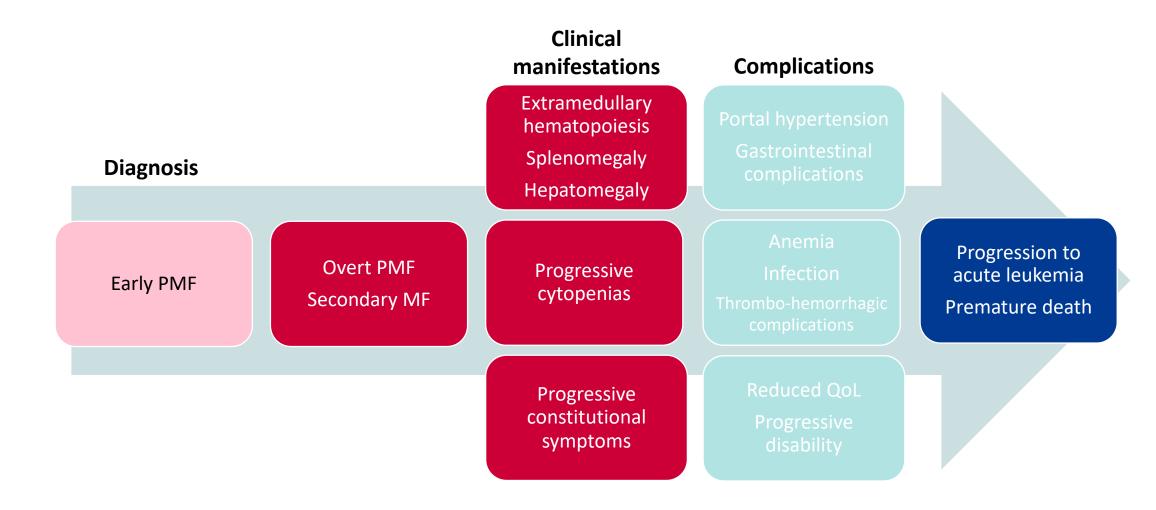


Novel Advances in Myelofibrosis: Diagnosis, risk stratification and therapy

Gabriela Hobbs, MD Clinical Director, Leukemia Service, Massachusetts General Hospital Assistant Professor, Harvard Medical School


Case

Mr. PT is a 70 yo M with myelofibrosis with a CALR and ASXL1 mutation, WBC is 9 x 10^9 , hemoglobin is 10.5 g/dL and platelets are 143×10^9 , he has 2% circulating blasts. He endorses night sweats, unintentional weight loss and itching, on exam spleen is palpated 10 cm below the costal margin. Bone marrow biopsy shows 2+ fibrosis. He is started on ruxolitinib 15 mg BID. He was not considered for transplant based on renal insufficiency and advanced COPD.

After 9 months of therapy, spleen is palpable 6 cm below costal margin, he is now anemic with a hemoglobin of 8.5 g/dL and thrombocytopenic with a platelet count of 40. Repeat bone marrow rules out disease progression to acute leukemia.

MF Is a Progressive Condition

Risk Stratification in MF

"Before I begin, one of the acronyms I'm going to use is completely made up. See if you can figure out which one."

MIPPS70: Mutation-Enhanced International Prognostic Scoring System

MIPSS70 Parameter	Points			
WIIP55/U Parameter	0	1	2	
Anemia	≥ 10 g/dL	< 10 g/dL		
Leukocytosis	< 25 x 10 ⁹ /L		≥ 25 10 ⁹ /L	
Platelet Count	≥ 100 x 10 ⁹ /L		< 100 x 10 ⁹ /L	
Circulating Blasts	< 2%	≥ 2%		
Bone Marrow Fibrosis Grade	< MF-2	≥ MF-2		
Constitutional Symptoms	Absent	Present		
Absence of CALR type 1/like mutation	No	Yes		
High-molecular risk (HMR) mutations*	No	Yes		
≥2 HMR mutations	No		Yes	

MYSEC-PM: Myelofibrosis Secondary to PV and ET-Prognostic Mode

MYSEC-PM Parameter	Points			
IVITSEC-PIVI Parameter		0	1	2
Age	0.15 x Age (years)			
Constitutional Symptoms		Absent	Present	
Anemia		≥ 11 g/dL		< 11 g/dL
Thrombocytopenia		≥ 150 x 10 ⁹ /L	< 150 x 10 ⁹ /L	
Circulating Blasts		< 3%		≥ 3%
CALR Status		Mutated		Unmutated

MYSEC-PM Risk Group	Points	Med Survival (yr)	
Low	0-11	NR	
Intermediate-1	>11-14	9.3 (95% CI: 8.0-NR)	
Intermediate-2	>14-16	4.5 (95% CI: 3.2–7.9)	
High	>16	2 (95% CI: 1.7–3.9)	

Survival Varies by Risk

DIPSS+

		Median Survival, Year	s
Risk Group	IPSS ²	DIPSS ³	DIPSS-Plus ⁴
Low	11.3	Not reached	15.4
Intermediate-1	7.9	14.2	6.5
Intermediate-2	4.0	4.0	2.9
High	2.3	1.5	1.3

MIPSS70

Risk category	Score	OS (yr)	HR
Low	0–1	27.7	1
Intermediate	2–4	7.1	5.5 (3.8-8.0)
High	<u>></u> 5	2.3	16.0 (10.2-25.1)

MYSEC-PM:

	Median OS (yr)
Low	NR
Int-1	9.3
Int-2	4.4
High	2

Case continued:

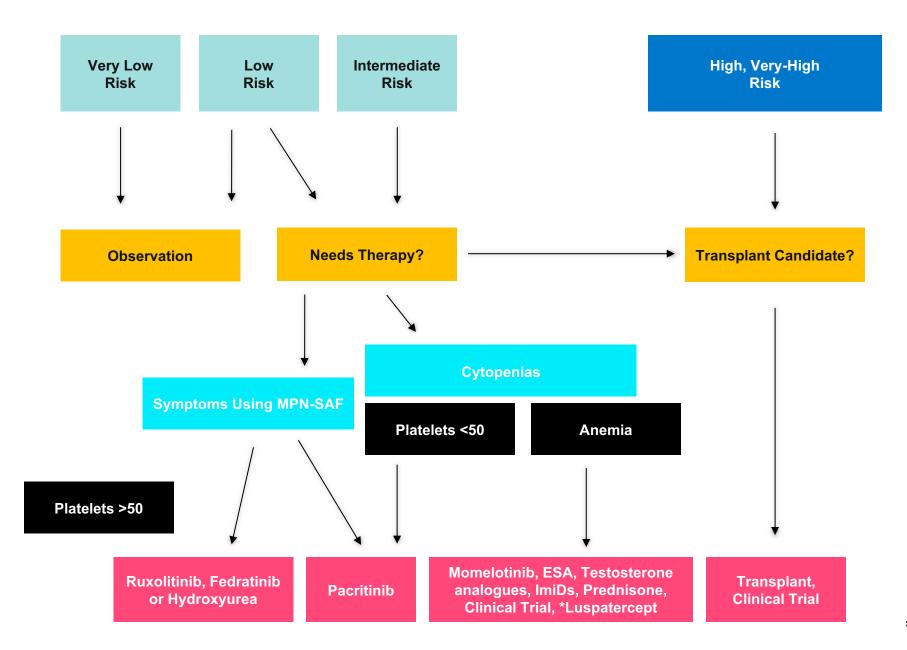
70M, MF with CALR/ASXL1 treated with rux, not a transplant candidate, after 9 mo of therapy, spleen is palpable and is now anemic hgb 8.5, thrombocytopenic plts of 40.

- How would you risk stratify Mr. PT?
- Which score?
- What risk factors are present?

How to Approach Treatment

Assess risk

- Is the patient a transplant candidate?
- Do they desire a transplant?
- What is their risk?


Assess symptoms

- Do they have spleen related symptoms (early satiety, abdominal discomfort)?
- Do they have constitutional symptoms (fatigue, night sweats, weight loss)?

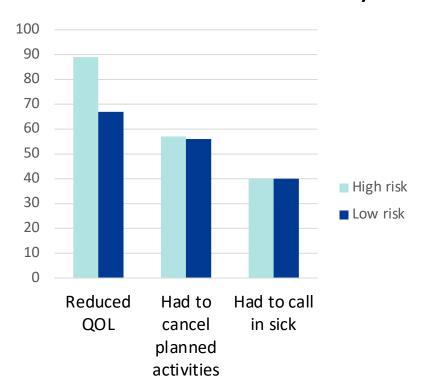
Do they have cytopenias?

Myelofibrosis treatment approach- 2024

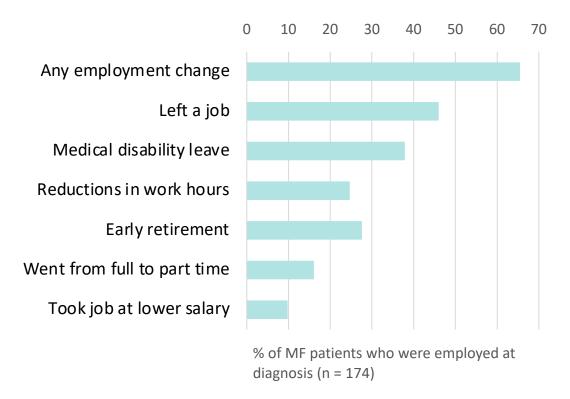
Indications for JAK inhibitor therapy

- JAKi are not mutation specific
- JAKi do not prevent disease progression

Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score (MPN-SAF TSS)


Symptom	1 to 10 (0 if absent) ranking (1 is most favorable and 10 least favorable)
Please rate your fatigue (weariness, tiredness) by circling the one number that best describes your WORST level of fatigue during the past 24 hours	(No Fatigue) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
	scribes how, during the PAST 24 HOURS how
much difficulty you have	had with each of the following symptoms
Filling up quickly when you eat (Early Satiety)	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Abdominal discomfort	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Inactivity	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Problems with Concentration - Compared to prior to my MPD	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Night Sweats	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Itching (pruritus)	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Bone Pain (diffuse not joint pain or arthritis)	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)
Fever (>100 F)	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Daily)
Unintentional weight loss last 6 months	(Absent) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)

MF Impact on Quality of Life and Employment


MPN Landmark Survey (US)¹

Even low risk disease has an impact on QoL and activities of daily living

Living with MPNs Survey (US)²

MF has a high impact on employment status and work productivity

MPN = myeloproliferative neoplasms; QoL = quality of life

- 1. Mesa R, et al. *BMC Cancer*. 2016;16:167.
- 2. Yu J, et al. BMC Cancer. 2018;18(1):420.

JAK Inhibitors for Treatment of MF

JAK Inhibitor	MF Relevant Targets	Major Clinical Trials in MF	Approval Date	Approved and Recommended Indications
Ruxolitinib	JAK1, JAK2	COMFORT-1/2 (phase 3)	2011	FDA: Frontline for intermediate- and high-risk MF
Fedratinib	JAK2	JAKARTA-1/2 (phase 3, 2) FREEDOM (phase 3b)	2019	FDA: Frontline or second-line for INT-2 and high-risk MF
Pacritinib	JAK2, ACVR1	PERSIST 1/2 (phase 3) PAC203 (phase 2)	2022	FDA: Frontline for intermediate- and high-risk MF with PLT < 50 × 10 ⁹ NCCN: Second-line with any PLT count
Momelotinib	JAK1/2, ACVR1	SIMPLIFY-1/2 (phase 3) MOMENTUM (phase 3)	2023	FDA : Approved for patients with anemia

Ruxolitinib

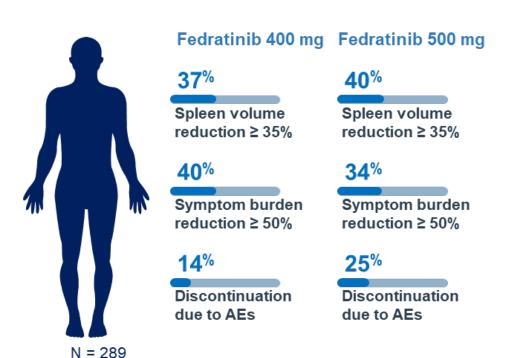
Ruxolitinib administration and dosing:

Baseline Platelet counts	Ruxolitinib Dose
>200 x 10 ⁹ /L	20 mg BID
100-200 x 10 ⁹ /L	10 mg BID
50-99 x 10 ⁹ /L	5 mg BID

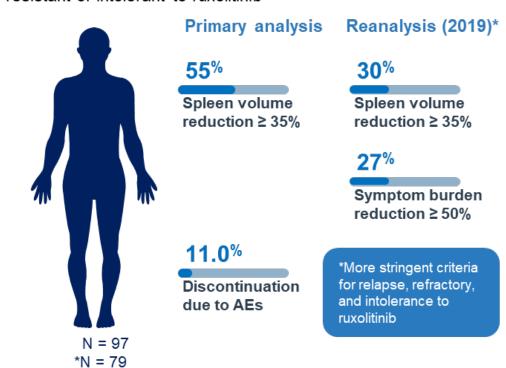
Dose Adjustments:

- Dose is not generally adjusted in the first 4 weeks.
- Subsequent doses can be adjusted every 2 weeks.
- Adjust dose for CYP3A4 inhibitors
- If no response/intolerance- Taper ruxolitinib to discontinue

Side effects and considerations:


- VZV reactivation (acyclovir prophpylaxis vs vaccine)
- Check lipids before use
- Advise patients about weight gain

Fedratinib in Myelofibrosis: JAKARTA and JAKARTA-2 Trials


Phase 3 JAKARTA Trial

Fedratinib vs placebo in patients with Int-2/high-risk MF

Phase 2 JAKARTA-2 Trial

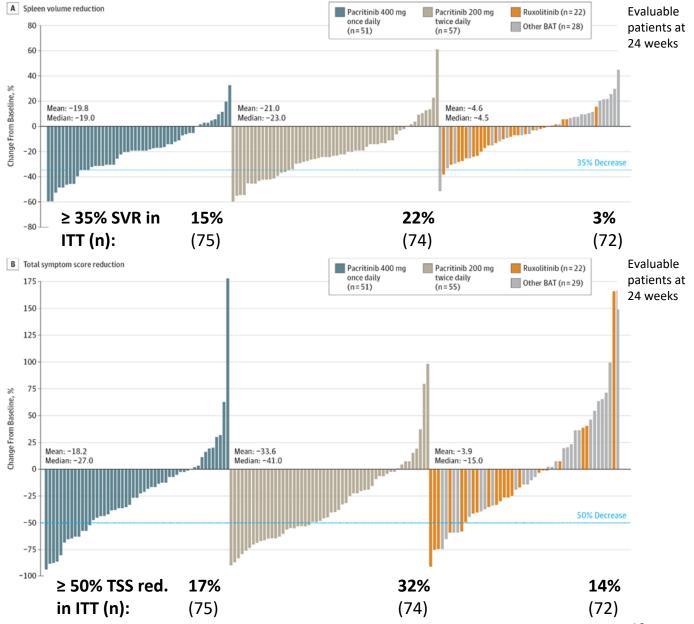
Fedratinib vs placebo in patients with Int-2/high-risk MF resistant or intolerant to ruxolitinib

15% of the patients in the fedratinib 400 mg group had a baseline platelet count <100 × 10⁹/L

Pacritinib

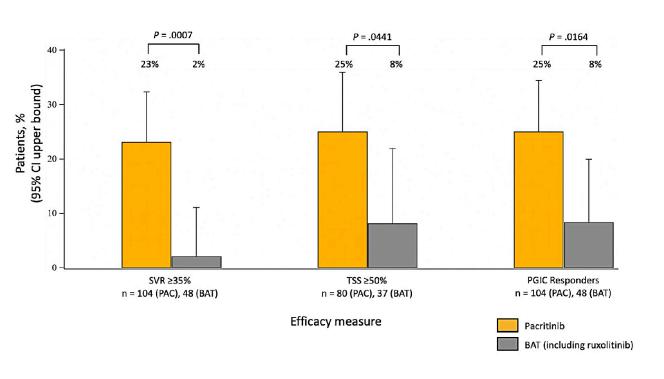
PERSIST-2¹

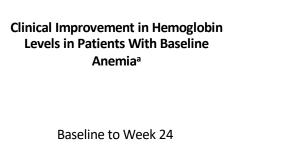
Phase 3 randomized trial comparing pacritinib with best available therapy (BAT)

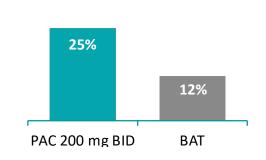

Pacritinib: 400 mg once daily versus
 200 mg twice daily

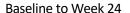
Enrollment criteria:

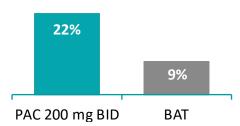
- ≥ Intermediate-1 risk MF
- Thrombocytopenia: platelets $< 100 \times 10^9/L$
- Previously treated or JAK inhibitornaïve

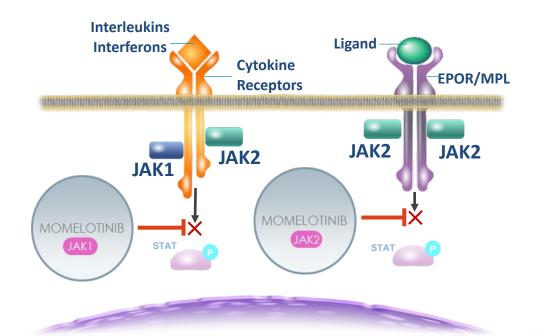

Control arm treatments:


- Ruxolitinib (n = 44)
- Hydroxyurea (n = 19)
- Prednisone and/or prednisolone (n = 13)
- Watchful waiting (n = 19)

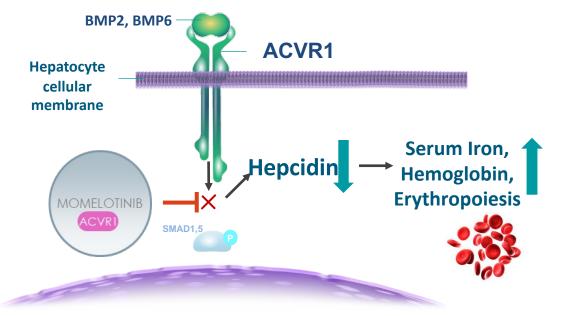



Pacritinib for severe thrombocytopenia and anemia





Momelotinib Mechanism of Action

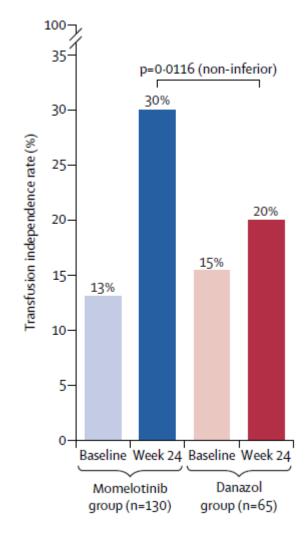

Dysregulated **JAK-STAT signaling** in MF drives overproduction of inflammatory cytokines, **bone marrow fibrosis**, **systemic symptoms**, and clonal proliferation resulting in extramedullary hematopoiesis and **splenomegaly**^{1,2}

hyperactivation of **ACVR1**, elevated **hepcidin**, dysregulated iron metabolism, and **anemia** of MF^{3,4}

Chronic inflammation also drives

MPL = myeloproliferative leukemia protein

- 1. Chifotides HT, et al. J Hematol Oncol. 2022;15(1):7.
- 2. Verstovsek S, et al. Future Oncol. 2021;17(12):1449-1458.
- 3. Asshoff M, et al. *Blood*. 2017;129(13):1823-1830.
- 4. Oh S, et al. Blood Adv. 2020;4(18):4282-4291.



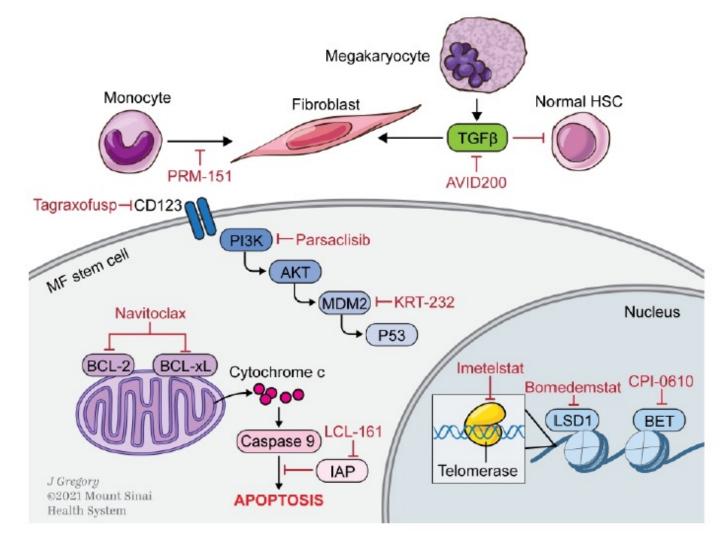
Momelotinib

MOMENTUM

- Phase 3 double-blind, randomized, controlled trial comparing momelotinib with danazol in patients previously treated with ruxolitinib
- Enrollment criteria:
 - ≥ Intermediate-1 risk MF previously treated with a JAK inhibitor
 - Anemic (Hb < 10 g/dL), symptomatic (TSS > 10)

At 24 weeks	Momelotinib (n = 130)	Danazol (n = 65)	P value
TSS response rate, % (≥ 50% reduction in TSS score)	25	9	0.0095
Spleen response rate, % (≥ 35% spleen volume reduction)	22	3	0.0011
Rate of zero transfusions to week 24	35	17	0.0012

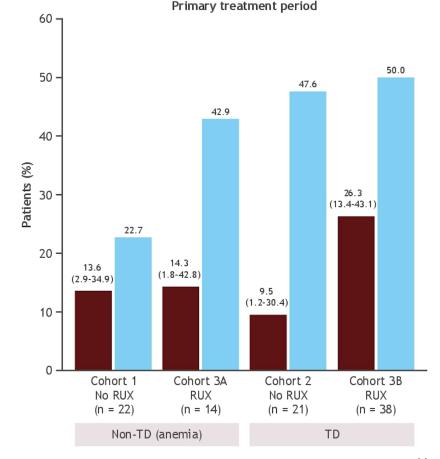
Case continued: How would you manage Mr. PT?


70M, MF with CALR/ASXL1 treated with rux, not a transplant candidate, after 9 mo of therapy, spleen is palpable and is now anemic hgb 8.5, thrombocytopenic plts of 40.

- 1. Increase ruxolitinib to 20 mg BID
- 2. Decrease ruxolitinib to 10 mg BID
- 3. Switch to Fedratinib 400 mg daily
- 4. Switch to Pacritinib 200 mg BID

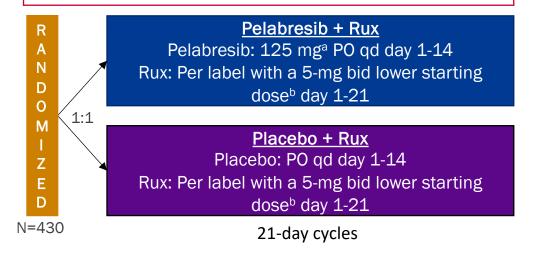
New Treatment Targets in MF

- Luspatercept
- Combination studies:
 - BET inhibition (pelabresib)
 - Bcl-2/Bcl-xL (Navitoclaxdevelopment ended)
 - MDM2 inhibition (Navtmedalin)
- Monotherapy with promise-PIM-1 Kinase inhibition, lysyl oxidase inhibitor



Luspatercept Shows Efficacy In the Setting of MF-induced Anemia

- Phase 2 trial assessing erythroid maturation agent luspatercept in patients with MF associated anemia ±TD¹
- Safety profile of luspatercept consistent with previous studies
- Treatment with luspatercept induced improvements in anemia and transfusion burden in all cohorts

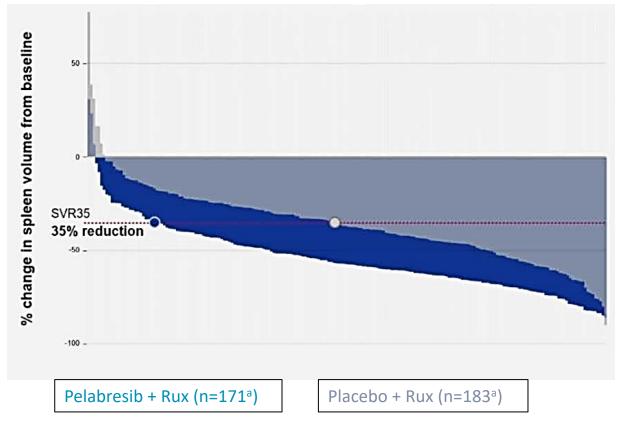

Use of luspatercept for MF-induced anemia in TD patients with TD on JAK2i therapy is being assessed in the phase 3 INDEPENDENCE study²

Phase 3 MANIFEST-2 Study of Pelabresib and Rux for JAKi Treatment-Naive MF: Study Design and Patients

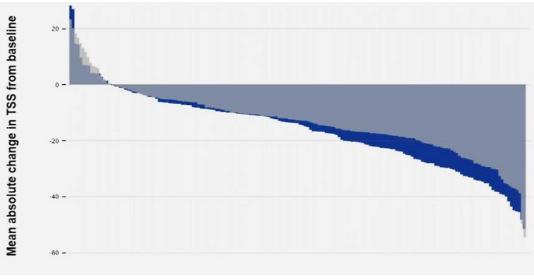
Key Eligibility Criteria

- JAKi-naive patients with 1L MF (primary or post-ET/PV)
- DIPSS intermediate-1 or higher
- Splenomegaly (≥450 cm³) by CT/MRI
- TSS ≥10 (≥3 for two symptoms, MFSAF v4.0)

Primary endpoint: SVR₃₅ at week 24 **Secondary endpoints:** TSS absolute change from baseline at week 24, TSS50 at week 24, safety

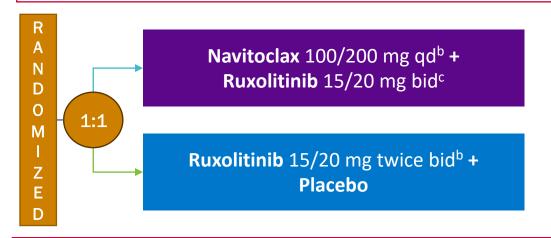

Patient Characteristic	:S	Pelabresib + Rux (n=214)	Placebo + Rux (n=216)
Median age, years (m	in, max)	66 (19, 84)	66 (26, 88)
	Primary	107 (50.0)	110 (50.9)
MF subtype, n (%)	Post-PV	45 (21.0)	53 (24.5)
	Post-ET	62 (29.0)	53 (24.5)
	Intermediate-1	128 (59.8)	127 (58.8)
DIPSS, n (%)	Intermediate-2	75 (35.0)	74 (34.3)
	High risk	11 (5.1)	15 (6.9)
	JAK2 V617F	125 (67.2)	122 (64.6)
Mutations n (0/)	CALR	45 (24.2)	50 (26.5)
Mutations, n (%)	High-risk mutations	72 (38.7)	88 (46.6)
FCOC DC ~ (0/)	0	107 (50.0)	109 (50.5)
ECOG PS, n (%)	1	97 (45.3)	95 (44.0)
Hb ≤10 g/dL, n (%)		70 (32.7)	76 (35.2)
Platelets >200×10 ⁹ /L, n (%)		154 (72.0)	157 (72.7)
TSS, median (range)		26.6 (7.3-66.4)	24.7 (9.0-68.4)
RBC transfusion at baseline, n (%)		35 (16)	25 (12)

^a The starting dose for pelabresib was 125 mg qd and protocol-defined dose modifications based on AEs and treatment response allowed a dose range between 50 mg and 175 mg qd. ^b Ruxolitinib was started at 10 mg bid (baseline platelet count 100-200×10⁹/L) of 15 mg bid (baseline platelet count >200×10⁹/L) with a mandatory dose increase by 5 mg bid after 1 cycle and a maximum dose of 25 mg bid per label.


23

Results From the Phase 3 MANIFEST-2 Study of Pelabresib and Rux for JAKi Treatment-Naive MF: SVR₃₅ at Week 24

ITT Population	Pelabresib + Rux (n=214)	Placebo + Rux (n=216)
TSS change ^b from baseline at week 24	-15.99	-14.05
Mean difference ^c (95% CI)	-1.94 (-3.92 to 0.04)	
<i>P</i> value	0.0545	

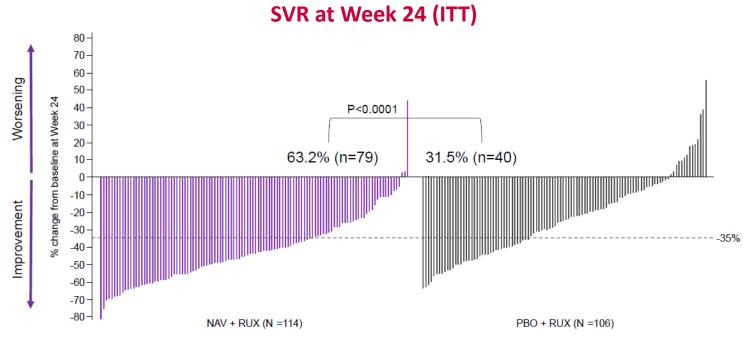

Phase 3 TRANSFORM-1 Trial of Navitoclax + Rux Versus Rux + Placebo in Untreated MF: Study Design and Patients

Key Eligibility Criteria

- Intermediate-2 or high-risk MF with measurable splenomegaly^a
- Evidence of MF-related symptoms
- No prior JAKi treatment

Stratification

- Intermediate-2 vs high-risk
- Platelets ≤200×10⁹/L vs >200×10⁹/L

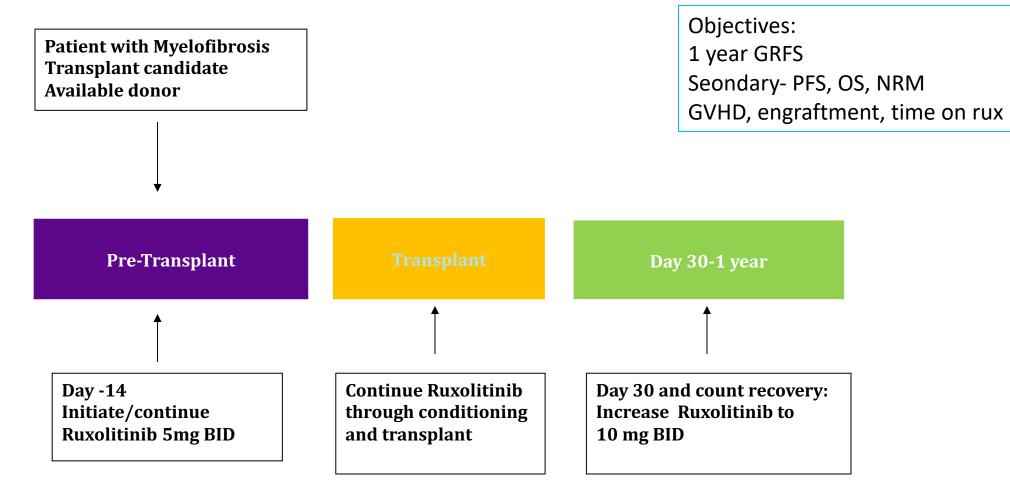

Primary endpoint: SVR₃₅ from baseline to week 24 (superiority) **Secondary endpoints:** MPN-SAF TSS response rate from baseline to week 24, SVR₃₅ at any time, duration of SVR₃₅, anemia response, safety

Patient Characteristics		Nav + Rux (n=125)	Rux + Pbo (n=127)
Median age (range), years		70 (42-87)	69 (37-85)
Median time from last MF diagnosis to study entry (range), months		8 (0.3-181.6)	6 (0.3-198.8)
Type of MF	Primary	63 (50)	72 (57)
	Post-PV/ET	62 (50)	55 (43)
DIPSS risk category, n (%)	Intermediate-1	8 (6)	5 (4)
	Intermediate-2	104 (83)	110 (87)
	High risk	13 (10)	12 (9)
Median prior LOT (range)		1 (1-3)	1 (1-4)
Median spleen volume (range), cm ³		1441 (419-8020)	1639 (219-5664)
Median TSS (range)		21 (0.1-60.6)	24 (6.7-61.6)
Transfusion dependent at baseline		5 (4)	4 (3)
Driver mutations	JAK2 V617F	81 (65)	79 (62)
	CALR	22 (18)	26 (20)
	MPL W515	14 (11)	10 (8)
HMR mutations, n/N (%)		57/120 (48)	50/117 (43)

Median follow-up was 14.9 months (range, 0.0-29.5).

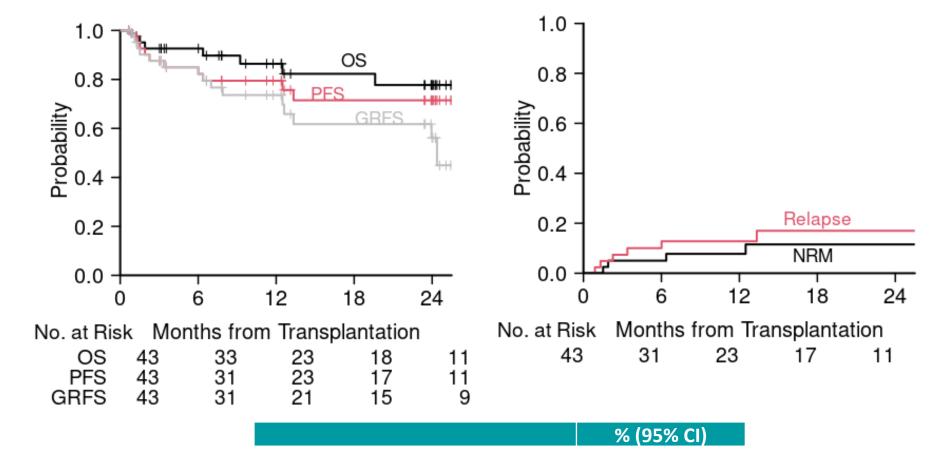
a fined by the DIPSS+. b Platelets >200×109/L: 20 mg bid, platelets 100-200×109/L: 15 mg bid. c Platelets >150×109/L: 200 mg qd, platelets ≤150×109/L: 100 mg qd and escalate to 200 mg after ≥7 days, if tolerable (platelets ≥75×109/L). Pemmaraju N, et al. ASH 2023. Abstract 620.

Results From the Phase 3 TRANSFORM-1 Trial of Navitoclax + Rux Versus Rux + Placebo in Untreated MF: SVR₃₅

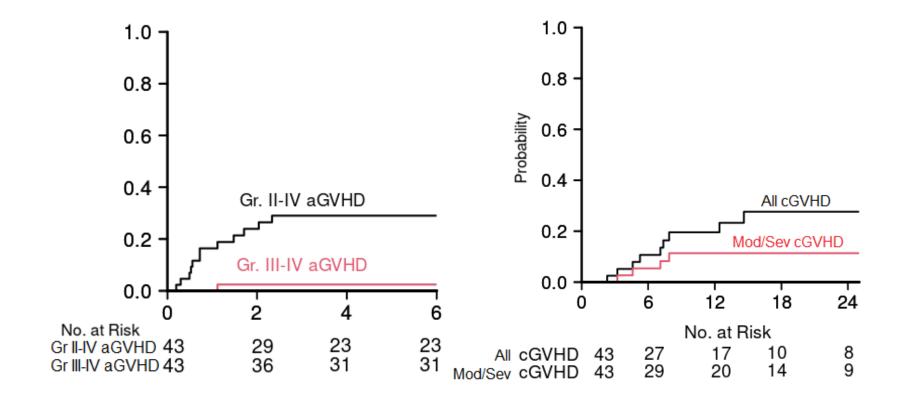


	SVR ₃₅ Rates	Nav + Rux (n=125)	Rux + Pbo (n=127)	
	SVR ₃₅ at week 24, n (%)	79 (63.2)	40 (31.5)	
	95% CI, <i>P</i> value	31.0 (19.5-42.5), <i>P</i> <0.0001		
	Median duration of study follow-up (range), months	14.8 (1.0-29.5)	14.9 (0.0-28.8)	
	SVR ₃₅ at any time on-study, n (%)	96 (76.8)	53 (41.7)	
6	95% CI, <i>P</i> -value	34.6 (23.6, 45.6), P<0.0001 ^a		
•	Median time to first SVR ₃₅ response (range), weeks	12.3 (10.1-48.3)	12.4 (11.3-72.3)	
	Subjects who lost SVR ₃₅ response, n/N (%)	18/96 (18.8)	14/53 (26.4)	
	12-month duration of SVR ₃₅ rate, % (95% CI)	76.7 (64.7-85.0)	76.9 (59.8-84.4)	

- A significantly higher number of patients achieved SVR_{35W24} in the Nav + Rux arm compared with the Rux + Pbo arm (79 [63.2%] vs 40 [31.5%]; P<0.0001)
- Time to first SVR₃₅ response was similar in the Nav + Rux arm compared with the Rux + Pbo arm (median [range]: 12.3 [10.1-48.3] vs 12.4 [11.3-72.3] weeks)



Ruxolitinib pre-, during-, and post-transplantation in MF patients (NCTo3427866)


Outcomes

GVHD

6m gr 2-4 aGVHD	29 (16, 43)
6m gr 3-4 aGVHD	2.4 (0.2, 11)
1y cGVHD	20 (8.4, 34)
1y moderate/severe cGVHD	11 (3.5, 24)

Thank you

