Novel Therapeutic Strategies for MDS Based on Molecular Profile

Rami Komrokji, MD

Senior Member, Vice Chair, Department of Malignant Hematology

Moffitt Cancer Center

Professor of Oncologic Sciences

University of South Florida

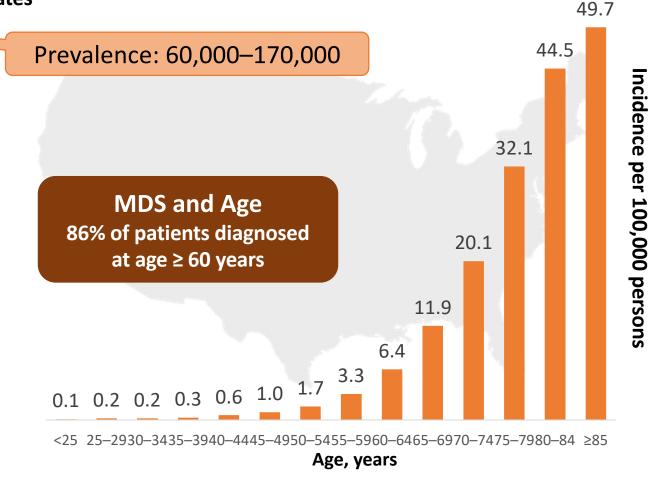
Tampa, FL

Myelodysplastic Syndromes (MDS) in the United States

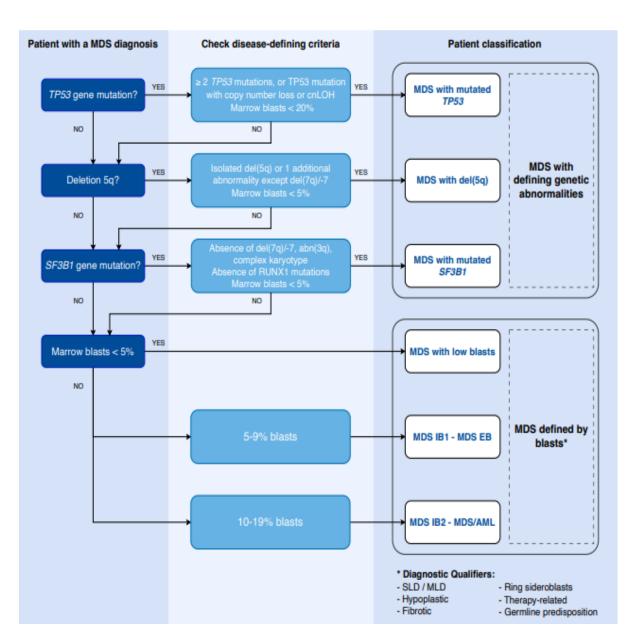
10-20K

New cases per year, although some estimates are much higher (40-50 K)

1 in 3 patients will progress to AML


Approximately 5%-10% of cases occur after exposure to previous radiation/chemotherapy

More than 90% of patients harbor somatic mutations


Anemia is the most common clinical feature

AML = Acute Myeloid Leukemia

Ma X. Am J Med. 2012;125(7):S2–S5; Cogle CR. Curr Hematol Malig Rep. 2015;10(3):272-281; American Cancer Society. www.cancer.org. Accessed 10/24/23. Leukemia and Lymphoma Society. www.lls.org Accessed 10/24/23.

Harmonized WHO/ICC 2022 classification

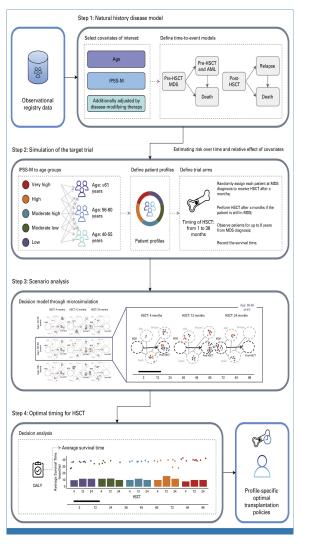
Conceptual classification of MDS: RSK classification

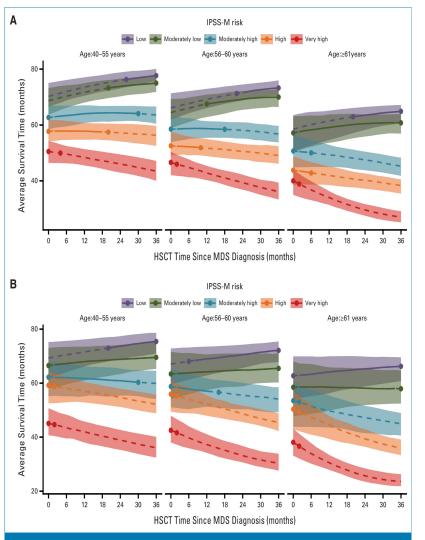
Chronic phase MDS

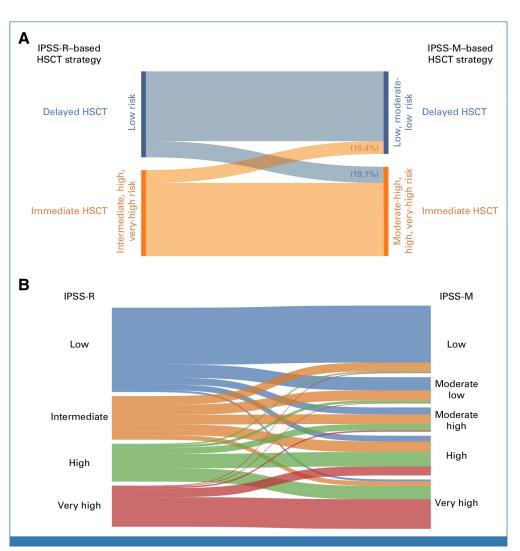
- MDS-SF3B1
- MDS-del5q
- MDS-LB

Accelerated phase MDS

- MDS-EB (5-19% myeloblasts) (cutoff to be refined)
- Bi-allelic TP53 MDS
- MDS-f

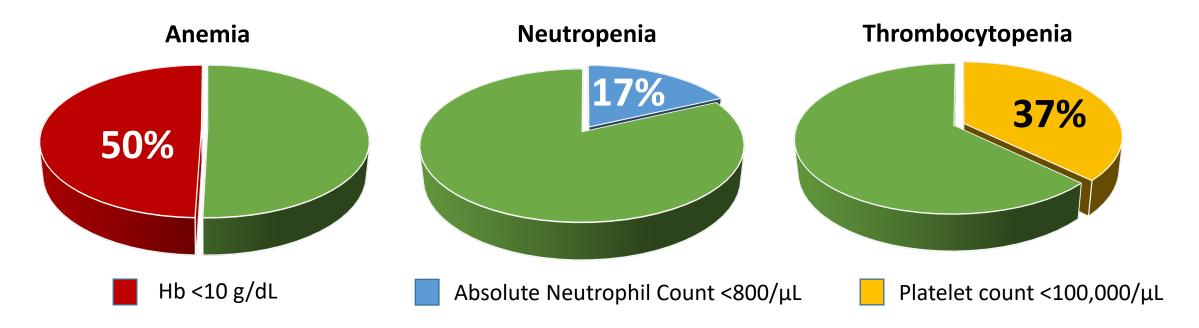

AML-MDS related (AML-MR)


• ≥20% myeloblasts (cutoff to be refined) with prior history of MDS or AML with MDS defining cytogenetic abnormalities or gene mutations.


Risk stratification and clinical decisions in MDS – IPSS-M

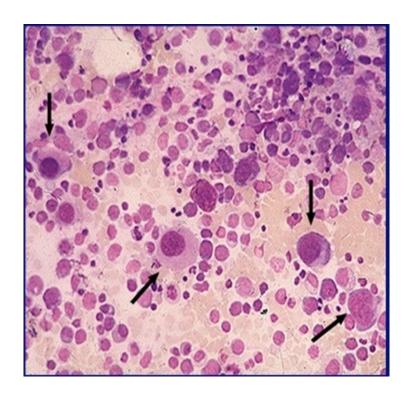
Diagnosis ¹	Classification ¹	Incidence (%) ¹	Median OS (yrs) ¹	Progression risk (yrs)*,1	Treatment goal ²	Current SoC ²
	Very low (Very low/low)	14	10.6	2.8		Transfusion
))	Low (Very low/low/int)	111 33	6.0	5.1	Hematologic improvement	ESAs Watch & wait
	Moderate low (Low/int)	i i 11	4.6	11.4	of infection & bleeding)	
	Moderate high (Low/int/high)	† 11	2.8	18.9	Alter disease natural	HMAs/ICT +/- ASCT
	High (Int/high/very high)	i i 14	1.7	29.2	history (higher risk of infection	, , , , , ,
ALL STATES	Very high (High/very high)	i i 17	1.0	42.8	& bleeding)	

Comparison of IPSS-R versus IPSS-M for timing of Allo-SCT



Anemia is the hallmark of lower risk MDS and main indication for treatment

- Lower-risk MDS is characterized foremost by anemia¹
- 50% of MDS patients will need RBC transfusions during the course of their disease²


Frequency of cytopenias in patients with Lower-risk MDS:3,4

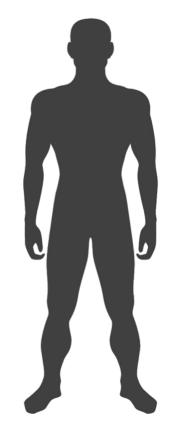
Data from FISiM Italian registry

5q- Syndrome: Clinical Characteristics

- First described by Van den Berghe in 1974.
- Isolated del(5q) as sole cytogenetic abnormality
- Female predominance
- Median age at diagnosis: 68 yrs
- Macrocytic anemia, mild leukopenia, normal or increased platelet count.
- Erythroid hypoplasia accompanied by megakaryocytic dysplasia with small oligo- or mononuclear forms, less than 5% myeloblasts are the hallmark features in the bone marrow biopsy and aspirate

Lenalidomide in MDS-del(5q)

Phase II MDS 003 Trial



Patient Population

- ✓ Low-risk, or intermediate-risk MDS (IPSS)
- ✓ 5q31 deletion ± additional cytogenetic abnormalities
- ✓ Transfusion-dependent anemia

Most Common Grade 3–4 AEs with Lenalidomide

- Neutropenia (55%)
- Thrombocytopenia (44%)
- *Anemia (7%)*
- Leukopenia (6%)
- Rash (6%)
- Fatigue (3%)
- Febrile neutropenia (1%)

FDA Approval: 12/17/2005

Lenalidomide *N* = 148

67%

Transfusion Independence by week 24

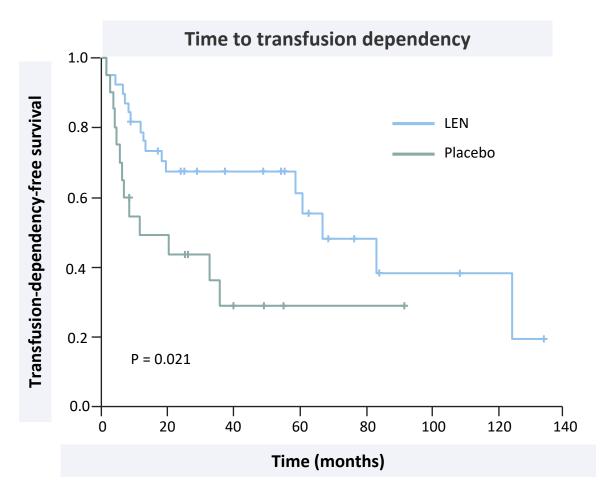
76%

Total transfusion response by week 24

4.6wk

Median time to response

Long-Term Outcomes *Median Follow-Up 3.2 yrs*



2.2 years

Median duration of transfusion independence

Sintra-REV: Phase 3, multicenter trial investigating LEN versus placebo in non-transfusion-dependent LR-MDS del(5q) patients

- Patients were randomized 2:1 to receive LEN 5 mg/day (n = 40) or placebo (n = 21) on days 1 to 28 of every 28-day cycle
- Treatment phase: 108 weeks
- Follow-up phase: 108 weeks
- Median follow up: 60.6 months (IQR: 32.3–73.9)
- Primary endpoint (time to transfusion dependency):
 - LEN 66.3 months (95% CI: 37.0, 95.5)
 - Placebo 11.6 months
 (HR 0.414; 95% CI: 0.196, 0.875; P = 0.021)

Lenalidomide Discontinuation: HARMONY Alliance study (n=118)

- 42% of patients lost RBC-TI
- 48 patients were re-treated with LEN because of loss of response. Forty-two patients were evaluable for response and 28 of them (67%) achieved RBC-TI again

Prognostic factors for event-free survival on multivariate analysis

		95,0% CI			
Variables	HR	Lower	Upper	p value	
Age at diagnosis*	1.04	1.01	1.07	0.005	
RBC unit/8 weeks >4 at lenalidomide start	1.28	1.05	1.56	0,013	
IPSS-R very low vs low/intermediate	0.33	0,16	0.70	0.004	
Lenalidomide cycles ≥12	0.55	0.32	0.95	0.031	
Hemoglobin level at lenalidomide stop*	0.82	0.69	0.98	0.028	

MDS with mutated SF3B1

Cytopenia defined by standard hematologic values

Somatic SF3B1 mutation

Isolated erythroid or multilineage dysplasia *

Bone marrow blasts <5% and peripheral blood blasts <1%

WHO criteria for MDS with isolated del(5q), MDS/MPN-RS-T or other MDS/MPNs, and primary myelofibrosis or other MPNs are not met

Normal karyotype or any cytogenetic abnormality other than del(5q); monosomy 7; inv(3) or abnormal 3q26, complex (≥3)

Any additional somatically mutated gene other than RUNX1 and/or $EZH2^{\frac{1}{2}}$

^{*}RS are not required for the diagnosis.

[†]Additional *JAK2V617F*, *CALR*, or *MPL* mutations strongly support the diagnosis of MDS/MPN-RS-T.

Anemia Management: Luspatercept

Phase III MEDALIST Trial

Patient Population

- ✓ Very-low-risk, low-risk, or intermediate-risk MDS (IPSS-R) with ring sideroblasts
- ✓ Receiving regular RBC transfusions

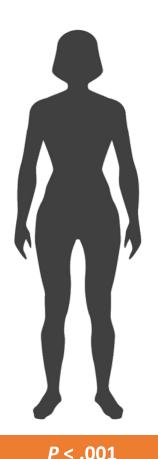
Most Common Grade 3–4 AEs with Luspatercept

- *Fatigue* (5%)
- *Asthenia* (3%)
- Back pain (2%)
- Nausea (1%), headache (1%), arthralgia (1%), dyspnea (1%), bronchitis (1%), UTI (1%)

FDA Approval: 04/06/2020

N = 153

38%


Transfusion Independence ≥ 8 Weeks (Weeks 1–24)

28%

Transfusion Independence ≥ 12 Weeks (Weeks 1–24)

33%

Transfusion Independence ≥ 12 Weeks (Weeks 1–48)

For All Comparisons

Placebo *N* = 76

13%

Transfusion Independence ≥ 8 Weeks (Weeks 1–24)

8%

Transfusion Independence ≥ 12 Weeks (Weeks 1–24)

12%

Transfusion Independence ≥ 12 Weeks (Weeks 1–48)

Oral Abstract 915: Long-Term Data

IPSS-R = Revised International Prognostic Scoring System; RBC = Red Blood Cell; UTI = Urinary Tract Infection Fenaux P, et al. *New Engl J Med*. 2020;82:140-151.

Luspatercept for Frontline Treatment

Phase III COMMANDS Trial

FDA Approval: 08/28/2023

Patient Population

- ✓ Very-low-risk, low-risk, or intermediate-risk MDS (IPSS-R) with ring sideroblasts
- ✓ Require RBC transfusions
- ✓ ESA naïve

Most Common TRAEs with Luspatercept

- Diarrhea (17.6%)
- COVID-19 (14.8%)
- *Hypertension (15.9%)*
- Asthenia (13.7%)
- Anemia (12.1%)

Luspatercept N = 147

59%

RBC TI ≥ 12 weeks with concurrent mean Hb increase ≥ 1.5 g/dL (wk 1-24)

Epoetin alfa N = 154

31%

RBC TI ≥ 12 weeks with concurrent mean Hb increase ≥ 1.5 g/dL (wk 1-24)

Response Rates from ASH 2023 – Data cut-off 3/31/23

	Luspatercept	Epoetin alfa
Overall, n/N (%)	110/182 (60.4%)	63/181 (34.8%)
SF3B1 mutated, n/N (%)	80/114 (70.2%)	33/101 (32.2%)
SF3B1 non-mutated, n/N (%)	29/65 (44.6%)	26/72 (36.1%)
sEPO ≤ 200 U/L, n/N (%)	96/145 (66.2%)	59/144 (41.0%)
sEPO > 200 U/L, n/N (%)	14/37 (37.8%)	4/37 (10.8%)
RS positive, n/N (%)	87/133 (65.4%)	38/130 (29.2%)
RS negative, n/N (%)	23/49 (46.9%)	25/50 (50.0%)

Luspatercept

128.1 weeks

Epoetin alfa

89.7 weeks

Median Duration of TI ≥ 12 wks HR 0.534 (95% CI, 0.330-

IPSS-R = Revised International Prognostic Scoring System; RBC = Red Blood Cell; ESA = Erythroid Stimulating Agent; Hb = Hemoglobin; TI = Transfusion 60864 ence; sEPO = serum Erythropoietin

Elritercept (KER-050) is Designed to Target Disorders of Ineffective Hematopoiesis Including MDS

Beenenders/N (%)	m	mITT ₂₄ ^a		O < 500 U/L ^b
Responders/N (%)	AII (N=81)	HTB (N=46)	AII (N=66)	HTB (N=35)
Overall Response ^c	45/81 (55.6)	23/46 (50.0)	40/66 (60.6)	20/35 (57.1)
Modified IWG 2006 HI-Ed	40/81 (49.4)	22/46 (47.8)	35/66 (53)	19/35 (54.3)
RS+	33/57 (57.9)	19/33 (57.6)	29/51 (56.9)	16/29 (55.2)
non-RS	7/24 (29.2)	3/13 (23.1)	6/15 (40)	3/6 (50)
TI ≥8 weeks ^e	26/63 (41.3)	16/46 (34.8)	25/50 (50.0)	15/35 (42.9)
RS+	22/45 (48.9)	13/33 (39.4)	21/40 (52.5)	12/29 (41.4)
non-RS	4/18 (22.2)	3/13 (23.1)	4/10 (40)	3/6 (50)

Response rates in mITT₂₄ participants with HTB were similar to those observed in the overall mITT₂₄ population, with higher rates observed in the EPO < 500 U/L population particularly in non-RS participants. These data support potential for elritercept to treat a broad array of patients with LR-MDS.

^a Includes data for Weeks 0-24 in mITT₂₄ participants; ^b Includes data for Weeks 0-24 in mITT₂₄ participants with baseline EPO < 500 U/L, excluding one participant with del5q MDS; ^c Defined as achieving modified IWG 2006 HI-E and/or TI; ^d Modified IWG 2006 HI-E = mean increase in hemoglobin ≥1.5 g/dL (NT+LTB) or reduction in transfusion of ≥4 RBC units (HTB) over 8 weeks on treatment compared to 8-week pre-treatment period; ^eTI-evaluable participants received at least 2 RBC units in the 8-week pre-treatment period.

Imetelstat

Phase III IMerge Trial

Patient Population

- ✓ Low-risk or intermediate-risk MDS (IPSS) with ring sideroblasts
- ✓ Require RBC transfusions

Most Common Grade 3/4 AEs with Imetelstat

- Thrombocytopenia (62%)
- Neutropenia (68%)
- Anemia (19%)
- Leukopenia (8%)

FDA Approval: 06/06/24

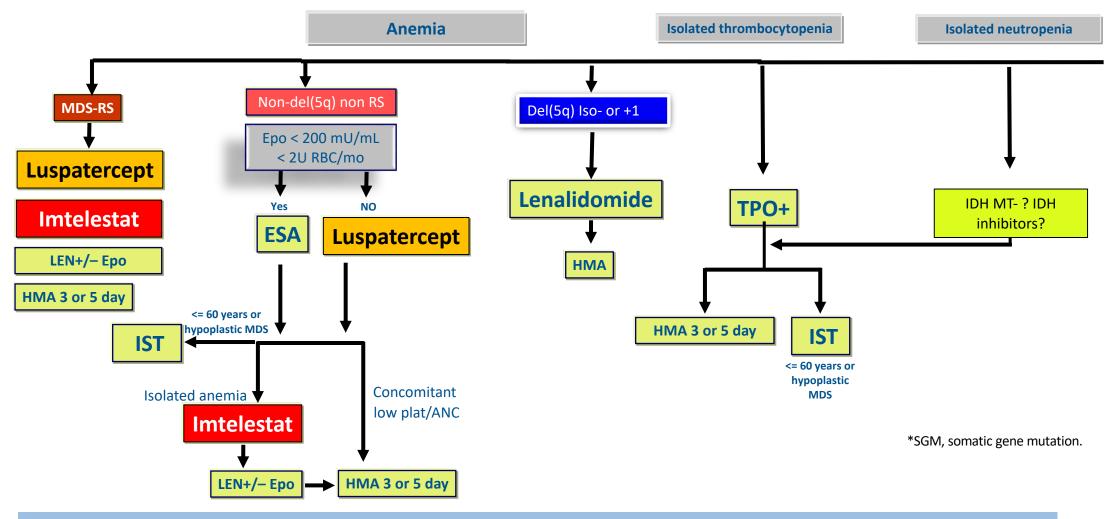
Imetelstat Placebo N = 118 N = 60

39.8% 15%

RBC TI ≥ 8 weeks RBC TI ≥ 8 weeks

3.3%

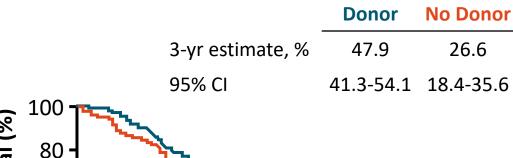
RBC TI ≥ 24 weeks RBC TI ≥ 24 weeks

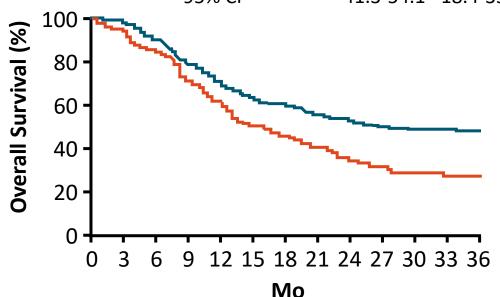

17.8% 1.7%

RBC TI ≥ 1 year RBC TI ≥ 1 year

	1-year RBC-TI	
	Imetelstat	Placebo
IPSS		
Low	10/80 (12.5%)	1/39 (2.6%)
Int-1	5/38 (15.8%)	0/21 (0%)
IPSS-R		
Very low	0/3 (0%)	0/2 (0%)
Low	10/87 (11.5%)	1/46 (2.2%)
Int	4/20 (20.0%)	0/8 (0%)
IPSS-M		
Very low/low	10/69 (14.5)	0/33 (0%)

Superior RBC-TI response rates in patients with SF3B1, TET2, ASXL1, DNMT3a, or CUX1 mutations treated with imetelstat

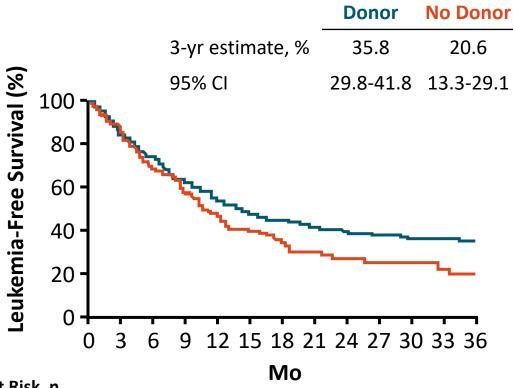

How Do I Manage LR-MDS in 2024



- Allogeneic stem cell transplant maybe considered after standard therapy failure or in younger patients with higher-risk disease features by IPSS-M.
- Iron chelation should be considered in patients with evidence of iron overload.

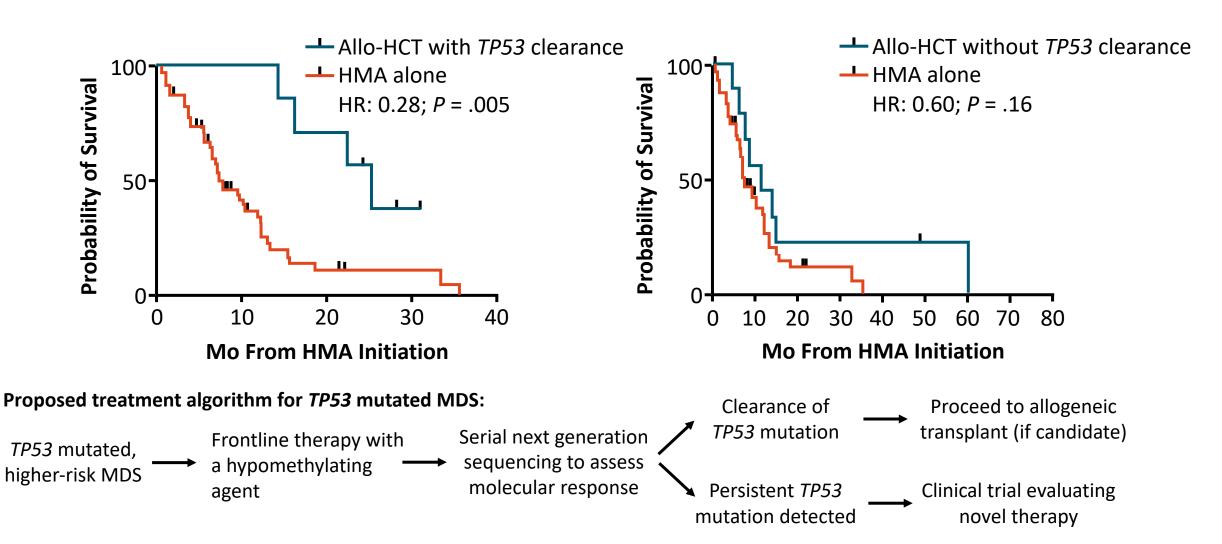
BMT CTN 1102: RIC Plus Allo-HSCT vs BSC in Older Patients With Higher-Risk MDS

Overall Survival



Patients at Risk, n

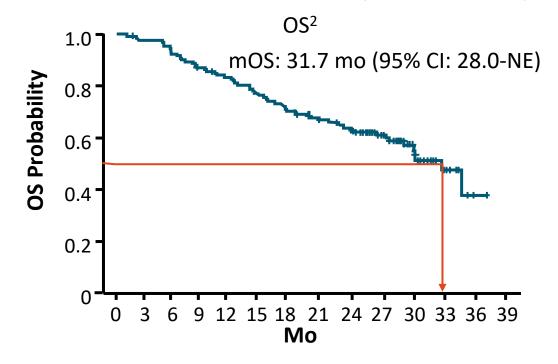
Donor 260 253 233 201 176 155 129 117 102 86 76 72 27 No donor 124 116 103 84 71 56 49 40 30 22 15 14 7


Leukemia-Free Survival

Patients at Risk, n

Donor 260 219 192 160 135 119 97 88 76 66 58 56 2 No donor 124 106 83 68 56 44 37 29 24 18 14 12 5

Managing *TP53* mutant MDS


Hunter. Blood Adv. 2021;5:1017.

ASCERTAIN: Update on Efficacy and Safety of Oral Decitabine/Cedazuridine in Patients With MDS and CMML

Response Category ^{1,2}	Treated Patients (N = 133)
CR, n (%)	29 (22)
PR, n (%)	0
mCR, n (%)	43 (32.3)
■ mCR with HI	22 (16.5)
HI, n (%)	10 (7.5)
HI-erythroid	2 (1.5)
HI-neutrophils	1 (0.8)
HI-platelet	7 (5.3)
Overall response (CR + PR + mCR + HI), n (%)	82 (61.7)
RBC transfusion independence, n/N (%)*	27/53 (51)
Platelet transfusion independence, n/N (%)*	6/12 (50)

^{*#} patients TI/# patients TD at baseline.

- Median duration of best response: 12.7 mo (range: 1-33)
- Number of patients proceeding to HCT: 34 (26%)
- Leukemia-free survival: 29.1 mo (95% CI: 22.1-NE)

Median CR duration: 14.0 mo (range: 2-29)

^{1.} Savona. ASH 2020. Abstr 1230. 2. Savona. MDS 2021. Abstr P48.

Venetoclax and HMA in Higher-Risk MDS: Efficacy of First-line Therapy

Best Response, %	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
ORR CR MCR PR HI	77 34 37 (62 + HI) 3 3	40 13 11 1 15	<.005
ASXL-1 mut	(n = 16)	(n = 106)	
ORR ■ CR	87 44	32 8	<.005
<i>TP53</i> mut	(n = 12)	(n = 137)	
ORR ■ CR	75 25	44 17	.038 .47

Outcome	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
 Median OS, mo From diagnosis (95% CI) From start of treatment* 	21 (11-32) 19.4	20 (19-22) 17.2	.86
treatment	19.4	17.2	.88
AML transformation, %	23	37	.08
AHSCT cohort [†]	(n = 13)	(n = 256)	
Median OS, mo (95% CI)	NR	38 (27-50)	.20
2-yr OS, %	91	51	

^{*}Median time from diagnosis to treatment was 1 mo in both arms.

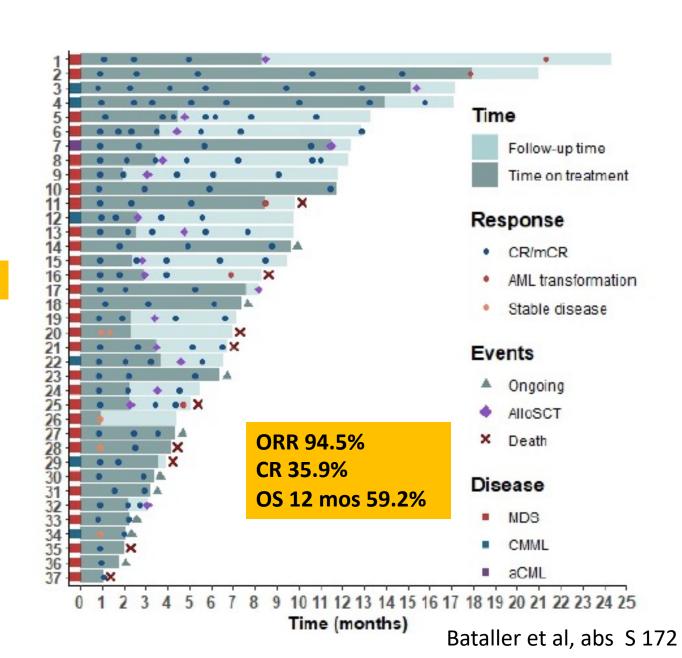
[†]Patients who went on to AHCST.

Oral decitabine/cedazuridine + venetoclax in 1L HR MDS or CMML

Key eligibility criteria

- ≥ 18 years of age
- IPSS intermediate 2 or high risk
- WHO 2016, with > 5% blasts in bone marrow
- Treatment-naive MDS or CMML

Phase 1: dose escalation 3 pts ASTX727 100/35mg day 1-5 + VEN 200mg 1-14


6 pts ASTX727 100/35mg day 1-5 + VEN 400mg 1-14

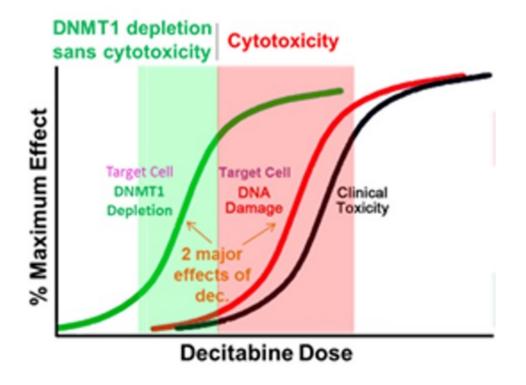
ORR

Phase 2: dose expansion

28 pts ASTX727 100/35mg day 1-5 + VEN 400mg 1-14

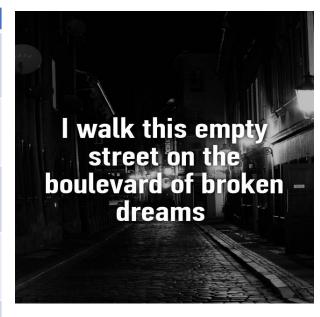
Median age 71 yrs
MDS EB2 65%, CMML 2 16%
IPSS-M very high 68.7%
mTP53 20%. 7/8 multiallelic
Median n cycles 2
Median Time to response 1 cycle

Ongoing Phase 2 trial (NCT05184842)


Metronomic Once Weekly Dosing of Decitabine and Venetoclax in MDS/AML

Treatment (28-day cycles):

- Venetoclax 400 mg on days 1, 8, 15, 22
- Decitabine 0.2 mg/kg SQ on days 1, 8, 15, 22 (for aggressive disease can add a second dose of decitabine on days 2, 9, 16 and 23)

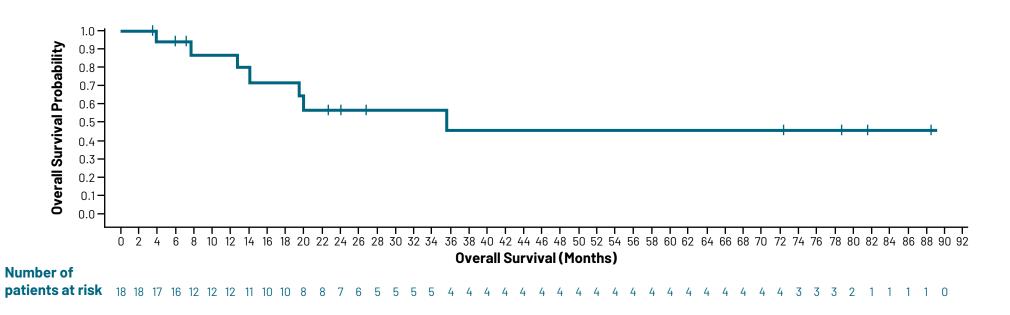

Week 1-12 (Induction phase)

Week 13 and beyond (Long-term treatment phase)

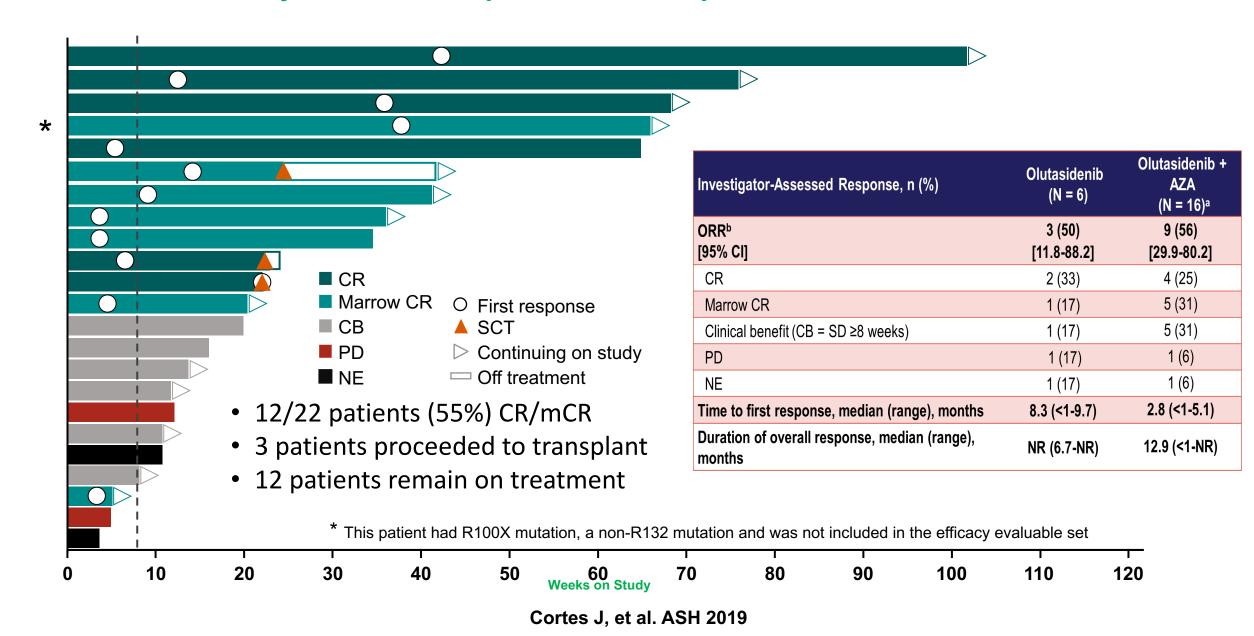
Lessons Learned from Phase III clinical trials in HR-MDS

Drug	Patient characteristics	Intervention	Study outcomes
Venetoclax	Newly-diagnosed HR-MDS Estimated enrollment: 500	Venetoclax + AZA vs. placebo + AZA	Primary Outcome: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 36 Months) - Overall survival (OS) (Up to 5 years)
MBG453 (Sabatolimab)	Newly-diagnosed HR-MDS or CMML-2 Estimated enrollment: 500	MBG453+ AZA vs. placebo + AZA	Primary Outcome: - Overall Survival (Up to 5 years after last patient randomized)
Pevonedistat	Newly-diagnosed HR-MDS, CMML, or Low-Blast AML Estimated enrollment: 502	Pevonedistat + AZA vs. AZA alone Open-label	Primary Outcome: - Event-Free Survival (From randomization until transformation to AML, or death due to any cause; up to 6 years)
Magrolimab	Newly-diagnosed HR-MDS Estimated enrollment: 520	Magrolimab + AZA vs. AZA + placebo	Primary Outcomes: - Complete Remission (CR) based on IWG 2006 MDS criteria (Up to 24 Months) - Overall survival (OS) (Up to 5 years)
APR-246	Newly-diagnosed TP53-mutated HR-MDS Estimated enrollment: 154	APR-246 + AZA Vs. AZA alone Open-label	Primary Outcome: - Complete response rate (CR) with APR 246 + azacitidine vs. azacitidine only
SY-1425 (Tamibarotene)	Newly-diagnosed RARA-positive HR-MDS Estimated enrollment: 190	SY-1425 + AZA Vs. placebo + AZA	Primary outcome: - Complete response rate (CR) with SY-1425 + azacitidine vs. azacitidine only

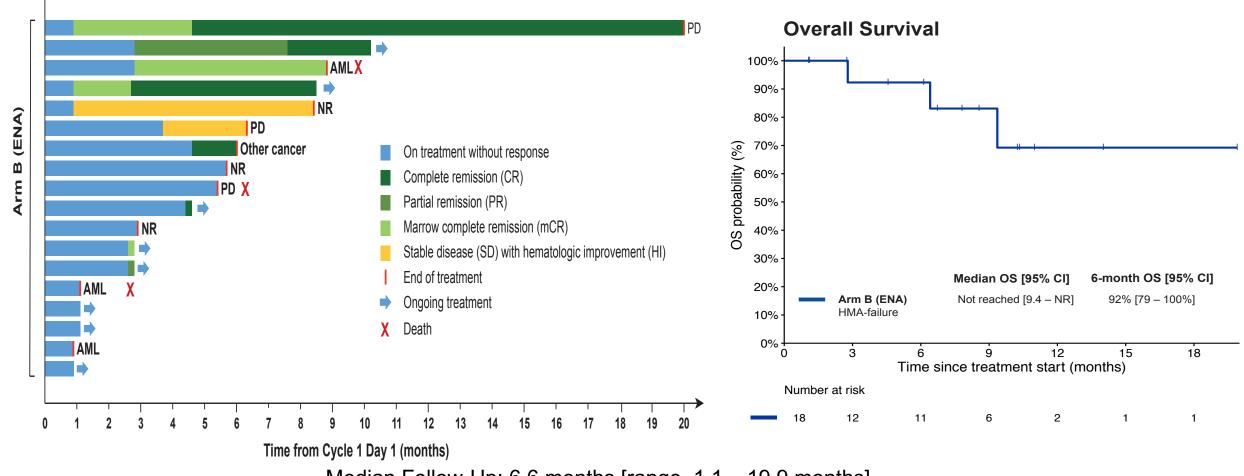
- Bi-allelic *TP53* MDS specific clinical trials.
- Survival= CR rate x duration
- Studies are under-powered to detect small improvements


Targeting IDH mutant MDS

- IDH-1/IDH-2 mutations occur in 5-10% of MDS patients.
- Enriched in patients with neutropenia.
- Recent correlation of IDH-1 mutant myeloid diseases with seronegative Rheumatoid arthritis and connective tissue disease.


Overall Survival with Ivosidenib of Approximately 3 Years Was Observed

	lvosidenib (500 mg Daily) (N=18)
mOS, months (range)	35.7 (3.7-88.7)
95% CI	13.1-NE


- Median OS follow-up was 27.1 months
- 87% survival rate at 12 months per Kaplan-Meier estimation
- Because there was no control arm in this study, OS results should be interpreted cautiously

Efficacy of FT-2102 (Olutasidenib) in IDH1-mutated MDS

Phase II Study of Enasidenib in Patients With *IDH2*-Mutated HR-MDS Arm B (ENA monotherapy) for Patients with HMA-failure

Median Follow-Up: 6.6 months [range, 1.1 – 19.9 months]

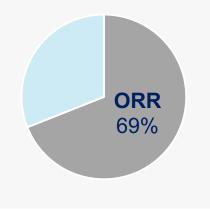
Median time to **INITIAL** response: **2.8 months** [range, 0.9 — 4.6 months]

Median time to **BEST** response: **4.6 months** [range, 2.7 — 7.6 months]

Targeting R/R IDH1/IDH2^{mut} MDS with ivosidenib/enasidenib

IDIOME: phase 2 study of Ivo in 3 cohorts (N=26)¹

- A: HR-MDS, failed AZA (n=13)
- **B**: Untreated HR-MDS (n=11)
- C: LR-MDS, failed EPO (n=2)


Median follow-up: 9.1 months

Median DoR: 7.4 months

Median OS: 14 months

Differentiation syndrome, n=4,

febrile neutropenia, n=1

ORR

42%

IDEAL: phase 2 study of Ena in 3 cohorts (N=26)²

- A: HR-MDS, failed AZA (n=11)
- **B**: Untreated HR-MDS (n=9)
- **C**: LR-MDS, failed ESA (n=6)

Median follow-up: 8.6 months

Median OS: 17.3 months

Differentiation syndrome, n=3;

nausea/diarrhea, n=4; thrombocytopenia, n=5

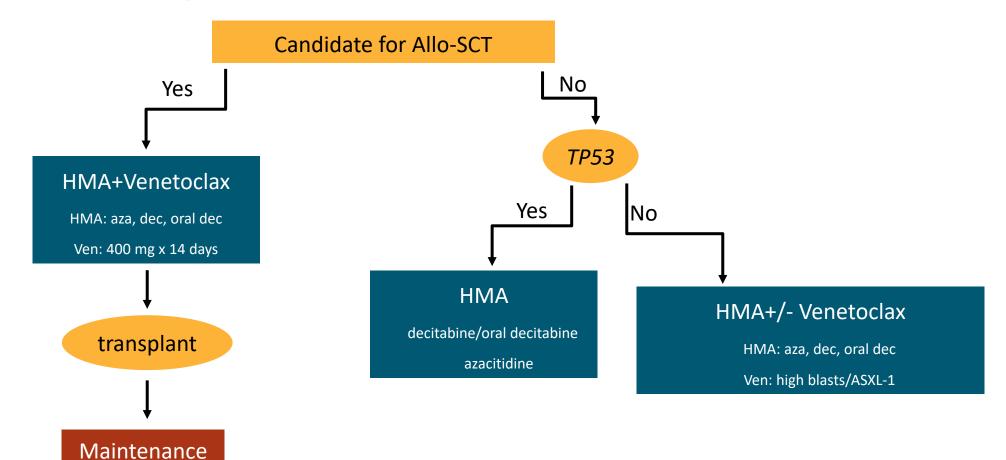
Ivosidenib in R/R IDH1/IDH2^{mut} MDS³

Updated results of a phase 1 dose-escalation study (500 mg QD)

81%
44%
31% 6%
69%
60%

Safety outcomes	
Grade ≥3 AEs	69%
Grade ≥3 TRAEs	13%
SAEs	44%

	Cohort B (n=23)
ORR after 3 cycles	78.3% (95% CI, 56.3 – 92.5)
Median DOR	NR, after median follow-up of 25.2 months
Median OS	NR, after median follow-up of 25.2 months
12-month OS rate	91.3% (95% CI, 80.5-100)


- 1. Sebert M, et al. ASH 2021. Abstract 62 (oral presentation);
- 2. Ades L, et al. ASH 2021. Abstract 63 (oral presentation)
- 3. Sallman DA, et al. ASCO 2022. Abstract 7053 (Poster 284)

How do I treat Higher risk MDS?

TP53

11q23

Inv 3

Thank You Rami.Komrokji@moffitt.org

MEET THE TEAM

Dr. Rami Komr

Dr. Onyee Cha

r. Andrew Kuykendal

Dr. Jeffrey Lar

or Fric Padma

r. David Sallman

r. Kendra Sweet

Dr. Sara Tinsley

Moffitt MDS team: Only perfect counts !!!

Acknowledgements:

- Our patients and their caregivers
- Moffitt MDS team