

CAR-T Cell Therapy in Lymphomas: 7-Years Later

Mohamed A. Kharfan-Dabaja, MD, MBA, FACP Professor of Medicine Vice-Chair, Hematology Director, Blood and Marrow Transplantation and Cellular Therapies

> New Orleans, LA July 21, 2024

Outline

- Approvals of chimeric antigen receptor T-cell therapy in diffuse large B-cell lymphoma, mantle cell lymphoma and follicular lymphoma
- Reproducibility in the "real world" setting
- Long-term toxicities resulting from CAR T-cell therapy
- T-cell malignancies related to CAR T-cell
- Take home messages

B-cell lymphoma indications based on commercially available products: 2024

	Brexucabtagene autoleucel	Axicabtagene ciloleucel	Tisagenlecleucel	Lisocabtagene maraleucel
3 rd line DLBCL	No	Yes	Yes	Yes
Transformed FL	No	Yes	Yes	Yes
PMBCL	No	Yes	Νο	Yes
2 nd line DLBCL	No	Yes	No	Yes
R/R MCL	Yes	No	No	Yes
R/R FL (non-transformed)	No	Yes	Yes	Yes
R/R CLL	Νο	Νο	Νο	Yes

DLBCL: FDA approved agents

	Axicabtagene Ciloleucel	Tisagenlecleucel	Lisocabtagene maraleucel
FDA Approval indication for 3 rd line and beyond	Yes, ZUMA-1	Yes, JULIET	Yes, TRANSCEND NHL001
FDA Approval indication for 2 nd line and beyond	Yes, ZUMA-7	Νο	Yes, TRANSFORM
FDA approval for refractory disease to 1 st line chemoimmunotherapy or relapse after 1 st line chemoimmunotherapy and are <u>not</u> eligible for HCT due to comorbidities or age	-	_	Yes, PILOT

ZUMA 1: Axicabtagene ciloleucel

Variables	DLBCL	PMBCL or TFL	All pts
N pts enrolled	81	30	111
N pts treated with axi-cel	77 (95%)	24 (80%)	101 (91%)
Median (range) age, years	58 (25-76)	57 (23-76)	58 (23-76)
Stage III-IV disease	67 (87%)	19 (79%)	86 (85%)
≥ 3 prior lines of therapy	49 (64%)	21 (88%)	70 (69%)
Relapsed after auto-HCT	16 (21%)	5 (21%)	21 (21%)

MAYO CLINIC

Neelapu SS, et al. N Engl J Med. 2017; 377:2531-44

1764 Long-Term (4- and 5-Year) Overall Survival in ZUMA-1, the Pivotal Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients with Refractory Large B-Cell Lymphoma (LBCL)

Program: Oral and Poster Abstracts

Session: 704. Cellular Immunotherapies: Clinical: Poster I

Hematology Disease Topics & Pathways:

Biological, Adults, Lymphomas, Non-Hodgkin Lymphoma, B Cell Lymphoma, Chimeric Antigen Receptor (CAR)-T Cell Therapies, Immune Mechanism, Diseases, Therapies, Lymphoid Malignancies, Biological Processes, Study Population

- One patient's event time was updated from Month 42 to 39 after data cutoff and is not reflected in this figure
- Axi-cel, axicabtagene ciloleucel; CR, complete response; NE, not estimable; OS, overall survival; PD, progressive disease; PR, partial response

With ≥5 years of F/U:

5-year OS rate was **42.6%** (95% Cl, 32.8-51.9) among pts treated with axi-cel

The 5-year OS rate:

- In CR=**64.4%** (95% CI, 50.8-75.1); the median survival time among complete responders was not reached (95% CI, 63.4-NE)
- 37 of 59 CR patients (63%) are still alive at the 5-year data cutoff

4864 Curative Potential of Axicabtagene Ciloleucel (Axi-Cel): An Exploratory Long-Term Survival Assessment in Patients with Refractory Large B-Cell Lymphoma from ZUMA-1

Program: Oral and Poster Abstracts

Session: 705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster III Hematology Disease Topics & Pathways: Biological therapies, adult, Lymphomas, non-Hodgkin lymphoma, B Cell lymphoma, Chimeric Antigen Receptor (CAR)-T Cell

Therapies, Diseases, Therapies, aggressive lymphoma, Lymphoid Malignancies, Study Population, Human

Monday, December 11, 2023, 6:00 PM-8:00 PM

Sattva S. Neelapu, MD¹, Caron A Jacobson, MD, MMSc², Armin Ghobadi, MD³, David B. Miklos, MD, PhD⁴, Lazaros J. Lekakis^{5*}, Clare Spooner, BSc, MBBS^{6*}, Jenny J. Kim, MD, MS⁷, Harry Miao, MD, PhD⁶, Allen Xiaodong Xue, PhD^{6*}, Yan Zheng, MD, PhD, MS^{6*} and Frederick L. Locke, MD⁸

- Exploratory analyses from ZUMA-1 using endpoints to measure <u>cure</u> along with survival analyses with up to 6 yrs F/U
 - DSS: Disease-specific survival
 - LREFS: lymphoma-related event-free survival

	CR at 12 months	CR at 24 months
72-month DSS	94.4%	100%

CR at 12 and 24 months may be predictive of extended OS (cure?)

Table 1. KM Estimates of LREFS and DOCR in Patients with a CR

	Patients with a CR				
KM Estimates	Week 4 (n=37)	Month 3 (n=42)	Month 6 (n=39)	Month 12 (n=39)	Month 24 (n=36)
Median LREFS, mo (95% CI)	35.6 (5.7-NE)	NR (35.7-NE)	NR (NE-NE)	NR (NE-NE)	NR (NE-NE)
60-mo LREFS rate, % (95% CI)	46.9 (30.1-62.1)	64.1 (47.7-76.6)	76.8 (60.1-87.2)	84.5 (68.6-92.7)	91.5 (75.9-97.2)
Median DOCR, mo (95% CI)	34.7 (4.6-NE)	NR (34.8-NE)	NR (NE-NE)	NR (NE-NE)	NR (NE-NE)
60-mo CR rate, % (95% CI)	46.9 (30.1-62.1)	64.1 (47.7-76.6)	76.6 (59.8-87.1)	84.3 (68.3-92.6)	91.3 (75.5-97.1)

The table reports KM estimates as of the data cutoff of the 5-year analysis among those with a disease assessment of a CR at each timepoint. CR, complete response; DOCR, duration of complete response; KM, Kaplan-Meier; LREFS, lymphoma-related event-free survival; mo, month; NE, not estimable; NR, not reached.

Table 2. Cumulative Incidence of Death in Patients with a CR

	Patients with a CR				
Cumulative Incidences	Week 4 (n=37)	Month 3 (n=47)	Month 6 (n=39)	Month 12 (n=39)	Month 24 (n=36)
Cumulative incidence of death, % (95% CI)	46.2 (29.4-61.5)	31.3 (17.8-45.7)	23.6 (11.5-38.0)	18.4 (8.0-32.2)	14.2 (5.1-27.9)
Due to PD	35.1 (20.2-50.5)	19.0 (8.8-32.2)	10.4 (3.2-22.5)	5.3 (0.9-15.8)	0
Due to axi-cel-related AEs	2.7 (0.2-12.3)	2.4 (0.2-11.0)	0	0	0
Due to other reasons	8.4 (2.1-20.5)	9.9 (3.1-21.4)	13.2 (4.7-26.0)	13.1 (4.7-26.0)	14.2 (5.1-27.9)

The table reports cumulative incidence of death based on competing risk assessment as of the data cutoff of the 6-year analysis among those with a disease assessment of a CR at each timepoint.

AE, adverse event; axi-cel, axicabtagene ciloleucel; CR, complete response; PD, progressive disease.

3rd line setting and beyond

	ZUMA-1	JULIET	TRANSCEND NHL001
Pts enrolled	111	165	344
Pts received CAR T	101	111	294 (25 nonconforming)
Median (range) age, years	58 (23-76)	56 (22-76)	63 (54-70)
Histology	DLBCL=77 tFL or PMBCL=24	DLBCL-NOS=88 tFL=21 Other =2	DLBCL=137 tFL=60 Transformed (other)=18 PMBCL=15 HGBCL (MYC/BCL2/BCL6)=36
ORR	82% DLBCL=82%	52%	73%
CR	54% DLBCL=49%	40%	53%
CRS	Any grade=93% ≥ grade 3=13%	Any grade=58% ≥ grade 3=22%	Any grade=42% ≥ grade 3=2%
Neurologic event	Any grade=64% ≥ grade 3=28%	Any grade=21% ≥ grade 3=12%	Any grade=30% ≥ grade 3=10%

1032 Five Year Outcomes of Patients with Large B-Cell Lymphoma Treated with Standard-of-Care Axicabtagene Ciloleucel: Results from the US Lymphoma CAR-T Cell Consortium

Program: Oral and Poster Abstracts

Type: Oral

Session: 705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Cellular Therapy for Multiple Myeloma, B-cell Acute Lymphoblastic Leukemia and B Cell Lymphomas: Clinical Trial and Real World Evidence Hematology Disease Topics & Pathways:

Biological therapies, Chimeric Antigen Receptor (CAR)-T Cell Therapies, Therapies

Monday, December 11, 2023: 5:45 PM

Jay Y. Spiegel, MD, FRCPC¹, Michael D. Jain, MD, PhD², Loretta J. Nastoupil, MD³, John Tamaresis, PhD^{4*}, Armin Ghobadi, MD⁵, Yi Lin, MD, PhD⁶, Lazaros J. Lekakis^{7*}, Patrick M. Reagan, MD⁸, Olalekan O. Oluwole, MBBS⁹, Joseph P McGuirk, DO¹⁰, Abhinav Deol, MD^{11*}, Kathleen Dorritie, MD¹², Alison R Sehgal, MD¹², Andre Goy, MD¹³, Brian T. Hill, MD¹⁴, Charalambos Andreadis, MD¹⁵, Javier L. Munoz¹⁶, Matthew L. Ulrickson, MD¹⁷, Jason Westin, MD¹⁸, Julio C. Chavez, MD¹⁹, Dilan A Patel^{20*}, Miriam T. Jacobs, MD^{21*}, Radhika Bansal, MBBS^{6*}, N. Nora Bennani, MD²², Vivek Patel, MD⁹, Aaron P. Rapoport, MD²³, Julie M. Vose, MD, MBA²⁴, David B. Miklos, MD, PhD²⁵, Sattva S. Neelapu, MD²⁶, Frederick L. Locke, MD², Matthew A. Lunning, DO, FACP^{27*} and Saurabh Dahiya^{25*}

42% would not have met eligibility criteria for ZUMA-1

Real world data

Figure 1: (A) OS and (B) PFS for the infused cohort of 275 patients

- 17 US academic centers
- 297 pts underwent leukapheresis with intent to manufacture axi-cel
- 275 infused, OS and PFS calculated from infusion date
- Median F/U of 58 months, median OS was 34.9 months and median PFS was 8.7 months
- 5-year OS 40.3% (95% CI 34.2 46.4%)
- 5-year PFS and 28.5% (95% CI 23 34.2%)
- MVA for ↓ OS: Male, LDH > ULN, ECOG of 2-4, elevated bilirubin > 1.5 mg/dL
- MVA for ↓ PFS: Male, LDH > ULN, ECOG of 2-4, elevated bilirubin > 1.5 mg/dL, ≥3 prior Rxs

5-year cum relapse risk= 55.2%5-year risk NRM=16.2%

Moving CAR T-cell therapy to 2nd line

<u>3 randomized studies</u>:

ZUMA-7: Axi-cel vs. SOC (Axi-cel better)

TRANSFORM: Liso-cel vs. SOC (Liso-cel better)

ELINDA: Tisagenlecleucel vs. SOC (no difference)

ORIGINAL ARTICLE

Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma

J.R. Westin, O.O. Oluwole, M.J. Kersten, D.B. Miklos, M.-A. Perales, A. Ghobadi, A.P. Rapoport, A. Sureda, C.A. Jacobson, U. Farooq, T. van Meerten,
M. Ulrickson, M. Elsawy, L.A. Leslie, S. Chaganti, M. Dickinson, K. Dorritie,
P.M. Reagan, J. McGuirk, K.W. Song, P.A. Riedell, M.C. Minnema, Y. Yang,
S. Vardhanabhuti, S. Filosto, P. Cheng, S.A. Shahani, M. Schupp, C. To, and F.L. Locke, for the ZUMA-7 Investigators and Kite Members*

ZUMA 7: shows OS

advantage (vs. SOC)

The NEW ENGLAND JOURNAL of MEDICINE

Median Overall Stratified Hazard Stratified Survival (95% CI) Ratio (95% CI) P Value **Overall Survival Estimate** 1-Yr 2-Yr 3-Yr 4-Yr 100months percent 90 Axi-cel NR (28.6–NE) 60 56 55 76 0.73 (0.54-0.98) 0.03 Standard Care 31.1 (17.1–NE) 63 51 48 46 80-**70** (%) **Overall Survival** 60-Axi-cel 50-40 Standard care 30 20 10-10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 8 6 Months No. at Risk Axi-cel 180 177 170 161 157 147 136 125 117 116 114 111 108 105 105 100 100 100 100 100 96 80 67 54 41 29 20 14 0 Standard care 179 176 163 149 134 121 111 106 101 98 91 89 88 87 87 85 83 81 79 78 73 63 51 41 31 19 14 Figure 1. Overall Survival.

Shown are Kaplan–Meier estimates of overall survival among the patients who were randomly assigned to receive axicabtagene ciloleucel (axi-cel) or standard care. At a median follow-up of 47.2 months, death was reported in 82 patients in the axi-cel group and in 95 patients in the standard-care group; the stratified two-sided P value was calculated by means of log-rank testing. Tick marks indicate data censoring. NE denotes not estimable, and NR not reached.

Westin JR, et al. N Engl J Med. 2023; Jun 5. doi: 10.1056/NEJMoa2301665. Online ahead of print

ZUMA-7 subgroup analysis

B Subgroup Analysis

			Hazard Ratio for Eve	nt or Death
Subgroup	Axi-cel	Standard Care	(95% CI)	
· · · · · · · · · · · · · · · · · · ·	io. of patients i	with event/total no.		
Overall	108/180	144/179	H#H	0.40 (0.31-0.51)
Age				
<65 yr	81/129	96/121	H - -1	0.49 (0.36-0.67)
≥65 yr	27/51	48/58	⊢ ●1 ;	0.28 (0.16-0.46)
Response to first-line therapy at randomization				
Primary refractory disease	85/133	106/131	HeH	0.43 (0.32-0.57)
Relapse ≤12 mo after initiation or completion of first-line therapy	23/47	38/48	⊢ ●-1	0.34 (0.20-0.58)
Second-line age-adjusted IPI				
0 or 1	54/98	73/100	H e -1	0.41 (0.28-0.58)
2 or 3	54/82	71/79	⊢ ●-1	0.39 (0.27-0.56)
Prognostic marker according to central laboratory				
HGBL, double- or triple-hit	15/31	21/25	⊢ ,	0.28 (0.14-0.59)
Double-expressor lymphoma	35/57	50/62	H•-1	0.42 (0.27-0.67)
Molecular subgroup according to central laboratory				
Germinal center B-cell–like	64/109	80/99	H e -1	0.41 (0.29-0.57)
Activated B-cell–like	11/16	9/9	• •	0.18 (0.05-0.72)
Unclassified	8/17	12/14		_
Disease type according to investigator				
DLBCL, not otherwise specified	68/110	97/116	H e H	0.37 (0.27-0.52)
Large-cell transformation from follicular lymphoma	10/19	24/27	⊢	0.35 (0.16-0.77)
HGBL, including rearrangement of MYC with BCL2 or BCL6 or bo	th 23/43	18/27	⊢ i	0.47 (0.24-0.90)
Disease type according to central laboratory				
DLBCL	79/126	95/120	H e -1	0.44 (0.32-0.60)
HGBL, including rearrangement of MYC with BCL2 or BCL6 or bo	th 15/31	21/26	⊢_ ●i	0.28 (0.14-0.59)
	-	0.01	0.1 0.2 0.5 1.0 2.0	5.0

Axi-cel Better Standard Care Better

Locke FL, et al. N Engl J Med. 2022;386(7):640-654

1761 Improved Overall Survival with Axicabtagene Ciloleucel Vs Standard of Care in Second-Line Large B-Cell Lymphoma Among the Elderly: A Subgroup Analysis of ZUMA-7 %

Program: Oral and Poster Abstracts

Session: 627. Aggressive Lymphomas: Clinical and Epidemiological: Poster I Hematology Disease Topics & Pathways:

Research, Biological therapies, clinical trials, non-Hodgkin lymphoma, Lymphomas, elderly, Clinical Research, B Cell lymphoma, Chimeric Antigen Receptor (CAR)-T Cell Therapies, Diseases, aggressive lymphoma, Therapies, Lymphoid Malignancies, Study Population, Human

Saturday, December 9, 2023, 5:30 PM-7:30 PM

Marie José Kersten, MD, PhD¹, Umar Farooq², Aaron P. Rapoport, MD³, Frederick L. Locke, MD⁴, Lori A. Leslie, MD⁵, Armin Ghobadi, MD⁶, David B. Miklos, MD, PhD⁷, Caron A Jacobson, MD, MMSc⁸, Javier L. Munoz⁹, Patrick B Johnston, MD, PhD^{10*}, Samantha M. Jaglowski, MD, MPH¹¹, Ian W. Flinn, MD, PhD¹², Tom van Meerten, MD, PhD^{13*}, Miguel-Angel Perales, MD¹⁴, Peter Vandenberghe, MD, PhD¹⁵, Peter A. Riedell, MD¹⁶, Kathleen Dorritie, MD¹⁷, David Szwajcer, MD^{18*}, Dimitrios Tzachanis, MD, PhD¹⁹, Saran Vardhanabhutt^{20*}, Linqiu Du^{20*}, Simone Filosto^{20*}, Shilpa A. Shahani, MD^{20*}, Christina To, MD²¹ and Jason Westin, MD²²

- 109 pts were included in analysis
- Axi-cel= 51; pts ≥65 yrs (≥70 y=26, max age=80 yrs)
- SOC= 58; pts ≥65 yrs (≥70 y=27, max age=81 yrs)

Figure 1: Overall Survival of Axi-cel vs Standard of Care Patients Aged ≥65 Years

Axi-cel 51 51 50 49 47 44 41 35 34 34 33 32 31 31 26 26 26 26 26 26 26 26 28 19 16 13 7 5 3 0 SOC 58 56 52 48 45 42 36 35 32 31 27 27 27 27 27 27 27 27 27 27 27 26 25 20 16 13 8 1 0

Figure 2: Overall Survival of Axi-cel vs Standard of Care Patients Aged ≥70 Years

 Kersten MJ, et al. Am Soc Hematol 2023 (Abs 1761)

Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial

Manali Kamdar, Scott R Solomon, Jon Arnason, Patrick B Johnston, Bertram Glass, Veronika Bachanova, Sami Ibrahimi, Stephan Mielke, Pim Mutsaers, Francisco Hernandez-Ilizaliturri, Koji Izutsu, Franck Morschhauser, Matthew Lunning, David G Maloney, Alessandro Crotta, Sandrine Montheard, Alessandro Previtali, Lara Stepan, Ken Ogasawara, Timothy Mack*, Jeremy S Abramson, for the TRANSFORM Investigators†

Liso-cel group 92 (0) 89 (2) 86 (2) 66 (13) 62 (15) 43 (25) 36 (29) 27 (35) 26 (36) 21 (40) 19 (41) 17 (42) 9 (49) 7 (51) 6 (51) 6 (51) 4 (53) 0 (57) - (57) SOC group 92 (0) 83 (1) 66 (1) 35 (8) 32 (8) 23 (14) 21 (14) 16 (17) 16 (17) 12 (19) 11 (19) 10 (20) 6 (24) 4 (26) 4 (26) 4 (26) 4 (26) 2 (27) 2 (27) 0 (29)

Kamdar M, et al. Lancet 2022; 399: 2294–308

CAR T-cell therapy vs. Bispecifics (DLBCL)

	CAR T-cell	Bispecifics	Winner
Indications	2 nd line, 3⁺ line	3⁺ line	CAR T
Pre-treatment requirements	Complex (leukapheresis, LD)	Simpler (off-the-shelf)	Bispecifics
Rx. frequency	Single infusion	Multiple (months)	CAR T
Administration	Specialized centers	Community setting possible	Bispecifics
CNS efficacy	Present, but limited	?	CAR T
IP vs. OP	Mostly IP (but doable OP)	OP	Bispecifics
Toxicities	+++	+	Bispecifics
Cost	+++	++ (for up to 9 months)	Bispecifics
Follow-up	Longer (5 ⁺ yrs)	Short	CAR T

ZUMA-2: Baseline characteristics

Brexucabtagene autoleucel

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma

M. Wang, J. Munoz, A. Goy, F.L. Locke, C.A. Jacobson, B.T. Hill, J.M. Timmerman, H. Holmes, S. Jaglowski, I.W. Flinn, P.A. McSweeney, D.B. Miklos, J.M. Pagel, M.-J. Kersten, N. Milpied, H. Fung, M.S. Topp, R. Houot, A. Beitinjaneh, W. Peng, L. Zheng, J.M. Rossi, R.K. Jain, A.V. Rao, and P.M. Reagan

Table 1. Baseline Characteristics of All 68 Treated Patients.*				
Characteristic	Patients			
Median age (range) — yr	65 (38–79)			
Intermediate or high risk according to Simplified MIPI — no. (%)†‡	38 (56)			
Blastoid or pleomorphic morphologic characteristics of MCL — no. (%)	21 (31)			
Ki-67 proliferation index ≥30% — no./total no. (%)‡	40/49 (82)			
TP53 mutation — no. (%)	6/36 (17)			
Positive CD19 status — no./total no. (%)	47/51 (92)			
Median no. of previous therapies (range) \S	3 (1-5)			
≥3 Previous lines of therapy — no. (%)	55 (81)			
Previous autologous stem-cell transplantation — no. (%)	29 (43)			
Previous BTK inhibitor therapy — no. (%)∬	68 (100)			
Ibrutinib	58 (85)			
Acalabrutinib	16 (24)			
Both	6 (9)			
Relapsed or refractory disease — no. (%)				
Relapse after autologous stem-cell transplantation	29 (43)			
Refractory to most recent previous therapy	27 (40)			
Relapse after most recent previous therapy	12 (18)			
Disease that relapsed or was refractory to BTK inhibitor therapy — no. (%)	68 (100)			
Refractory to BTK inhibitor therapy	42 (62)			
Relapse during BTK inhibitor therapy	18 (26)			
Relapse after BTK inhibitor therapy	5 (7)			
Could not take BTK inhibitor therapy because of adverse events¶	3 (4)			

Wang M, et al. ASH 2019. Abs 754 Wang M, et al. NEJM. 2020. 382:1331

ZUMA-2: ORR

ASH 2019. Abs 754

ORR by IRRC Assessment Was 93% (95% CI, 84 – 98) and CR Rate Was 67% (95% CI, 53 – 78)

Investigator-assessed ORR in N = 60 was 88% (CR rate 70%), with 95% and 90% concordance between IRRC- and investigator-assessed ORR and CR rate, respectively. IRRC-assessed ORR in ITT (N = 74) was 85% (CR Rate 59%). CR, complete response; IRRC, Independent Radiology Review Committee; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Wang M, et al. ASH 2019. Abs 754 Wang M, et al. NEJM. 2020. 382:1331

Mantle cell lymphoma: ZUMA-2 study 3-year update (OS)

Wang M, et al. J Clin Oncol. 2023;41(3):555-567

Lisocabtagene Maraleucel in Relapsed/Refractory Mantle Cell Lymphoma: Primary Analysis of the Mantle Cell Lymphoma Cohort From TRANSCEND NHL 001, a Phase I Multicenter Seamless Design Study

Michael Wang, MD¹ [©]; Tanya Siddiqi, MD, MBBS^o [©]; Leo I. Gordon, MD³ [©]; Manali Kamdar, MD, MBBS⁺, Mathew Lunning, DO⁺; Alexandre V. Hirayama, MD⁶ [©]; Jeremy S. Abramson, MD, MMSc² [©]; Jon Amason, MD¹⁺; Nilanjan Ghosh, MD, PhD²; Amitkumar Mehta, MD¹⁰⁺; Charalambos Andreadis, MD, MS¹¹; Scott R. Solomon, MD¹² [©]; Ana Kostic, MD¹³; Christine Dehner, BSc¹³; Ricardo Espinola, MD¹⁺; Lily Peng, MS¹³; Ken Ogasawara, PhD, MPH¹¹ [©]; Amy Chattin, PhD¹⁰ [©]; Laurie Eliason, MPH¹²; and M. Lia Palomba, MD¹⁶ [©];

Liso-cel treated set (N=88)				
Median (range) age, years	68.5 (36-86)			
White race, n (%)	77 (87.5%)			
<i>TP53</i> mutation, n (%)	20 (23%)			
Blastoid morphology, n (%)	27 (31%)			
Complex karyotype, n (%)	26 (30%)			
Median (range) prior Rx	3 (1-11)			
Previous BTKi, n (%)	83 (94%)			
Previous venetoclax, n (%)	23 (26%)			
Previous HCT, n (%)	Auto=26 (30%) Allo=6 (7%)			
Disease status	Relapsed=27 (31%) Refractory=61 (69%)			

Median F/U= 16.1 (0.4-60.5) months

ORR= 83.1% CR= **72.3%**

Median DOR= 15.7 months

CRS (any grade)= 61%; Grade 3-4=1%

Neuro events (any grade)= 31% Grade 3-4= 9%

Follicular lymphoma: ZUMA-5

4868 Axicabtagene Ciloleucel (Axi-Cel) in Patients with Relapsed/Refractory Indolent Non-Hodgkin Lymphoma: 4-Year Follow-up from the Phase 2 ZUMA-5 Trial

Program: Oral and Poster Abstracts

Session: 705. Cellular Immunotherapies: Late Phase and Commercially Available Therapies: Poster III Hematology Disease Topics & Pathways:

Research, clinical trials, Biological therapies, adult, Lymphomas, non-Hodgkin lymphoma, Clinical Research, Chimeric Antigen Receptor (CAR)-T Cell Therapies, Diseases, indolent lymphoma, Therapies, Lymphoid Malignancies, Study Population, Human

Monday, December 11, 2023, 6:00 PM-8:00 PM

Sattva S. Neelapu, MD[,], Julio C. Chavez, MD[,], Alison R Sehgal, MD[,], Narendranath Epperla, MD, MS[,], Matthew L. Ulrickson, MD[,], Emmanuel Bachy, MD, PhD^{,,}, Pashna N. Munshi, MD[,], Carla Casulo, MD[,], David G Maloney, MD, PhD[,], Sven de Vos, MD, PhD^{,,,} Ran Reshef, MD, MSc^{,,}, Lori A. Leslie, MD^{,,}, Olalekan O. Oluwole, MBBS^{,,}, Ibrahim Yakoub-Agha, MD, PhD^{,,,} Rashmi Khanal, MD, MBBS^{,,}, Joseph D. Rosenblatt, MD^{,,,} Weixin Peng, MS^{,,,} Christine Lui, MS^{,,,}, Jacob Wulff, DrPH^{,,,} Rhine R. Shen, PhD^{,,,} Soumya Poddar, PhD^{,,,} Andrew Lee, MD^{,,,} Harry Miao, MD, PhD^{,,,} Olga Nikolajeva, MD^{,,,,} and Caron A Jacobson, MD, MMSc^{,,,}

- Updated outcomes from ZUMA-5 after ≥4 years median follow-up
- 159 pts enrolled (127 FL; 31 MZL) and 152 treated with axi-cel (124 FL; 28 MZL)
- Median F/U 52.5 months (range, 20.3-69.4; FL: 53.7, MZL: 43.8)
- Median progression-free survival= 57.3 months (95%CI=34.9-NE)
 - 4-year PFS=52%
- Median overall survival (OS)= Not reached
 - 4-year OS=72%

medicine

ARTICLES https://doi.org/10.1038/s41591-021-01622-0

Check for updates

Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 <u>ELARA trial</u>

Nathan Hale Fowler [©]^{1,2}[™], Michael Dickinson³, Martin Dreyling⁴, Joaquin Martinez-Lopez⁵, Arne Kolstad⁶, Jason Butler⁷, Monalisa Ghosh⁸, Leslie Popplewell⁹, Julio C. Chavez¹⁰, Emmanuel Bachy¹¹, Koji Kato¹², Hideo Harigae [©]¹³, Marie José Kersten¹⁴, Charalambos Andreadis¹⁵, Peter A. Riedell¹⁶, P. Joy Ho¹⁷, José Antonio Pérez-Simón¹⁸, Andy I. Chen¹⁹, Loretta J. Nastoupil [©]¹, Bastian von Tresckow [©]^{20,21}, Andrés José María Ferreri²², Takanori Teshima [©]²³, Piers E. M. Patten^{24,25}, Joseph P. McGuirk²⁶, Andreas L. Petzer²⁷, Fritz Offner²⁸, Andreas Viardot²⁹, Pier Luigi Zinzani^{30,31}, Ram Malladi³², Aiesha Zia³³, Rakesh Awasthi³⁴, Aisha Masood³⁵, Oezlem Anak³³, Stephen J. Schuster^{36,38} and Catherine Thieblemont [©]^{37,38}

Table 2 | Best overall response in the EAS and per-protocol population^a

Parameter	Per-protocol set, $n = 85$		EAS,	n = 94
	Local assessment	IRC assessment	Local assessment	IRC assessment
Best overall i	response, n (%)			
CR	64 (75.3); 95% Cl, 64.7-84.0	62 (72.9); 95% Cl, 62.2-82.0	68 (72.3); 95% Cl, 62.2-81.1	65 (69.1); 95% Cl, 58.5-78.3
PR	14 (16.5)	12 (14.1)	17 (18.1)	16 (17.0)
SD	2 (2.4)	3 (3.5)	3 (3.2)	3 (3.2)
PD	5 (5.9)	8 (9.4)	6 (6.4)	9 (9.6)
UNK				1 (1.1)
Overall response rate (CR+PR), n (%)	78 (91.8); 95% CI, 83.8-96.6	74 (87.1); 95% CI, 78.0-93.4	85 (90.4); 95% Cl, 82.6-95.5	81 (86.2); 95% CI, 77.5-92.4

*The per-protocol set is a subset of patients in the primary analysis efficacy set with no major protocol deviations. UNK, unknown.

	Infused patients
Events, n (%)	N=97
CRS	47 (48.5)
Grade 1 or 2	47 (48.5)
Grade ≥3	0
In patients with CRS (n=47)	
Tocilizumab use during CRS	16 (34.0)
1 dose	8 (17.0)
2 doses	5 (10.6)
3 doses	3 (6.4)
Corticosteroids	3 (6.4)
Median time to onset, days (IQR)	4.0 (2-7)
Admitted to ICU, n (%)	4 (8.5)
Median total duration of ICU stay during CRS, days (range)	4.0 (2.5–5)
Patients with resolved events, n (%)	47 (100)

Extended Data Fig. 1| Cytokine release syndrome within 8 weeks of tisagenlecleucel infusion. CRS=cytokine release syndrome; ICU=intensive care unit IQR=interquartile range. Column titles are bolded for clarity.

	Treated patients N=97		
Events, n (%)	All Grades	Grade ≥3	
Number of patients with at least one event	36 (37.1)	3 (3.1)	
Headache	23 (23.7)	1 (1.0)	
Dizziness	6 (6.2)	0	
Encephalopathy	2 (2.1)	0	
Immune effector cell-associated neurotoxicity syndrome	4 (4.1)	1 (1.0)	
Paraesthesia	2 (2.1)	0	
Tremor	2 (2.1)	0	
Dyskinesia	1 (1.0)	0	
Dysgeusia	1 (1.0)	0	
Migraine	1 (1.0)	0	
Peripheral sensory neuropathy	1 (1.0)	0	
Syncope	1 (1.0)	1 (1.0)	

Extended Data Fig. 31 Neurological events within 8 weeks of tissignelcleucel infusion. <a href="https://discuprel.gov/discuprel.

Fowler NH. Nat Med. 2021, Dec 17. doi: 10.1038/s41591-021-01622-0. Online ahead of print

601 Clinical Outcomes of Patients with Relapsed/Refractory Follicular Lymphoma Treated with Tisagenlecleucel: Phase 2 Elara 3-Year Follow-up %

Program: Oral and Poster Abstracts

Type: Oral

Session: 623. Mantle Cell, Follicular, and Other Indolent B Cell Lymphomas: Clinical and Epidemiological: Immunotherapy Hematology Disease Topics & Pathways:

Research, clinical trials, Biological therapies, adult, Lymphomas, Clinical Research, Chimeric Antigen Receptor (CAR)-T Cell Therapies, Diseases, indolent lymphoma, Therapies, Lymphoid Malignancies, Study Population, Human

Sunday, December 10, 2023: 4:30 PM

Stephen J Schuster, MD¹, Nathan Fowler, MD^{2,3}, Michael Dickinson, MBBS, D. Med Sci, FRACP, FRCPA⁴, Joaquin Martinez-Lopez, MD, PhD^{5*}, Arne Kolstad, MD, PhD^{6*}, Jason Butler, MBBS^{7*}, Monalisa Ghosh, MD⁸, Leslie L. Popplewell, MD, FACP, MPH⁹, Julio C Chavez, MD¹⁰, Emmanuel Bachy, MD, PhD^{11*}, Koji Kato, M.D., Ph.D.^{12*}, Hideo Harigae¹³, Marie José Kersten, MD, PhD¹⁴, Charalambos Andreadis^{15*}, Peter A Riedell^{16*}, Phoebe Joy Ho, MBBS, FRACP, FRCPA¹⁷, Jose A. Perez-Simon, MD, PhD^{18*}, Andy Chen, MD, PhD¹⁹, Loretta J. Nastoupil, MD², Bastian von Tresckow, MD^{20,21}, Andrés José María Ferreri, MD²², Takanori Teshima^{23*}, Piers Patten, FRCP, FRCPath, PhD²⁴, Joseph P McGuirk, DO²⁵, Andreas L Petzer, MD^{26*}, Fritz Offner, MD²⁷, Andreas Viardot, MD PhD²⁸, Pier Luigi Zinzani, MD, PhD^{59,30}, Ram Malladi, PhD^{31*}, Aisha Zia^{32*}, Rakesh Awasthi, PhD^{33*}, Ines Paule^{32*}, Davide Germano^{32*}, Roberto Javier Ramos, MD^{34*}, Pei Hsu^{35*}, Catherine Thieblemont, MD^{36*} and Martin Dreyling, MD³⁷

	POD24	No POD24
36 mos-PFS	50%	59%
In vivo CAR T Expansion		Higher
CAR T persistence		Longer
36 mos-OS	83%	81%

High baseline levels of circulating CD8+ naive T cells (>2.14% of total T cells) resulted in prolonged PFS and DOR

Figure. (A) Progression-free survival by POD24, (B) Overall survival by POD24.

NE, not evaluable; POD24, progression of disease within 2 years of frontline systemic therapy.

SUPPLEMENT ABSTRACTS 🔂 Free Access

TRANSCEND FL: PHASE 2 STUDY RESULTS OF LISOCABTAGENE MARALEUCEL (LISO-CEL) IN PATIENTS (PTS) WITH RELAPSED/REFRACTORY (R/R) FOLLICULAR LYMPHOMA (FL)

F. Morschhauser, S. Dahiya, M. L. Palomba, A. M. Garcia-Sancho, J. L. Reguera Ortega, J. Kuruvilla, U. Jager, G. Cartron, K. Izutsu, M. Dreyling, B. Kahl, H. Ghesquieres, K. Ardeshna, H. Goto, A. M. Barbui, J. S. Abramson, P. Borchmann, I. Fleury, S. Mielke, T. Farazi, O. Fasan, J. Lymp, M. Vedal, R. Nishii, A. Avilion, J. Papuga, L. J. Nastoupil ... See fewer authors

First published: 09 June 2023 | https://doi.org/10.1002/hon.3196_LBA4 | Citations: 1

Volume 41, Issue S2 Supplement: 17th International Conference on Malignant Lymphoma, Palazzo dei Congressi, Lugano, Switzerland, 13 - 17 June, 2023 June 2023 Pages 877-880

FDA grants accelerated approval to lisocabtagene maraleucel for follicular lymphoma

f Share X Post in Linkedin ≤ Email ⊖ Print

On May 15, 2024, the Food and Drug Administration granted accelerated approval to lisocabtagene maraleucel (for adults with relapsed or refractory follicular lymphoma (FL) who have received two or more prior lines of systemic therapy.

- R/R FL: 3L⁺ and 2L pts with progression within 24 monts (POD24) of Dx and/or modified Groupe d'Etude des Lymphomes Folliculaires (GELF) criteria
- Liso-cel (100 x10⁶ CAR+ T cells) after LD chemotherapy
- 1ry endpoint ORR per IRC by PET/CT
- N of patients who underwent leukapheresis=139
 - N infused= 130
 - N evaluable for efficacy=124
 - Median age= 62 (23-80) years
 - High-risk FLIPI=57%
 - Median (range) prior lines of therapy= 3 (2–10)

- Median F/U=18.9 (0.3-28.2) mos
- Evaluable 3L⁺ pts=101
- ORR= 97%
- CR=94.1%

Long-term toxicities

Cytopenia (CAR-to-penia)

Research Letter

February 22, 2024

Features and Factors Associated With Myeloid Neoplasms After Chimeric Antigen Receptor T-Cell Therapy

Mark Gurney, MB, BCh, BAO¹; Anmol Baranwal, MD^{1,2}; Allison Rosenthal, DO³; Mohamed A. Kharfan-Dabaja, MD, MBA⁴; Saad S. Kenderian, MB, ChB¹; Yi Lin, MD, PhD¹; Mithun Vinod Shah, MD, PhD¹

» Author Affiliations | Article Information JAMA Oncol. 2024;10(4):532-535. doi:10.1001/jamaoncol.2023.7182

Incidence of myeloid neoplasm is comparable between LPD and MM

- At 1-year=4%
- At 2-year=6%
- At 3-year=9%

12

18

Time, mo

24

30

36

A Cumulative incidence of post-CART MN from time of infusion stratified by primary diagnosis

0

6

CAR T-cell therapy failure

Dismal prognosis in general

Median overall survival after failing axicabtagene ciloleucel approx. 6 months

TO THE EDITOR:

Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel therapy

Jay Y. Spiegel,^{1,*} Saurabh Dahiya,^{2,*} Michael D. Jain,³ John Tamaresis,¹ Loretta J. Nastoupil,⁴ Miriam T. Jacobs,⁵ Armin Ghobadi,⁵ Yi Lin,⁶ Matthew Lunning,⁷ Lazaros Lekakis,⁸ Patrick Reagan,⁹ Olalekan Oluwole,¹⁰ Joseph McGuirk,¹¹ Abhinav Deol,¹² Andre Goy,¹³ Khoan Vu,¹⁴ Charalambos Andreadis,¹⁴ Javier Munoz,¹⁵ N. Nora Bennani,⁶ Julie M. Vose,⁷ Kathleen A. Dorritie,¹⁶ Sattva S. Neelapu,⁴ Frederick L. Locke,³ Aaron P. Rapoport,^{2,†} Brian T. Hill,^{12,†} and David B. Miklos^{1,†}

Spiegel JY, et al. Blood. 2021; 137 (13): 1832-35

ARTICLE - Cell Therapy & Immunotherapy

Allogeneic transplant following CAR T-cell therapy for large B-cell lymphoma

Joanna Zurko,¹ Jeremy Ramdial,² Mazyar Shadman,³ Sairah Ahmed,² Aniko Szabo,¹ Lorenzo lovino,³ Ana Alarcon Tomas,⁴ Craig Sauter,⁴ Miguel-Angel Perales,⁴ Nirav. N. Shah,¹ Utkarsh H. Acharya,⁵ Caron Jacobson,⁵ Robert J. Soiffer,⁵ Trent Wang,⁶ Krishna V. Komanduri,⁶ Samantha Jaglowski,⁷ Adam S. Kittai,⁷ Nathan Denlinger,⁷ Madiha Iqbal,⁸ Mohamed A. Kharfan-Dabaja,⁸ Ernesto Ayala,⁸ Julio Chavez,⁹ Michael Jain,⁹ Frederick L. Locke,⁹ Yazeed Samara,¹⁰ Lihua E. Budde,¹⁰ Matthew G. Mei,¹⁰ Alexandra Della Pia,¹¹¹² Tatyana Feldman,¹¹ Nausheen Ahmed,¹³ Ryan Jacobs,¹⁴ Nilanjan Ghosh,¹⁴ Bhagirathbhai Dholaria,¹⁵ Olalekan O. Oluwole,¹⁵ Brian Hess,¹⁶ Ayesha Hassan,¹ Vaishalee P. Kenkre,¹ Patrick Reagan,¹⁷ Farrukh Awan,¹⁸ Yago Nieto,² Mehdi Hamadani¹⁹ and Alex F. Herrera¹⁰

	Overall survival		
	HR	95% CI	P
Race/ethnicity White Hispanic Other	- 3.58 0.78	- 1.51–8.52 0.22–2.80	0.01
Lines of therapy between CAR T and alloHCT 0 1 ≥2	- 1.12 3.63	0.39–3.23 1.00–13.1	0.02
Disease status prior to alloHCT CR PR SD/PD	4.32 1.85	1.61–11.6 0.73–4.70	0.01
Pr	ogression-free survival		
	HR	95% CI	P
Lines of therapy between CAR T and alloHCT 0 1 ≥2	- 1.34 3.12	0.53-3.42 1.14-8.53	0.02
Disease status prior to alloHCT CR PR SD/PD	2.61 2.05	1.27-5.37 0.99-4.26	0.03
٩	Ion-relapse mortality		
	HR	95% CI	P
Race/ethnicity White Hispanic Other	2.51 0.32	1.04-6.08 0.04-2.76	0.04
Lines of therapy between CAR T and alloHCT 0 1 ≥2	4.78 17.0	0.5 9- 38.3 2.23-129	<0.001
Disease status prior to alloHCT CR PR SD/PD	4.02	1.63–9.89 0.22–3.45	0.008
Conditioning regimen MAC			0.004

Variables only included in the table above if P value was significant at the <0.05 level on the multivariate analysis. No variables were significant for progression-relanse or graft-versus-hord disease-free relapse free escuvial (BFR). AlloHCT: allogenic hematopoietic cell transplantation; CR: complete response; MAC: myeloablative conditioning; MBD: matched related donor; MTx: methotreate; MUD: matched unrelated donor; MM/RIC: non-myeloablative/reduced intensity conditioning; PD: progressive disease; PR: partial response; SD: stable disease.

CHARACTERISTIC	N (%)
Median follow-up, months (range)	15 (1-72)
Age in years (range)	54 (19-72)
Male sex	63 (72)
Race White Hispanic Black Asian American Indian or Alaska Native	58 (66) 18 (20) 6 (6.8) 5 (5.7) 1 (1.1)
Histologic type De novo DLBCL Transformed indolent lymphoma' PMBL High grade B-cell lymphoma, NOS	52 (59) 23 (26) 8 (9.1) 5 (5.7)
Cell of origin ² Non-GCB	32 (42)
Double/triple hit ³	9 (12)
N lines of therapy prior to CAR T (range)	3 (1-7)
Best response to CAR T CR PR SD/PD	31 (35) 32 (36) 25 (29)
Time to relapse post-CAR T, days N (range) ⁴	92 (7-527)
N lines of therapy between CAR T and alloHCT (range)	1 (0-7)
Disease status prior to alloHCT CR PR SD/PD	45 (51) 22 (25) 21 (24)
Ann Arbor stage at time of CAR T progression/relapse ⁵ 1 2 3/4	26 (31) 9 (11) 48 (58)
Extranodal disease at time of CAR-T progression/relapse	49 (58)
Days N between CAR T infusion and day 0 of alloHCT (range)	255 (63-753)
Conditioning regimen intensity MAC	20 (23)
Graft source Peripheral blood Bone marrow Cord	76 (86) 10 (11) 2 (2)
Donor type MUD Haploidentical MRD MMUD Cord	34 (39) 26 (30) 23 (26) 3 (3) 2 (2)
GvHD prophylaxis CNI-MTX TACMMF/PTCY Other	22 (25) 43 (49) 23 (26)

What about bispecifics (CD3*CD20) in the setting of post CAR T-cell failure

	Epcoritamab ¹	Glofitamab ²
n CAR T failed/N total	61/157 (38.9%)	51/155 (31%)
ORR	54.1%	Not reported
CR	34.4%	35%
Median DOR	9.7 months	Not reported

1. Thieblemont C, et al. J Clin Oncol. 2023;41:2238–47

2. Dickinson MJ, et al. N Engl J Med. 2022; 387: 2220-31

Perspective

Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy Nicole Verdun, M.D., and Peter Marks, M.D., Ph.D.

As of 12-31-2023, the FDA had become aware of 22 cases of T-cell cancers that occurred after CAR-T product treatment. Such cancers include: **T-cell lymphoma**, **T-cell LGL**, **PTCL**, **and CTCL**

Among 14 cases with data, cancers manifested within 2 years after CAR T cells (range, 1 to 19 months), with roughly half occurring within the 1st year

Some are still under investigation. In 3 cases for which genetic sequencing was performed, the CAR transgene was detected in the malignant clone

With > 27,000 doses of the 6 approved products having been administered in the USA, the overall rate of T-cell cancers is <u>low</u> (22/27,000= 0.081%)

Verdun N, et al. N Engl J Med. 2024; Jan 24 (online ahead of print)

nature				View all journals	Q Search	Log in
Explore content ~	About the journal 🗸	Publish with us 🗸	Subscribe	Sign up for alerts 乌		RSS feed

nature > news feature > article

NEWS FEATURE | 30 April 2024

Do cutting-edge CAR-T-cell therapies cause cancer? What the data say

Regulators have identified around 30 cases of cancer linked to this blockbuster treatment. But is CAR T to blame? The hunt is on for answers.

- The FDA has since documented more cases
- As of March 25th, 2024, the agency had received 33 reports of such lymphomas among some 30,000 people who had been treated (33/30,000= 0.11%)
- It now requires all CAR-T therapies to carry a boxed warning on the drug's packaging, which mentions that such cancers have occurred
- The European Medicines Agency has launched its own investigation

Take home messages

Realities

- CAR-T revolutionized Rx of DLBCL, MCL, and FL. Here to stay!
- In relapsed/refractory DLBCL
 - CR at 12 and 24 months→ suggest durable response (?cure)
- In 1ry refractory DLBCL or early relapse (<12 months)
 - Axi-cel better than SOC (↑EFS, ↑OS)
- Brexu-cel and liso-cel approved in R/R mantle cell lymphoma
- Axi-cel, tisagenlecleucel and liso-cel in R/R follicular lymphoma
- Efficacy reproducible in the "real world" setting

Challenges

- Long-term toxicities are challenging
 - CAR-to-penia
 - Hypogammaglobulinemia
 - Therapy-related myeloid neoplasms (9% at 3 year)
 - CHIPs prior to CAR T-cell vs. after CAR Tcell?
- T-cell lymphoma(s) derived from CAR T product (CAR transgene)
 - Real phenomenon
 - Incidence very low= 0.081-0.11%

