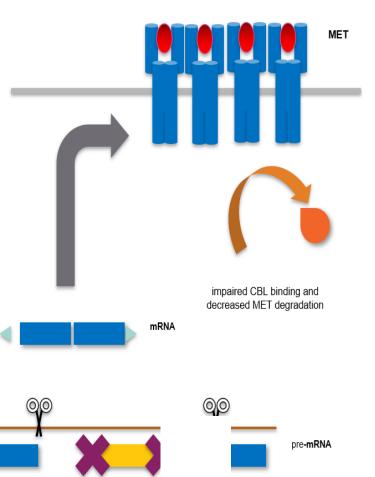
b Treatment-related AEs for encorafenib plus binimetinib

BRAF: Mechanisms of Resistance

- Upstream regulations of RTKs, RAS activating mutations
- BRAF amplifications
- Downstream MEK and ERK mutations
- PI2K/AKT/mTOR pathway activation

BRAF: The Role of IO

	Class I (N = 21)	Non-class I (N = 22)	<i>p</i> value
10	N = 8	N = 13	-
First-line rwOS (months, 95% CI)	42.6 (11.8, NR)	18.8 (12.8, NR)	0.897
rwOS depending on PD-L1 levels	N = 7 ≥50% (N = 4): 26.8 (26.8 - NR) vs. 1-49% (n = 3): 11.8 (11.8 - NR)	N = 14 ≥1% (N = 9): NR (18.8 - NR) vs. < 1% (N = 5): 12.8 (7.8 - NR)	0.2
Anti-BRAF/MEK Therapy	N = 5	N = 0	-
First-line rwOS (months, 95% CI)	22.7 (16.1, NR)	-	NA
Chemotherapy	N = 8	N = 9	-
First-line rwOS (months, 95% CI)	19.6 (11.9, NR)	9.9 (5.8, NR)	0.555


- Exploration of clinical outcomes in BRAF mutated NSCLC patients treated with frontline immunotherapy
- BRAF class I mutations demonstrated improved OS (42.6 months) vs frontline BRAF inhibitor (22.7 months) and chemotherapy (19.6 months)
- BRAF non-class I mutations also showed improved OS with IO (18.8 months)

BRAF Conclusions

- Dabrafenib + Trametinib is FDA approved
- Encorafenib and Binimetinib is FDA approved
- Vemurafenib is used as an option later down the treatment lines
- Role of IO in *BRAF* mutated NSCLC: frontline IO or IO + chemo or BRAF TKIs
- The unknown in non-V600E *BRAF* mutations
- BRAF mechanisms of resistance

MET Exon 14 Alterations in NSCLC

- MET mutations can lead to decreased MET degradation
 - deletions, insertions, or base substitutions
 - ➢ disrupt splice sites flanking MET exon 14 → exon 14 skipping
 - absence of JM domain, Cbl ubiquitination process inhibited
 - increased MET receptor on the tumor cell surface

MET exon 14

- Older age, median 72.5y
 - increased comorbidities
 - may not undergo biopsy for additional testing
- Smokers and never smokers
- Sarcomatoid, pleiomorphic histology
- Mutually exclusive with other driver alterations
- Over 100 different genomic variants

MET Inhibitors in Clinical Trials

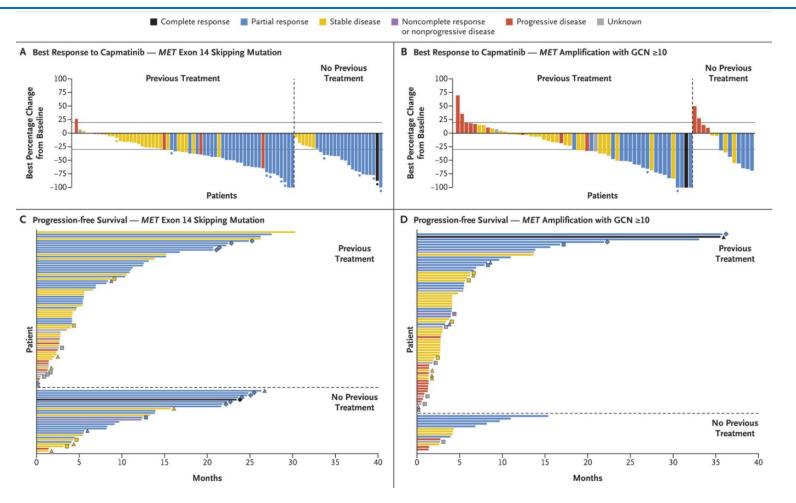
Agent	Other Molecular Targets	IC ₅₀ (nM) ¹
Type I		
Crizotinib	MET (type Ia), ALK, ROS1	<1
Capmatinib	selective MET (type lb)	0.13
Tepotinib	selective MET (type lb)	3
Savolitinib	selective MET (type lb)	5
Type II		
Cabozantinib	MET (type II), VEGFR, RET, TIE2, AXL, FLT3, KIT	1.3
Merestinib	MET (type II), MST1R, FLT3, MERTK, TEK, ROS1, DDR, NTRK, AXL	4.7

> Type I—binds ATP-binding pocket in the active conformation; Ib more highly specific

> Type II—binds ATP-binding pocket in the inactive conformation; potency is more variable

MET TKI Preliminary Efficacy in *MET* **Exon 14 Mutant NSCLC**

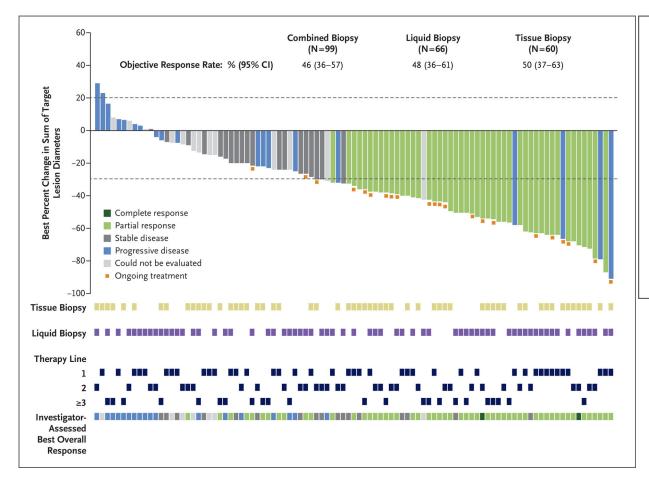
Agent	<i>MET</i> testing	n	Brain metastases (n)	ORR % (95% CI)	DOR (months)	PFS (months)
Capmatinib (Wolf J et al ASCO 2019; abstract 9004)	Tissue RT- PCR	97 1L —28 2/3L —69	1L —3 2/3L —11	1L —67.9(47.6, 84.1) 2/3L —40.6 (28.9, 53.1)	1L —11.1 (5.55, NE) 2/3L —9.7 (5.55, 12.98)	1L —9.7 (5.5, 13.86) 2/3L —5.4 (4.2, 6.97)
Tepotinib (Paik et al ASCO 2019; abstract 9005)	Liquid (DNA based NGS) Tissue (RNA based NGS)	73 Liquid—48 Tissue—51	8	Liquid—50 (35.2, 64.8) 1L—58.8 (32.9, 81.6) 2L—53.3 (26.6, 78.7) ≥3L—37.5 (15.2, 64.6) Tissue—45 (31.1, 59.7) 1L—44.4 (21.5, 69.2) 2L—50 (26, 74) ≥3L—40 (16.3, 67.7)	Liquid—12.4 (5.8, NE) Tissue— 15.7 (9.0, NE)	Liquid—9.5 (6.7, NE) Tissue—10.8 (6.9, NE)
Crizotinib (Drilon A et al WCLC 2018)	Tissue-local Prospective central tissue & liquid ctDNA	65	na	32 (21-45)	9.1 (6.4, 12.7)	7.3 (5.4, 9.1)
Savolitinib (Lu S et al AACR 2019)	Tissue	29	5	54.8	na	na


First-line Therapy with MET TKI for MET Exon 14 NSCLC

	Pembro (PD-L1≥ 50%)	Carbo/ pem/ pembro (non-squam)	Capmatinib	Tepotinib
ORR (%)	44.8	47.6	67.9	Tissue 44.4 Blood 58.8
DOR (months)	NR	11.2	11.1	Tissue 15.7 Blood 12.4
Median PFS (months)	10.3	8.8	9.7	Tissue 10.8 Blood 9.5
12 mo PFS (%)	~50	34.1	~50	Tissue ~45 Blood ~40
Median OS (months)	30	NR	na	na
12 mo OS (%)	70.3	69.2	na	na

EFFICACY IS BEST WHEN GIVEN FIRST LINE FAVORS MET TKI THERAPY IN FRONT LINE FOR *MET* ex14 NSCLC

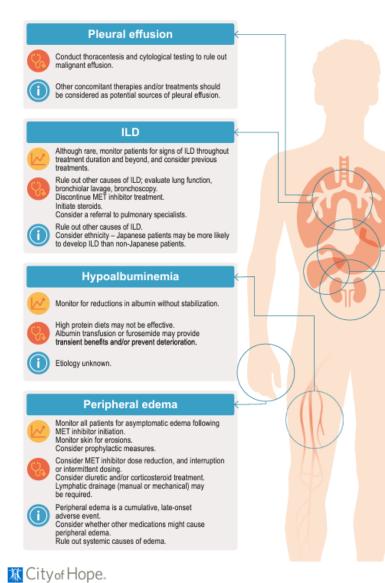
20


GEOMETRY Mono-1: Response and Progression Free Survival

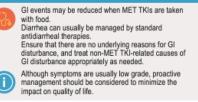
Capmatinib showed substantial anti-tumor activity in patients with advanced NSCLC with a MET exon 14 skipping mutation, particularly in those not treated previously

FDA Approved

VISION Trial - Tepotinib NSCLC with *MET* Exon 14 Skipping Mutations: Response Rate and PFS


City of Hope.

Median Duration Probability of Progression-free Survival 1.0-No. of 0.9 (95% CI) Events 0.8 то 0.7 **Combined Biopsy** 60 8.5 (6.7–11.0) Combined biopsy 0.6-(N=99) 0.5-Liquid Biopsy 43 8.5 (5.1–11.0) 0.4 Tissue biopsy (N = 66)0.3 32 11.0 (5.7–17.1) Liquid biopsy **Tissue Biopsy** 0.2 (N = 60)0.1 0.0-0 6 9 12 15 18 21 24 27 30 33 3 Months No. at Risk Combined biopsy 99 33 20 15 Liquid biopsy 66 44 36 23 14 10 6 8 **Tissue** biopsy 60 42 32 22 16 11


Among patients with advanced NSCLC with a confirmed MET exon 14 skipping mutation, the use of tepotinib was associated with a partial response in approximately half the patients

FDA Approved

MET Inhibitors: Safety and Conclusions

GI disturbances

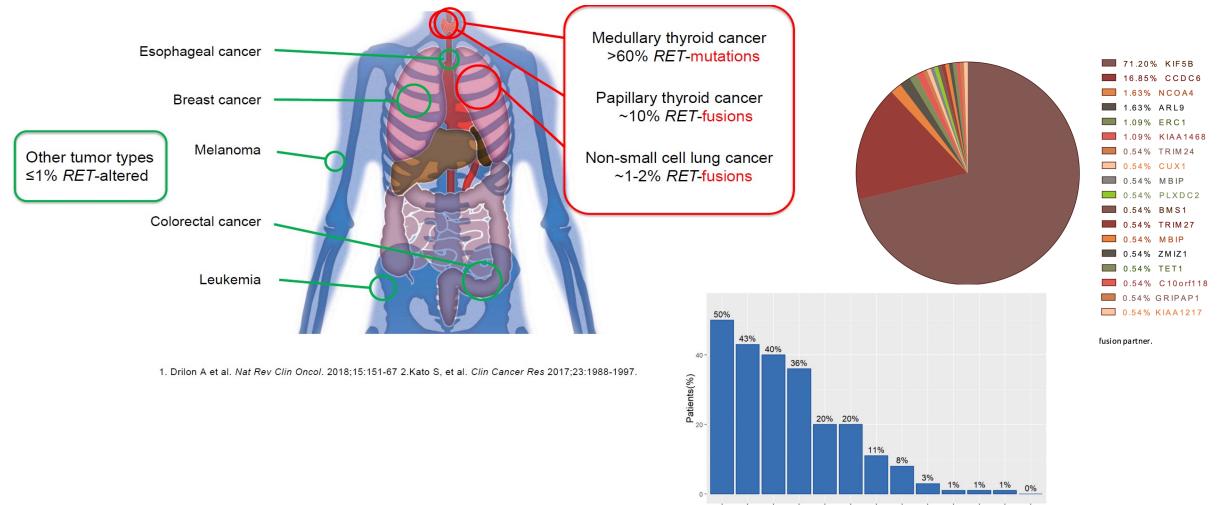
Increased liver transaminases and phosphatases

Proactively monitor liver function.

- Consider MET inhibitor dose reduction or interruption if necessary. Switch MET inhibitors.
- Most events are low grade and reversible. In asymptomatic patients, transaminase increase may not require dose reduction or interruption.

Increased creatinine

- Transient MET inhibitor-related increased creatinine may indicate creatinine transporter inhibition rather than renal impairment. Consider methods other than creatinine-driven GFR to assess renal function and guide therapy. Close and frequent monitoring in early months of therapy will help identify clinically relevant increases in creatinine. Before deciding on an intervention based upon
- Before deciding on an intervention based upon increased creatinine levels, check GFR using non-creatinine measures. Consider MET inhibitor dose reduction or interruption if clinically relevant increases in creatinine levels, or impaired renal function, is identified. Refer to a nephrologist for assistance with determining GFR.


Non-clinically relevant increases and plateau in creatinine levels might be expected with MET inhibitor use.

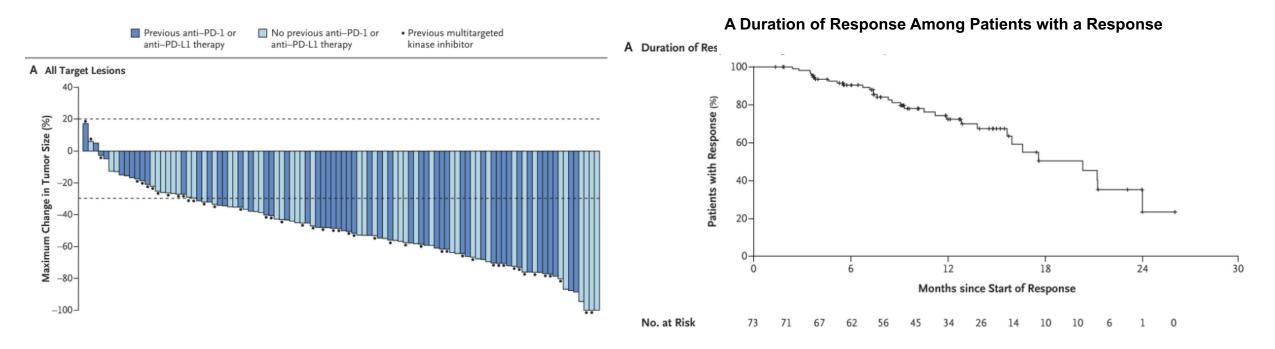
Monitoring Management (i) Other considerations

- Capmatinib and Tepotinib are SOC in RET+ NSCLC
- Variety of *MET* activation
 - mechanisms nuances to patient treatment
- Patterns of metastasis: role of CNS efficacy
- Combination therapies: how to sequence treatment, mitigate MET

acquired resistance

RET is a rare driver of multiple, diverse tumor types

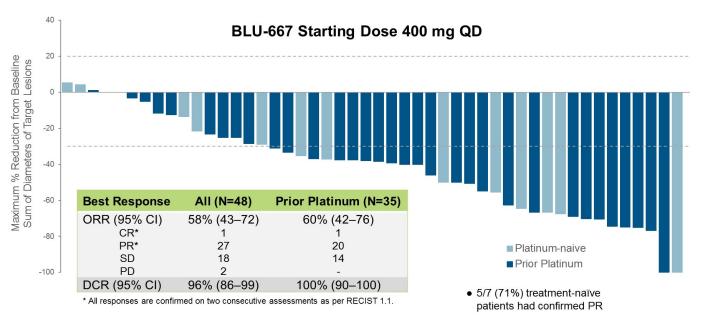
Aldea M et al, JTO 2023


LING BONG THERE'S LIN BOIL LING AUGUST STREAM ST

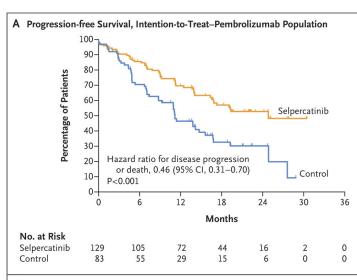
🛣 Cityof Hope.

24

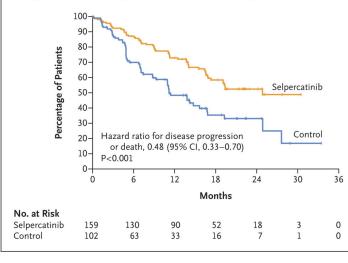
LIBRETTO-001: Selpercatinib Efficacy in *RET*+ NSCLC


- Selpercatinib is a novel, ATP-competitive, highly selective small-molecule inhibitor
- Superior intracranial efficacy
- ORR 85% First-Line, PFS 18.4 months

25


ARROW Study Pralsetinib (BLUE-667) Phase I Trial: Summary and Anti-Tumor Activity

		+ Advanced NSCLC QD Starting Dose
Characteristic	All (N=120)	Prior Platinum (N=91)
Age (years), median (range)	60 (28-87)	60 (28-85)
Male, n (%)	59 (49)	45 (49)
ECOG PS, n (%)		
0	46 (38)	33 (36)
1-2	74 (62)	58 (64)
Brain metastases, n (%)	48 (40)	36 (40)
Prior systemic regimens, median (range)	2 (0-11)	2 (1-11)
Any prior anticancer treatment	101 (84)	91 (100)
Chemotherapy, n (%)	92 (77)	91(100)
PD-1 or PD-L1 inhibitor, n (%)	47 (39)	41 (45)
Chemotherapy + PD-(L)1 combination, n (%)	41 (34)	41 (45)
Multikinase inhibitor, n (%)	21 (18)	20 (22)
Smoking history ^a		
Current/Prior	41 (34)	33 (36)
Never	78 (65)	57 (63)
Histology		
Adenocarcinoma	114 (95)	87 (96)
Other	6 (5)	4 (4)


ORR 72% First-Line, PFS 13.0 months

First-Line Selpercatinib or Chemotherapy and Pembrolizumab in *RET*+ NSCLC

B Progression-free Survival, Overall Intention-to-Treat Population

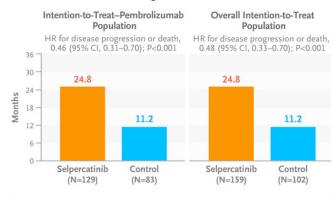
X Citvof Hope

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

First-Line Selpercatinib or Chemotherapy and Pembrolizumab in RET Fusion–Positive NSCLC

Zhou C et al. DOI: 10.1056/NEJMoa2309457


CLINICAL PROBLEM

In patients with advanced, *RET* fusion–positive non– small-cell lung cancer (NSCLC), the RET kinase inhibitor selpercatinib has shown promise in nonrandomized studies, but data comparing this drug with existing therapies are lacking.

CLINICAL TRIAL

Design: A phase 3, multinational, open-label, randomized trial assessed the efficacy and safety of selpercatinib as compared with control therapy in patients with unresectable, stage IIIB, IIIC, or IV, nonsquamous, *RET* fusion–positive NSCLC who had not previously received systemic treatment for metastatic disease.

Median Progression-free Survival


 Superior PFS with Selpercatinib vs Chemotherapy +/- Pembro

RET: Ongoing and Next Generation TKI Trials

Ongoing Trials	NCT	Phase
LOXO-260 in RET Cancers	NCT05241834	Phase 1
TPX-0046: RET/SRC Inhibitor in Solid Tumors Harboring RET Fusions or Mutations	NCT04161391	Phase 1/2
TAS0953/HM06 in Solid Tumors With RET Gene Abnormalities (MARGARET)	NCT04683250	Phase 1/2
APS03118 in RET Cancers	NCT05653869	Phase 1
BOS172738 in Solid Tumors with RET Gene	NCT03780517	Completed
LIBRETTO-432: Selpercatinib after Surgery/Radiation in early stage RET NSCLC	NCT04819100	Phase 3
NAUTIKA1: Neoadjuvant and Adjuvant Study of Multiple Therapies in Biomarker-Selected Patients With Resectable Stages IB-III NSCLC	NCT04302025	Phase 2

RET in Early Stage NSCLC: Trials with RET TKIs

LIBRETTO-432, a phase III study of adjuvant selpercatinib or placebo in stage IB-IIIA RET fusion-positive non-small-cell lung cancer

Phase II NAUTIKA1 Study of Targeted Therapies in stage II-III NSCLC

Mary all all lite	Neoadjuvant		Adjuvant
Key eligibility criteria • Resectable	ALK+ cohort Alectinib 600 mg BID (8 weeks)		4 cycles of SoC chemotherapy,*
stage II, IIIA or selected IIIB (T3N2 only;	ROS1+ cohort Entrectinib 600 mg QD (8 weeks)		followed by up to 2 years of TKI,
edition) NSCLC ECOG PS 0/1	NTRK+ cohort Entrectinib 600 mg QD (8 weeks)	Surgery and	 Platinum-based chemotherapy options:
	BRAF V600 cohort Vemurafenib 960 mg BID + cobimetinib 60 mg QD (8 weeks)	pathological response assessment	Cisplatin + pemetrexed
Nolecular testing Local testing in CLIA certified	RET+ cohort Pralsetinib 400 mg QD (8 weeks)	asossinent	 Carboplatin + paclitaxel
laboratory OR LCMC4 LEADER neoadjuvant screening trial ³	PD-L1+ cohort Atezolizumab 1200 mg Q3W x 4 cycles + low dose SBRT (8Gy X 3; concurrent with Cycle 1 of atezolizumab)		SoC treatment

Mechanisms of Resistance to RET TKIs and Conclusions

First results from the RETgistry:

A global consortium for the study of resistance to RET inhibitors in RET-altered tumors

- □ 105 time-distinct biopsies were included in analysis, obtained from 89 pts with progression on a RET-selective TKI (Fig. 1). 97% of samples had baseline NGS.
- Acquired *RET* mutations were detected in 13% (G810X, in 10%) (Fig. 2, 3).
- Potential off-target resistance gene alterations identified in 46 cases (44%) included MET amplification (12%), BRAF V600E or fusion (3%), KRAS gain or mutation (5%), ERBB2 amplification (2%), EGFR amplification (3%), ROS1 fusion (1%), ALK fusion (1%), and activating PIK3CA mutation or PTEN loss (5%) (Fig. 2, 4).

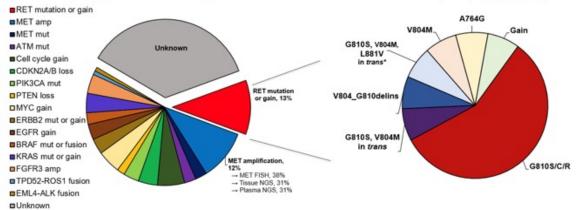


Fig. 2. Putative on- and off-target resistance mechanisms detected in post-RET TKI biopsies. The diagnostic method used for *MET* amplification detection is listed.

Fig. 3. On-target (*RET*) resistance alterations detected in post-RET TKI biopsies. *G810 and V804M mutations known to be in *trans*.

- Selpercatinib and Pralsetinib are SOC in *RET*+ NSCLC
- Ongoing trials exploring next generation RET TKIs – however, some have already failed
- Mechanisms of resistance to RET TKIs vary greatly – personalized approaches exploring combination regimens may be more effective