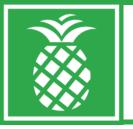
Clinical and Practice Considerations in the Management of Iron **Deficiency Anemia** (IDA)

Jorge J. Garcia, PharmD, MS, MHA, MBA, FACHE Assistant Vice President Oncology, Infusion and Investigational Drug & Research Pharmacy Services Baptist Health

Background


Iron Deficiency Anemia (IDA)

- Reduction in circulating red blood cells (RDC)
- Insufficient utilizable body of iron stores
- Several etiologies
- \circ Impacting \sim 5 million patients in U.S.
- Reduction in patient quality of life (QOL)

Prevalence:

- Vary by age, race, gender
- o 2% in adult men
- 9-12% non-Hispanic white women
- 20% in black & Mexican-American women

Overview

Etiology of IDA

- Chemotherapy
- Blood loss after surgery
- Malnutrition
- Malabsorption

Contributing Factors:

- o Hemolysis
- Hemophagocytic syndromes
- CKD
- ChT or RT-induced myelosuppression
- Bone Marrow Infiltration
- o ESA
- Immuno-Inflammation

Absolute Iron Deficiency

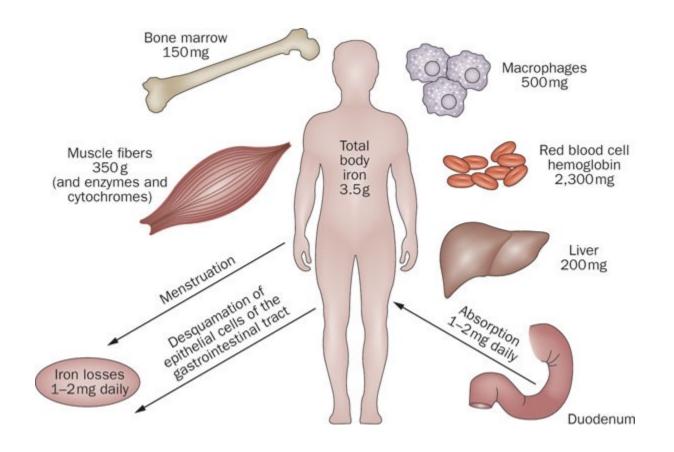
Depletion of total body iron stores due to inadequate iron intake or blood loss

Functional Iron Deficiency

Total iron body stores are normal or increased, but iron cannot be metabolized

Symptomatology:

- o Chest pain, fast heartbeat, or shortness of breath
- o Headache, dizziness, or lightheadedness
- o Pica
- o Cold hands and feet
- o Brittle nails
- o Weakness
- o Extreme fatigue



Iron Homeostasis

- o 1-2 mg iron is lost daily
 - Desquamation of epithelial cells of skin, Gl tract, bile ducts and urinary tract
 - Menstruation
- o 1-2 mg absorbed in duodenum

IV Iron Therapy Evolution in the U.S.

1932	Iron hydroxide
1947	Iron saccharide
1954	High molecular weight iron dextran
1991	Low molecular weight iron dextran
1996	HMW-ID
1999	Ferric gluconate
2000	Iron sucrose
2009	Ferumoxytol
2013	Ferric carboxymaltose
2020	Ferric derisomaltose

Safety Considerations for IV Iron Therapy Pharmacist Consensus Statement

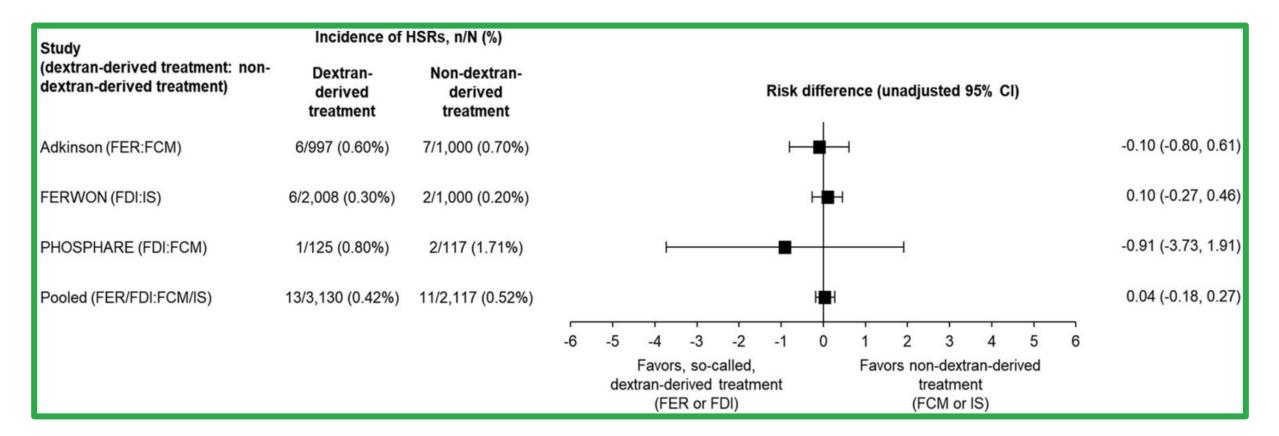
A panel of 12 pharmacists reviewed evidence regarding IV iron-associated AEs, including:

- o 27 systemic reviews and review articles
- o 35 RCTs, case reports & case series

Hypersensitivity Reactions / Infusion Related Reactions

- 1) Most mild-to-moderate HSRs, including IRRs, associated with IV iron preparations are Fishbane or CARPA reactions (e.g., pseudo-allergy) rather than anaphylactic reactions
- 2) Severe HSRs/IRRs rechallenging is NOT recommended; however, switching to a different IV formulation may mitigate reoccurrence of a severe HSR
- 3) Patients with previous IV iron-induced allergic reaction or a history of allergic reactions to multiple agents are at increased risk of developing a HSR
- 4) Premedication(s) or a test dose to mitigate the development of IV ironassociated HSR is generally not warranted

Hypersensitivity Reactions / Infusion Related Reactions


	lgE Mediated Reactions	CARPA Reactions
Mechanism of HSRs	Immune memory forms the specific IgE	Non-lgE-mediated activation of the complement system
Exposure	Typically arises upon re-exposure to allergen	Typically arises w/ first exposure to new molecule
Intensity	Increases w/ repeated exposure	Decreases with repeated exposure
Resolution	Reaction does not cease if treatment discontinued	Spontaneous resolution when infusion is paused or stopped

Reactions

1) For patients developing a mild-to-moderate Fishbane or CARPA reaction, consider rechallenging with the same product, at a slower rate, or switching with an iron product with a lower free iron load.

- 1) Low risk of moderate-to-severe HSR
- 2) No statistically significant difference among products

Patients at Increased Risk of HSR

1) Factors that increase the likelihood of HSRs

Genetic disposition (asthma, other allergies)

Acquired lasting factors (autoimmune diseases)

Acquired
Temporary Factors
(anxiety, rate of infusion)

2) Factors that increase the likelihood of an adverse outcome to HSRs

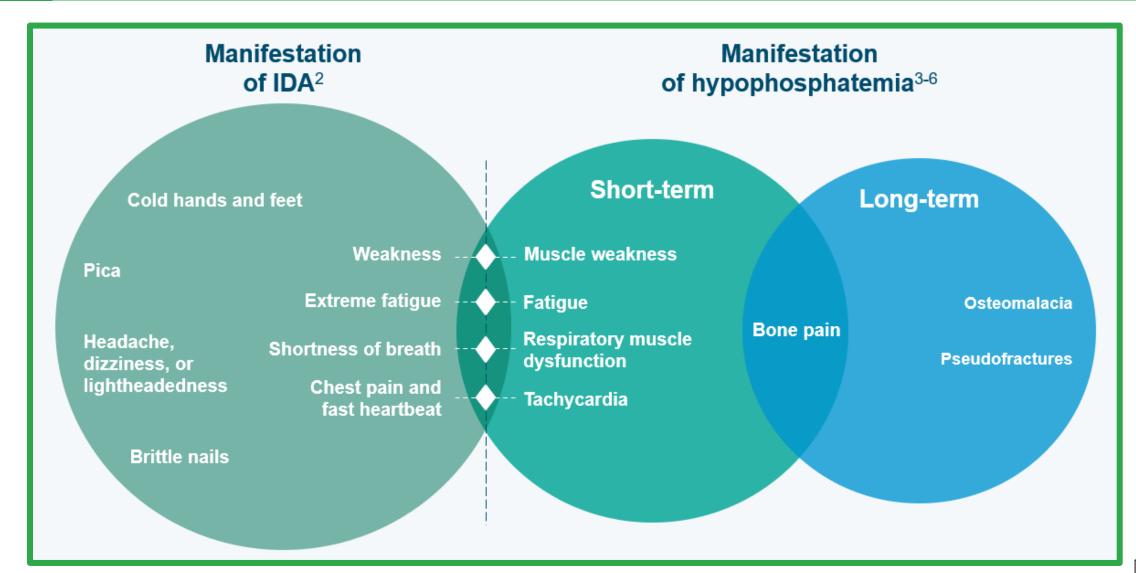
Advanced age

Pre-existing severe respiratory or CVD

Use of B-blockers or ACE inhibitors

Special Populations:

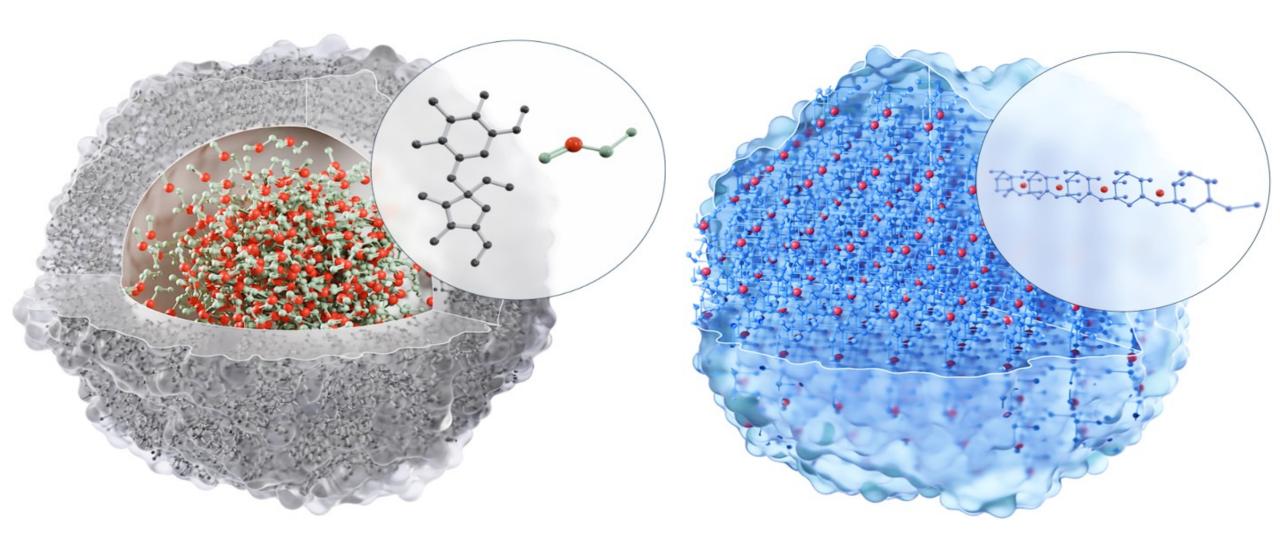
- 1) Selection of use in select populations (e.g., pregnancy, cardiac disease, IBD) should be based on formulation characteristics, ease of administration, AE profile, & social determinants of health.
- 2) Head-to-head and/or meta-analyses evaluating the use of IV iron products in select patient populations is limited
- 3) In patients with heart failure accompanied with a reduced ejection fraction and IDA, IV iron replacement is safe, effective and warranted.


Hypophosphatemia

- 1) The incidence of acute/persistent hypophosphatemia varies among formulations; the highest incidence of grade 3 hypophosphatemia (phosphate <2.0mg/dL) is associated with FCM
- 2) Monitoring serum phosphate levels is recommended for all patients receiving repeated courses of FCM, with extra vigilance for patients with low baseline serum phosphate or those who are at risk of developing osteomalacia
- 3) Persistent /reoccurring hypophosphatemia, after IV iron infusion, patients may benefit from:
 - 1) Using a formulation w/ lower risk of hypophosphatemia
 - 2) Phosphate supplementation
 - 3) Consulting renal expert for severe/refractory hypophosphatemia

Iron Deficiency Anemia Hypophosphatemia

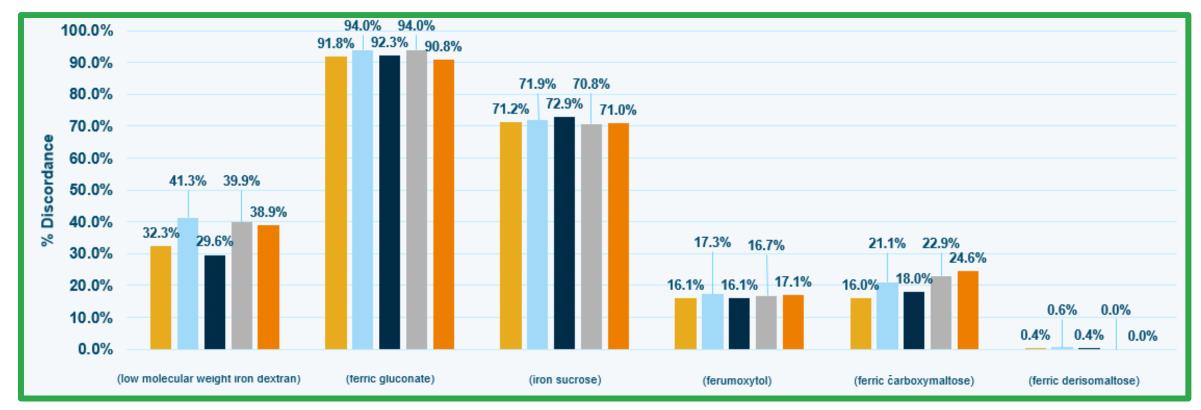
Iron Deficiency Anemia Hypophosphatemia


Early Detection May Prevent Severe Complications:

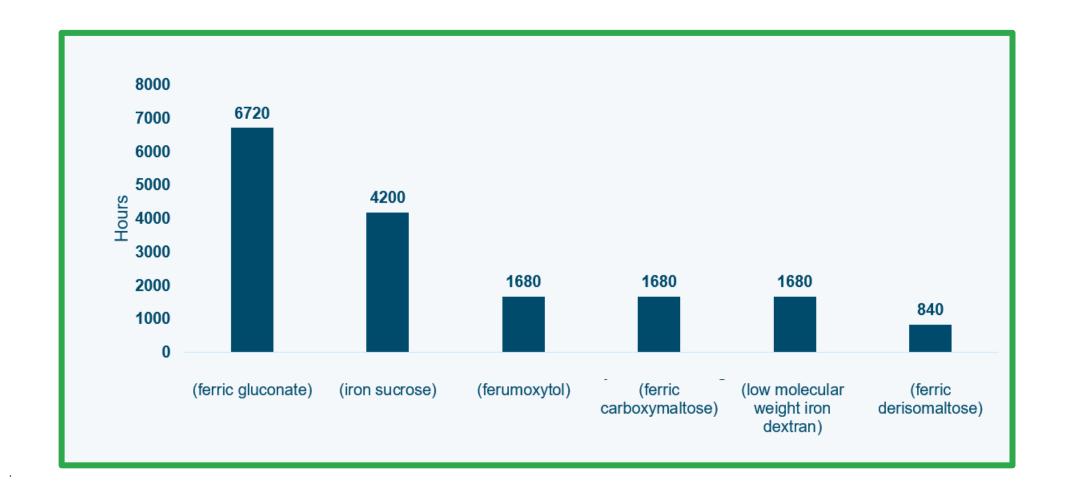
- 1) Hemolysis
- 2) Rhabdomyolysis
- 3) Respiratory failure
- Cardiac dysfunction
- 5) Neurological impairment

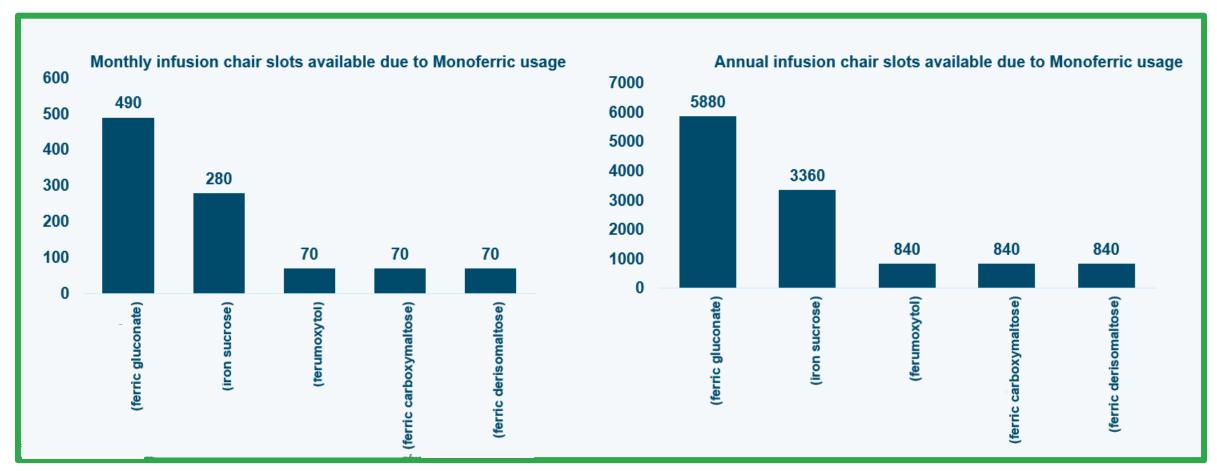
IV Iron Formulations

Iron Deficiency Anemia IV Therapy Options & Considerations


Product	Dose	Visits	Infusion t	Test Dose	Boxed Warning
Iron Dextran	100 mg	[][][][][][][][](] ×10	≥ 2 mins	Yes	Yes (anaphylaxis)
Ferric Gluconate	125 mg	8x [][][][][][]	≥ 60 mins	No	No
Iron Sucrose	200 mg	[][][][] x5	≥ 15 mins	No	No
Ferumoxytol	510 mg	[][] x2	≥ 15 mins	No	Yes (anaphylaxis)
Ferric Carboxymaltose	750 mg	[][] x2	≥ 15 mins	No	No
Ferric Derisomaltose	1000 mg	[] x1	≥ 20 mins	No	No

Treatment Discordance


Cumulative 6-week dose of less than 1,000 mg of iron


Chair Utilization by Time

Chair Utilization by Infusion Slots

Iron Deficiency Anemia IV Therapy Options

Other Considerations

- 1) CMS payable status indicator
- 2) Health plan coverage policy and authorizations
- 3) Patient out of pocket
- 4) Patient assistance
- 5) Transportation vulnerability
- 6) Provider economics
- 7) Tool for management of infusion capacity
- 8) Patient access gaps

Summary

- o Iron deficiency anemia affects a broad and large patient population
- o Challenges accessing benign hematology specialty
- o Challenges accessing infusion services
- o Important IV iron replacement safety and efficiency considerations
- o Coordinated iron infusion service can leverage
 - Patient access
 - o Organizational value

Clinical and Practice
Considerations in the
Management of Iron Deficiency
Anemia (IDA)

Jorge J. Garcia, PharmD, MS, MHA, MBA, FACHE

Assistant Vice President
Oncology, Infusion and Investigational Drug
& Research Pharmacy Services
Baptist Health