Evolution of Surgery for Early Stage Lung Cancer

David Harpole, MD Professor of Surgery and Pathology Geller Endowed Professor of Research in Cancer Duke University

Alton Ochsner 1891-1981

- Published landmark paper on tobacco and lung cancer in 1939 Ochsner A, Debakey M. Surg Gynecol Obstet (JACS)
 - 1919 as 3rd year medical student (Washington University) saw autopsy on lung cancer patient by noted anatomy professor George Dock "None of you will ever see another case again"
 - 1927 Complete residency training in Thoracic Surgery under Dr. Graham at Washington University and joined faculty at Tulane/Charity Hospital as chief of Surgery
 - 1936: After being chief for 9 years, he began to see many cases each year in Veterans from WWI who had become heavy smokers
- Credited with initial creation of systematic treatment plan for lung cancer including outcomes database

Hospital(n)ExploredResectedDischargedTulane 1935-1951948380 (34%)205 (21%)160 (17%)

New Orleans Summer Cancer Meeting 2024

DeBakey M, Ochsner A. Surgery 1952

Lung Cancer 1960s

High mortality from pneumonectomy: Should standard of care be changed? Landmark Presentation AATS 1962

<u>Clinic</u>	Overholt	5-year survival	<u>Ochsner</u>	5-year s	<u>urvival</u>
Pneumonectomy	211	40%		191	39%
Lobectomy	116	35%		0	

Statistical analyses showed no survival difference for: histology, age, gender, location and size of lesion comparing lobectomy and pneumonectomy

LCSG 821

Randomized phase III Lobectomy vs. Limited resection

(Rationale: Is a lobectomy needed for small T1 cancers)

- No difference in morbidity or mortality
- Complete follow-up: Median 60 months
 - 74 recurrences; 86 deaths
 - Non-significant survival difference (p=0.08)
 - Significant difference in local recurrence (p=0.008)

Transformative: Standard of care is lobectomy NOT limited resection

New Orleans Summer Cancer Meeting 2024

Ginsberg et al., Ann Thorac Surg 1995

Randomized Trial of Lobectomy Versus Limited Resection for T1 N0 Non–Small Cell Lung Cancer

Lung Cancer Study Group (Prepared by Robert J. Ginsberg, MD, and Lawrence V. Rubinstein, PhD)

ACOSOG Z030

Randomized Phase III Trial of Mediastinal Lymph Node Sampling vs. Dissection for Patients with N0 or N1 NSCLC Allen, PI

- Median survival (8.1 LNS vs 8.5 years LND)
- Similar 5-year survival (69%), No difference in local/regional/distant relapse

Transformative: Standard of care at least LNS for all stage I resections

New Orleans Summer Cancer Meeting 2024

Darling at al., J Thorac Cardiovasc Surg, 2010

ACOSOG Z4032

Randomized Phase III Trial of Brachytherapy on Local Recurrence In High-risk Operative Patient with NSCLC; Fernando, PI

Rationale: Promising data from UPMC and Boston; U Note: CALGB 9335

- Median follow-up 54 months
- No difference in LR; occurring in only 17 (7.7%)
- In patients with <1 cm tumor margin or T-size>2.0 cm there was a slight advantage for BT
- Overall 3-years survival was identical in both arms; 71%

<u>Conclusion</u>: Brachytherapy did not decrease the LR after adequate wedge resection

Transformative: No role for adjuvant brachytherapy for high-risk wedge resection

New Orleans Summer Cancer Meeting 2024

Fernando et al., J Clin Oncol 2014

CALGB-Alliance Thoracic Surgery Trial 140503

Randomized Phase III Trial of Lobectomy vs. Limited resection for T1N0 NSCLC; Altorki PI

(Rationale: underpowered LCSG 821, improved staging available)

- Overall survival endpoint
- Slow but steady accrual 14-18 per month
- At 70% of accrual, to close in 2 years

ORIGINAL ARTICLE

f X in ⊠

Lobar or Sublobar Resection for Peripheral Stage IA Non–Small-Cell Lung Cancer

Authors: Nasser Altorki, M.D., Xiaofei Wang, Ph.D, David Kozono, M.D., Ph.D., Colleen Watt, B.S., Rodney Landrenau, M.D., Dennis Wigle, M.D., Ph.D., Jeffrey Port, M.D., +13, and Everett Vokes, M.D. Author Info & Affiliations

Published February 8, 2023 | N Engl J Med 2023;388:489-498 | DOI: 10.1056/NEJMoa2212083

VOL. 388 NO. 6

Subgroup	Sublobar Resection	Lobar Resection	Hazard Ratio for Disease Recurrence or Death (95% CI)	
	no. of	patients		
Overall	340	357	-#-	1.03 (0.81-1.
Age				
≤65 yr	123	131		0.96 (0.64-1.
>65 yr	217	226		1.07 (0.80-1.
Age				
≤70 yr	206	211		1.10 (0.80-1
>70 yr	134	146		0.94 (0.67-1
Sex				
Male	150	147		1.12 (0.78-1
Female	190	210		0.97 (0.71-1
Tumor location				
Right upper lobe	120	128		1.00 (0.68-1
Right middle lobe	19	16		→ 2.27 (0.71-7
Right lower lobe	55	43		0.83 (0.44-1
Left upper lobe	86	104	_	0.91 (0.59-1
Left lower lobe	56	63		1.35 (0.69-2
Lingula	4	3 —		→ 0.93 (0.15-5
Histologic type				
Squamous-cell carcinoma	45	53	_	0.99 (0.54–1
Adenocarcinoma	218	226		1.09 (0.80-1
Other	77	78	_	0.93 (0.60-1
Smoking status				
Never	28	35		→ 1.75 (0.65-4
Former	172	177		0.91 (0.65-1
Current	140	145		1.07 (0.75-1
Fumor size				
<1.0 cm	28	30		0.83 (0.29-2
1.0–1.5 cm	174	180		0.90 (0.65-1
>1.5-2.0 cm	138	147		1.24 (0.87-1
ECOG performance-status score				
0	263	250		0.96 (0.72–1
0				

No difference for lobe and wedge: *not Powered*

New Orleans Summer Cancer Meeting 2024

Altorki et al, J Thorac Cardiovasc Surg 2024

🗠 Download Full Issue

Segmentectomy versus lobectomy in small-sized peripheral non-smallcell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial

Prof Hisashi Saji, MD ♀ ⊠ • Morihito Okada, MD • Masahiro Tsuboi, MD • Ryu Nakajima, MD • Kenji Suzuki, MD • Keiju Aokage, MD • et al. Show all authors • Show footnotes

Published: April 23, 2022 • DOI: https://doi.org/10.1016/S0140-6736(21)02333-3 • 🖲 Check for updates

Favors segment over lobectomy

Lancet 2024 JOCO 08002 Update for solid tumors only

			Lobectomy group (n=274)	Segmentectomy group (n=279)	p value*					
Cause of death										
	Lung cancer death		20 (7%)	19 (7%)	0.19					
	Other cause of death		35 (13%)	19 (7%)						
		Other cancer including second lung cancer	20 (7%)	8 (3%)						
		Respiratory disease	4 (1%)	2 (1%)						
		Cerebrovascular disease	5 (2%)	1 (<1%)						
		Cardiovascular disease	2 (1%)	3 (1%)						
		Other	3 (1%)	2 (1%)						
		Unknown	1 (<1%)	3 (1%)						
Postoperative recurrence		34 (12%)	52 (19%)	0.043						
Locoregional recurrence		21 (8%)	45 (16%)	0.0021						

Higher local and regional recurrence in segment not seen in GGOs

CURRENT

CLINICAL TRIAL UPDATES | January 12, 2024

SPLC

X in M (

Secondary Analysis of the Rate of Second **Primary Lung Cancer From Cancer and** Leukemia Group B 140503 (Alliance) Trial of Lobar Versus Sublobar Resection for T1aN0 Non–Small-Cell Lung Cancer

Authors: Thomas E. Stinchcombe, MD 💿 🖾 , Xiaofei Wang, PhD, Bryce Damman, MS 🐵 , Jennifer Mentlick, HS, Rodney Landreneau, MD, Dennis Wigle, MD, PhD, David R. Jones, MD 💿 , ... SHOW ALL ..., and Nasser Altorki, **AUTHORS INFO & AFFILIATIONS**

3.8 % per year cumulative! >18% at 6 years

Trends in Minimally-Invasive Lobectomy in US

Utilization of Open, VATS and Robotic Lobectomy from 2010-2017

Subramanian et al, Ann Thorac Surgery 2019

Raman et al, Ann Thorac Surgery 2022

Summary

- There is a long history of evidence-based thoracic surgery trials for early stage lung cancer
- For lesions <2 cm, sub-lobar resection is recommended
 - Resection must include at least sampling of 3 N2 and 1 N1 station
 - Exceptions: larger tumors and central T1 tumors lobectomy
 - Data are inconclusive for complex segmentectomies
- The majority of lobectomies and sub-lobar resections are minimally invasive, with robotic now dominating
- The alarming rate of second primaries supports sub-lobar resection that saves parenchyma