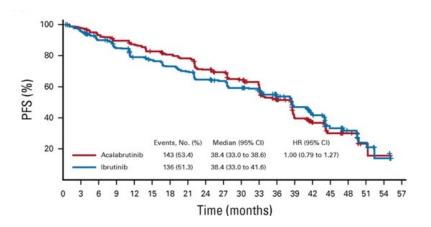
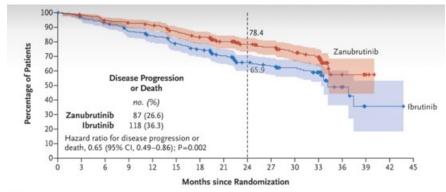
Update in CLL/Lymphoma 2024

Robert Emmons, MD FACP
Professor
UofL BCT Program


CLL


- Watch and Wait still best strategy until findings, counts or symptoms dictate therapy
- Vitamin D levels supplement immunity and may delay progression of CLL to treatment (Blood Adv 2024)
- Vaccinate patients

Approved BTK inhibitors CLL

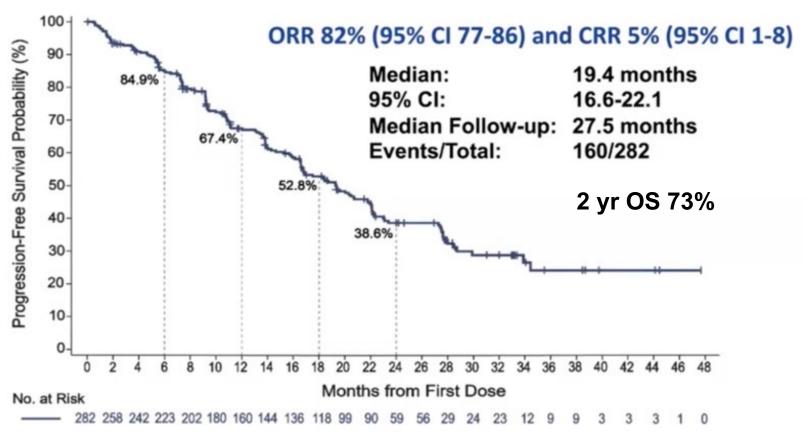
Name	Other Disease Indication	Binding	Selectivity	Administration
Ibrutinib	WM	1 st generation, irreversible covalent Cys481	Moderate	420/560/840 mg, QD
Acalabrutinib	MCL	2 nd generation, irreversible covalent Cys481	High	100 mg BID
Zanubrutinib	MCL, MZL, WM, FL	2 nd generation, irreversible covalent Cys481	High	160 mg BID or 320 QD
Pirtobrutinib: Received at least 2 lines including BTK and Bcl-2 inhibitor	MCL	3 rd generation, reversible non- covalent to both WT BTK and Cys481	High	200 mg QD

Second generation superior

ELEVATE-RR Trial
(Acalabrutinib vs Ibrutinib)
JCO 39:3441, 2021
Non-inferior to ibrutinib for PFS
Less AF, HTN
Higher proportion of TP53
deletion and heavily treated than
ALPINE

ALPINE Trial
(Zanubrutinib vs Ibrutinib, phase
3, not blinded)
NEJM 388:319, 2023
Non-inferior to ibrutinib for PFS
and ORR (PFS persists at 39
months ASH Ab 202)
Less AF, cardiac events

Pirtobrutinib: BRUIN large phase I


Sick patients, median 4 prior, all received BTK prior Many received chemotherapy (no longer relevant) About 46% with resistance mutation

Characteristics	Prior cBTKi (n=282)	BCL2i-N (n=154)	BCL2i-E (n=128)
Median age, years (range)	69 (36-88)	69 (36-87)	68 (41-88)
Male, n (%)	192 (68)	106 (69)	86 (67)
Rai staging, n (%)			
0-11	147 (52)	94 (61)	53 (41)
III-IV	120 (43)	58 (38)	62 (48)
Missing	15 (5)	2(1)	13 (10)
Bulky Lymphadenopathy ≥5 cm, n (%)	88 (31)	42 (27)	46 (36)
ECOG PS, n (%)			
0	144 (51)	89 (58)	55 (43)
1	118 (42)	56 (36)	62 (48)
2	20 (7)	9 (6)	11 (9)
Median number of prior lines of systemic therapy, (range)	4 (1-11)	3 (1-9)	5 (1-11)
Prior therapy, n (%)			
BTK inhibitor	282 (100)	154 (100)	128 (100)
Anti-CD20 antibody	251 (89)	127 (83)	124 (97)
Chemotherapy	228 (81)	114 (74)	114 (89)
BCL2 inhibitor	128 (45)	0 (0)	128 (100)
PI3K inhibitor	71 (25)	17 (11)	54 (42)
CAR-T	17 (6)	2(1)	15 (12)
Allogeneic stem cell transplant	7 (3)	1 (1)	6 (5)

Characteristics	Prior cBTKi	BCL2i-N	BCL2i-E
	(n=282)	(n=154)	(n=128)
Median time from diagnosis to first dose, years (IQR)	11 (8-15)	11 (7-15)	12 (8-15)
Reason for any prior BTKi discontinuation ^a ,	n (%)		
Progressive disease	217 (77)	110 (71)	107 (84)
Toxicity/Other	64 (23)	43 (28)	21 (16)

Baseline Molecular Characteristics ^b	Prior cBTKi (n=282)	BCL2i-N (n=154)	BCL2i-E (n=128)
Mutation status, n/n available (%)	(11-202)	(11-154)	(11-120)
BCL2 mutated	19/246 (8)	0/133 (0)	19/113 (17)
BTK C481-mutant	96/245 (39)	57/138 (41)	39/107 (36)
PLCG2-mutant	18/245 (7)	10/138 (7)	8/107 (8)
High Risk Molecular Features, n/n available (%)		
17p deletion and/or TP53 mutation	104/217 (48)	57/123 (46)	47/94 (50)
IGHV unmutated	193/225 (86)	100/125 (80)	93/100 (93)
Complex Karyotype	33/73 (45)	17/41 (42)	16/32 (50)
11q deletion	47/202 (23)	28/115 (24)	19/87 (22)

30 month follow up BRUIN

ASH 2023 Ab 326 updated from NEJM 389:33, 2023

Pirtobrutinib may be considered in patients who fail covalent BTK inhibitor (or intolerant to both) or Bcl-2 inhibitor

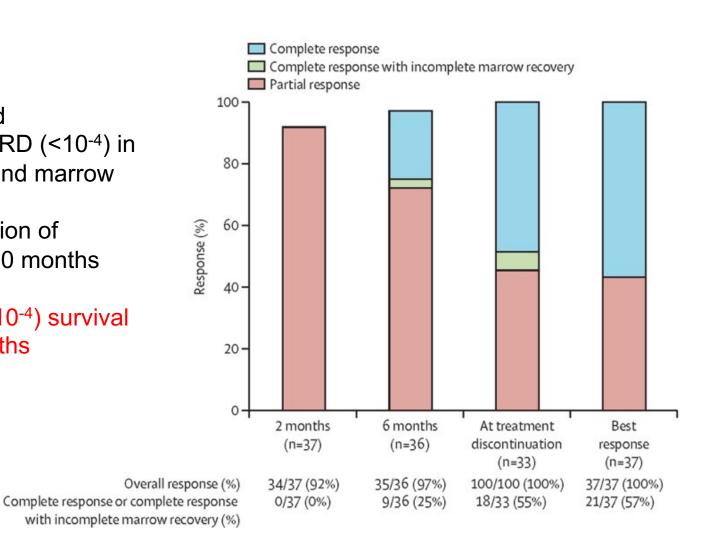
CLL Strategy

Time limited up front, infusion	Go to failure up front, all oral
Venetoclax/Obinutuzumab (Can retreat especially if over a year)	2 nd Generation BTK inhibitor (Can switch between for side effects)
2 nd Generation BTK inhibitor (Can switch between for side effects)	Venetoclax/Obinutuzumab (Can retreat especially if over a year)

Pirtobrutinib (after failure of BTK and Venetoclax)

CarT (Lisocabtagene Maraleucel approved 3/2024 based on TRANSCEND CLL 004 study for same indication as Pirtobrutinib but CR rate 20% with duration at least 1 year) vs Pl3Kdelta inhibitor vs clinical trial (at any time)

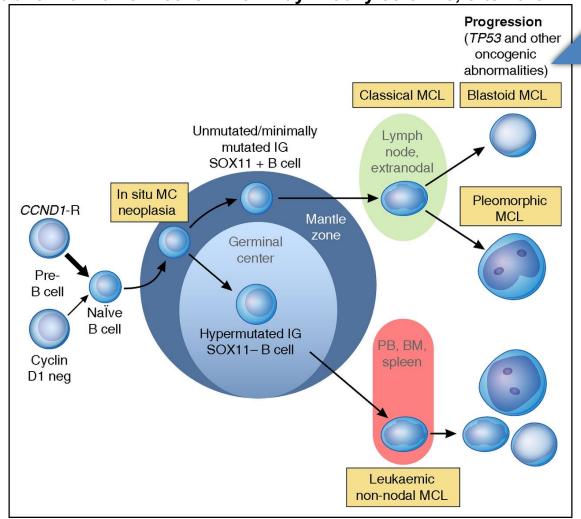
BOVen Trial


	Patients (n=39)
Age, years	62 (52–70)
Sex	
Female	9 (23%)
Male	30 (77%)
Race and ethnicity	
White and non-Hispanic	35 (90%)
Unknown	4 (10%)
Median lymphocyte count (per μL)	43 400 (20 450–103 300)
Immunoglobulin heavy-chain variable region unmutated	28 (72%)
Chronic lymphocytic leukaemia with high-risk or very-high-risk CLL-IPI	26 (67%)
17p deletion or TP53 mutation	5 (13%)
17p deletion	2/39 (5%)
TP53 mutation	5/38 (13%)
NOTCH1 mutation	6/38 (16%)
SF3B1 mutation	5/38 (13%)
Fluorescence in-situ hybridisation (hierarchical)	
17p deletion	2 (5%)
11q deletion	6 (15%)
Normal	17 (44%)
Trisomy 12	5 (13%)
13q deletion	9 (23%)

Up front triplet therapy with end-point based on achievement of MRD by ClonSeq (10⁻⁴)

Lancet Haematol 8:e879, 2021

BOVen Trial


- -Well tolerated
- -Achieved uMRD (<10⁻⁴) in blood (96%) and marrow (92%)
- -Median duration of therapy was 10 months Durable PFS
- -MRD-free (<10⁻⁴) survival about 30 months

Mantle Lymphoma

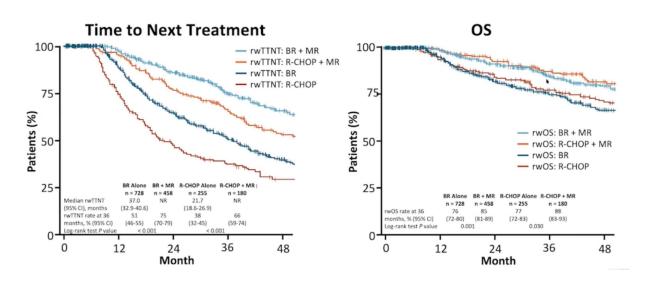
- Watch and Wait still best strategy until findings, counts or symptoms dictate therapy
- Vaccinate patients
- Spectrum of disease

Proposed model of molecular pathogenesis in the development and progression of major subtypes of MCL. Precursor B cells usually with but sometimes without a CCND1 rearrangement mature to abnormal naïve B cells which may initially colonize, often the inner p...

Very aggressive
ALL like therapy
Consideration for CarT
vs Allo

Ki67>30% indicates
More aggressive
Younger/Fit for Txp
?Maintenance

?Maintenance
Indolent like CLL
t(11;14) not others
Sox11 neg


Steven H. Swerdlow et al. Blood 2016;127:2375-2390

Fit for Transplant?

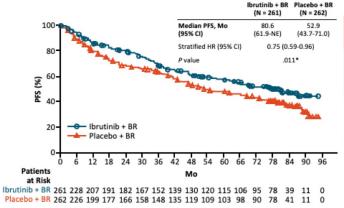
Rituximab plus high dose cytarabine based regimen vs BR vs other followed by PBSCT

E1411 did not show advantage of adding bortezomib to BR AND 3-year maintenance rituximab post PBSCT OS advantage (NEJM 2017)

FLATIRON Trial 2021

Can you go directly to maintenance without PBSCT for deep remission patient?

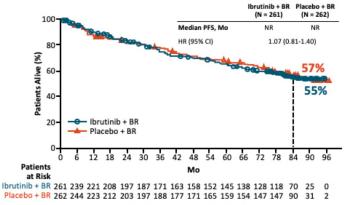
Older/Nonfit


	N	Age	ORR	CR	mPFS
R-CHOP	244	66	89%	42% (CT)	14.4 mo
VR-CAP	243	65	92%	53% (CT)	24.7 mo
BR**	188	70	~90%	~45% (CT)	35-48 mo
RBAC500	57	71	91%	91% (PET)	Not reached

No Maintenance

"R squared": Lenalidomide/Rituximab NEJM 2015/JCO 2018

Front line, 38 patients, ORR 92%, CR 64% 3y PFS 80%, OS 90% 5y PFS 64%, OS 77% 8/10 patients in CR at 3y are MRD negative No difference in ORR for MIPI or Ki-67


SHINE: Phase III BR vs IBR

Median PFS, Mo	Ibrutinib + BR	Placebo + BR	HR (95% CI)
Patients with blastoid/ pleiomorphic histology	25.6	10.3	0.66 (0.32- 1.35)
Patients with <i>TP53</i> mutation [†]	28.8	11.0	0.95 (0.50- 1.80)

*In this analysis, there were 19 patients in the ibrutinib plus BR arm and 26 in the BR + placebo arm. †In this analysis, there were 26 patients in the ibrutinib † BR arm and 24 in the BR + placebo arm.

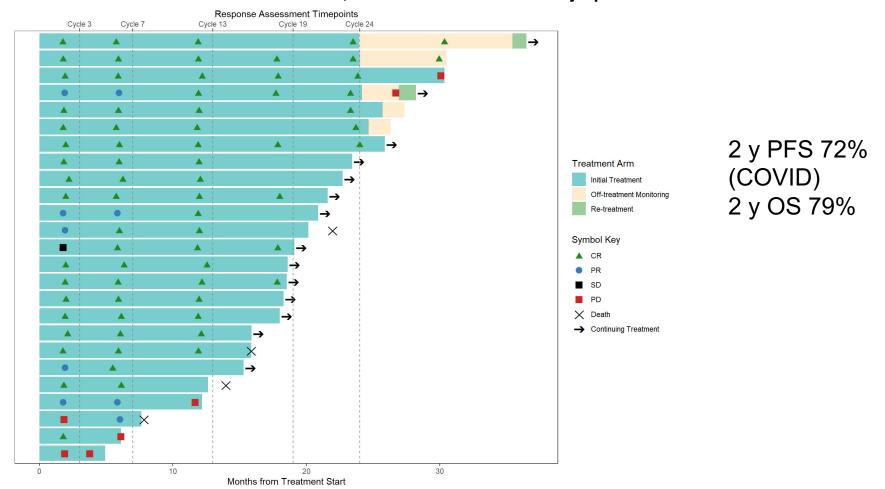
- Median follow-up: 84.7 mo (7.1 yr)
- A 2.3-yr statistically significant and clinically meaningful improvement in median PFS was observed in the ibrutinib arm vs the placebo arm

Deaths due to PD and TEAEs, n (%)*	Ibrutinib + BR (n = 261)	Placebo + BR (n = 262)	HR
Overall	58 (22.2)	70 (26.7)	0.00
■ PD	30 (11.5)	54 (20.6)	0.88
■ TEAEs	28 (10.7)	16 (6.1)	

^{*}Exploratory analysis.

COVID-19—related deaths in 3
 patients in the ibrutinib arm during
 TEAE period and in 2 patients in the
 placebo arm after TEAE period

Relapsed Mantle?


Younger/Fit high risk: Consideration of allo

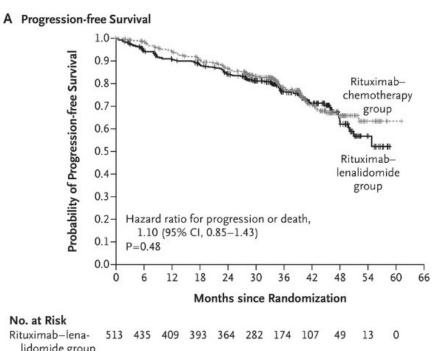
Older/Other:

Agent	N	Response Rate	mDOR
Bortezomib	155	33%	9.2 months
Temsirolimus	54	22%	7.1 months
Lenalidomide	134	28%	16.6 months
Lenalidomide- rituximab	52	57%	18.9 months
Idelalisib	40	40%	4 months
Ibrutinib	111	68%	17.5 months
Acalabrutinib	124	81%	72% at 12 m
Venetoclax	28	75%	12 months
Ibrutinib-Venetoclax	24	71% (all CR)	80% at 12 m

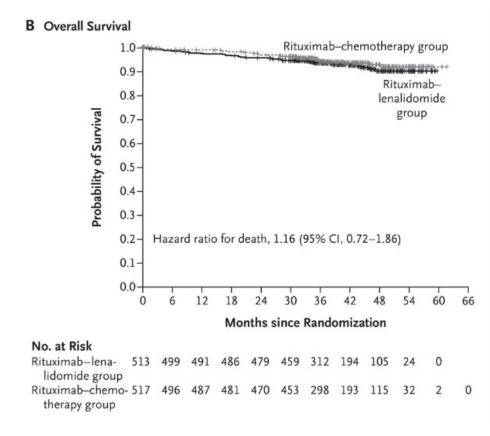
- Separate indolent and blastoid subsets and for the middle group, especially for Ki-67>30%:
 - High dose therapy still improves depth of remission for transplant eligible patients in the modern age of therapy
 - Question of maintenance based on depth of remission
 - Standard chemotherapy giving way to targeted therapy
 - Acalabrutinib advantages over ibrutinib
 - Venetoclax effective in MCL be mindful of tumor lysis
 - Combination therapies of targeted and immune therapies will increase depth of remission
 - ZUMA-2 published CarT 2020, deep remission, early data

A Multicenter Phase 2 Trial of Zanubrutinib, Obinutuzumab, and Venetoclax (BOVen) in Patients with Treatment-Naïve, TP53-Mutant Mantle Cell Lymphoma

Anita Kumar, Jacob Soumerai, Jeremy S. Abramson, Jeffrey A. Barnes, Philip Caron, Maria Chabowska, Mary Devlin, Ahmet Dogan, Lorenzo Falchi, Rayna N. Garcia, Clare Grieve, Emma Haskell, Julie E. Haydu, Patrick Connor Johnson, Ashlee Joseph, Hailey E. Kelly, Alyssa Labarre, Emerald D Littlejohn, Jennifer Kimberly Lue, Joanna Mi, Rosalba Martignetti, Grace McCambridge, Alison Moskowitz, Colette Owens, Sean F. Plummer, Madeline G. Puccio, Gilles Salles, Venkatraman Seshan, Natalie Slupe, Andrew D. Zelenetz, A Multicenter Phase 2 Trial of Zanubrutinib, Obinutuzumab, and Venetoclax (BOVen) in Patients with Treatment-Naïve, TP53-Mutant Mantle Cell Lymphoma, Blood, 2023, Figure 1


- Follicular Lymphoma
 Median OS of follicular lymphoma is approaching 20 years
- Treatment options for newly diagnosed advanced-stage patients include multiple immunochemotherapy regimens +/- anti-CD20 maintenance therapy, not BTK or PI3KI
- Now with several approved options for relapsed/refractory disease

	GELF Criteria	BNLI Criteria	
	High tumor bulk: >7cm mass, ascites/effusions,	Rapid disease progression 3 months	
	3 separate nodes >3cm, Symptomatic splenomegaly, Organ compression	Life-threatening organ involvement	
		Liver or renal infiltration	
	Systemic symptoms	Bone lesions	
Elevated LDH or Beta-2 microglobin	Systemic symptoms or pruritus		
	Leukemia or blood cytopenia	Hb<10, WBC<3, Plt<100K 2º marrow	


Initial therapy

Chemoimmunotherapy generally first line			R ² consideration (chemotherapy free)	R maintenance?
StiL, Phase 3 BR vs R- CHOP	BRIGHT, Phase 3 BR vs R- CHOP/R-CVP	GALLIUM, Phase 3 G vs R plus chemo	RELEVANCE, Phase 3 R ² (lenalidomide/R) vs R-chemo	PRIMA, Phase 3 R maintenance
BR superior to R-CHOP	Trent toward PFS improvement with BR vs R- CHOP/R-CHP	Superior PFS with G but same OS More grade 3- 5AE with G G approved 2017 and maintenance	Similar efficacy with R ² vs R- chemo Less hematologic but more cutaneous toxicity with R ²	Superior PFS and TTF but not OS R approved 2011 maintenance

RELEVANCE Trial

lidomide group Rituximab-chemo- 517 474 446 417 387 287 175 109 therapy group

Initial consideration relapse

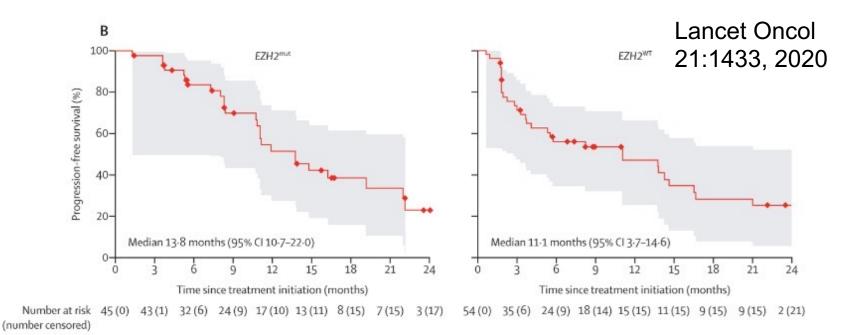
BR vs GR (not if previous bendamustine)
R-CHOP vs G-CHOP
R-CVP vs G-CVP
R2

Tazemetostat if EZH2 positive or disease without other alternative

R vs G maintenance

Autologous SCT

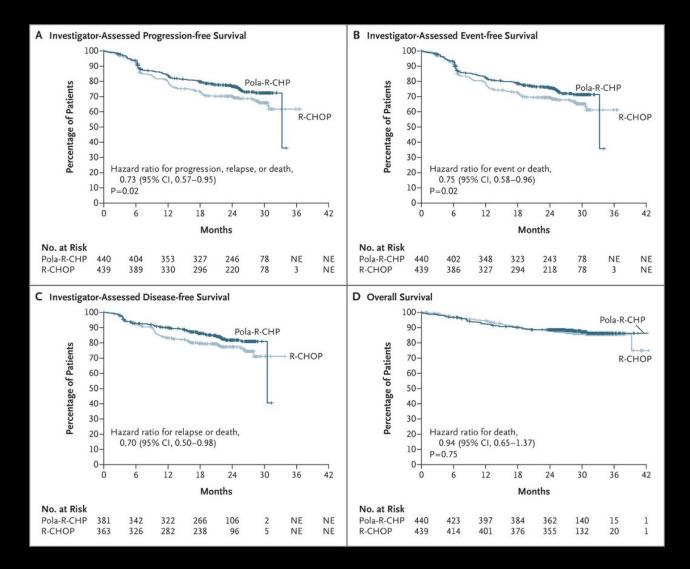
Allogeneic SCT

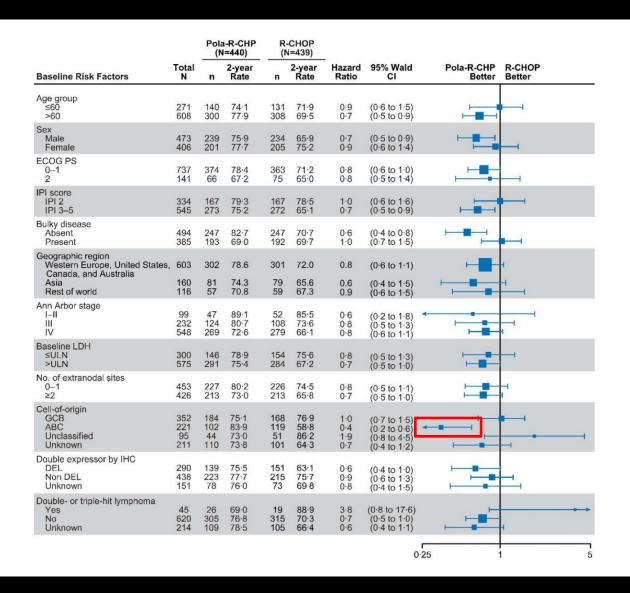

Immunotherapy

Immunotherapy

Keep in mind the effect and timing of chemotherapy for immunotherapy

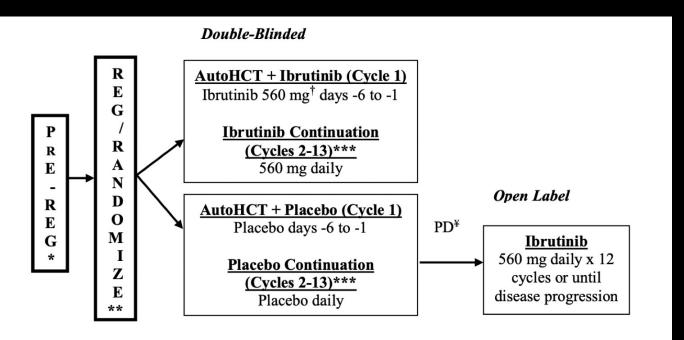
EZH2: Tazemetostat oral inhibitor


EZH2 mutations lock B-cell in germinal state and pathway relevant in follicular lymphoma; 20% of patients have activating mutation Alone effective (approved 2020) and now being combined with rituximab, anti-CD20 and immune therapies

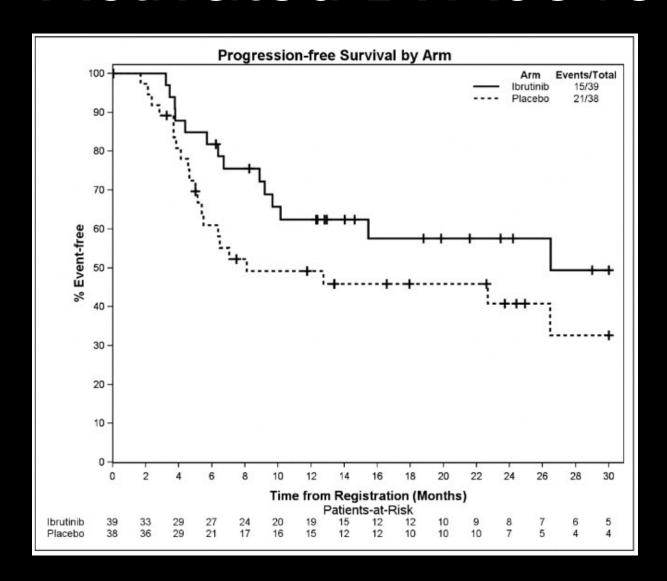

Large Cell Lymphoma

- Up front therapy with R-CHOP vs Pola-R-CHP
- Second line: PBSCT vs Tafasitamab-Lenalidomide vs CarT
- Third line: Pola-BR vs Loncastuximab tesirine vs Car-T

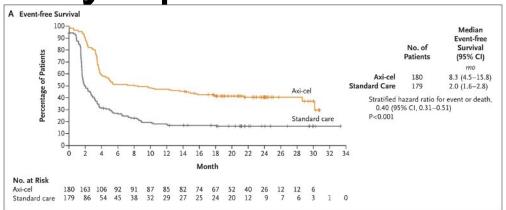
POLARIX: Overall results



POLARIX: Subsets



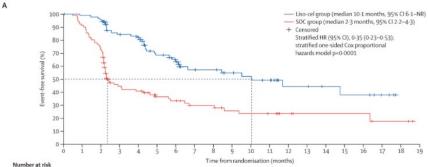
Activated B: A051301


- * Determination of ABC subtype will be performed by central review using the paraffin tissue from the diagnostic biopsy (initial diagnosis or relapse).
- ** Patients will be stratified by prior use of ibrutinib, type of planned transplant (CBV or BEAM), and time to relapse (≤ or > 12 months from diagnosis).
- *** 1 cycle = 28 days for cycles 2-13.
- † In Cycle 1, ibrutinib/placebo should be dose reduced to 140 mg daily IF administered concurrently with aprepitant. Dose reduction is NOT necessary with fosaprepitant.
- ¥ Progression is defined as PD by the CT-based response criteria. If a patient experiences disease progression and is found to be receiving placebo, they may elect to crossover to treatment with ibrutinib. Patients who opt to cross over to active drug must be re-registered to the study.

Activated B: A051301

ASH 2023 Ab 437

Axi-cel 2nd line aggressive lymphoma ZUMA-7



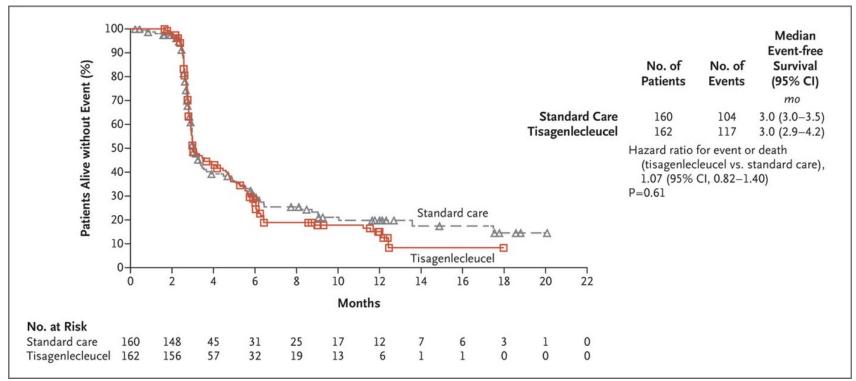
Subgroup	Axi-cel	Standard Care	Hazard Ratio for 1	
	o. of patients wi	th event/total no.		
Overall	108/180	144/179	H H H	0.40 (0.31-0.51)
Age				
<65 yr	81/129	96/121	→	0.49 (0.36-0.67)
≥65 yr	27/51	48/58	→	0.28 (0.16-0.46)
Response to first-line therapy at randomization			- 1	
Primary refractory disease	85/133	106/131	⊢	0.43 (0.32-0.57)
Relapse ≤12 mo after initiation or completion of first-line therapy	23/47	38/48		0.34 (0.20-0.58)
Second-line age-adjusted IPI				
0 or 1	54/98	73/100	⊢	0.41 (0.28-0.58)
2 or 3	54/82	71/79	⊢	0.39 (0.27-0.56)
Prognostic marker according to central laboratory			- !	
HGBL, double- or triple-hit	15/31	21/25		0.28 (0.14-0.59)
Double-expressor lymphoma	35/57	50/62		0.42 (0.27-0.67)
Molecular subgroup according to central laboratory				
Germinal center B-cell-like	64/109	80/99		0.41 (0.29-0.57)
Activated B-cell-like	11/16	9/9 ⊢	─	0.18 (0.05-0.72)
Unclassified	8/17	12/14		_
Disease type according to investigator				
DLBCL, not otherwise specified	68/110	97/116	₩	0.37 (0.27-0.52)
Large-cell transformation from follicular lymphoma	10/19	24/27	⊢	0.35 (0.16-0.77)
HGBL, including rearrangement of MYC with BCL2 or BCL6 or bot	h 23/43	18/27		0.47 (0.24-0.90)
Disease type according to central laboratory			- 1	
DLBCL	79/126	95/120	₩ .	0.44 (0.32-0.60)
HGBL, including rearrangement of MYC with 8CL2 or 8CL6 or both	h 15/31	21/26	⊢	0.28 (0.14-0.59)
		0.01	0.1 0.2 0.5 1.0 2	.0 5.0
		4		→

- Only glucocorticoids allowed for bridging and impending organ compromise not allowed
- 36% went on to PBSCT; only 7% with activated Bcell
- Ab 7565: Durable responses better in tumors with better expression of B-cell antigens (CD19,20, BCMA)

N Engl J Med 386:640, 2022

Liso-cel 2nd line aggressive lymphoma TRANSFORM

(number censored)

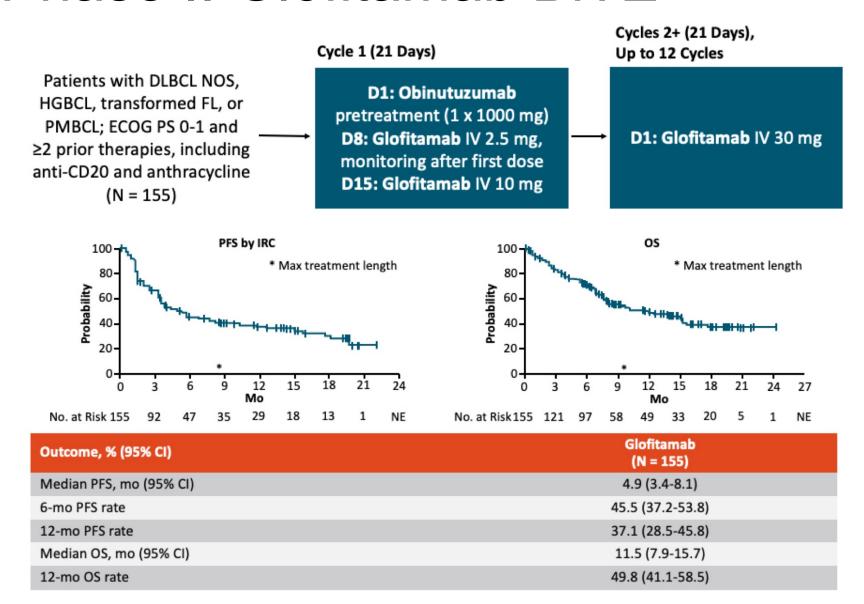

Liso-cel group 92 (0) 89 (2) 86 (2) 66 (13) 62 (15) 43 (25) 36 (29) 27 (35) 26 (36) 21 (40) 19 (41) 17 (42) 9 (49) 9 (49) 7 (51) 6 (51) 6 (51) 4 (53) 0 (57) (57) 50C group 92 (0) 83 (1) 66 (1) 35 (8) 32 (8) 23 (14) 21 (14) 16 (17) 16 (17) 12 (19) 11 (19) 10 (20) 6 (24) 4 (26) 4 (26) 4 (26) 4 (26) 2 (27) 2 (27) 0 (29)

Stratified HR (95% CI)
0-30 (0-16-0-5
0-40 (0-23-0-7
0-35 (0-22-0-5
0-34 (0-12-1-0
0-28 (0-16-0-4
0-30 (0-13-0-7
0-33 (0-19-0-5
0-35 (0-17-0-7
0-42 (0-24-0-7
0-20 (0-10-0-4
0-10 (0-01-0-8
0-37 (0-23-0-5
0-35 (0-22-0-5
0-46 (0-12-1-8
0-34 (0-16-0-7
0-32 (0-19-0-5
0-36 (0-20-0-6
0-41 (0-19-0-9
0-40 (0-21-0-7
0-22 (0-03-1-9
0-35 (0-19-0-6
0-48 (0-20-1-1

- 4x improved EFS 2.5x improved PFS in this phase 3 study
- Better in all subgroups and potentially better OS (immature at publication)
- Good safety profile

Lancet 399:2294, 2022

Tisagenlecleucel 2nd line aggressive lymphoma


- Impending organ system dysfunction allowed and 83% received bridging chemotherapy
- 32% went on to PBSCT

Axi-Cel Vs Tisagenlecleucel

	Axicabtagene ciloleucel	Tisagenlecleucel	
Co-stim Domain	CD28	4-1BB	
Retrovirus	Retrovirus	Lentivirus	
Production turnaround	Rapid	Slower	
Early trials	Similar efficacy and toxicity		

 Axicabtagene ciloleucel might be considered over PBSCT for steroid controlled without organ compromise

Phase II Glofitamab BiTE

Careful with Bendamustine ahead of T-cell collection (follicular, etc)

Tisagenlecleucel

- •For adults with relapsed or refractory diffuse large B-cell lymphoma (DLBCL).
- •For young adult patients up to age 25 with relapsed or refractory acute lymphoblastic leukemia (ALL).
- •Follicular lymphoma (failing 2 lines, ELARA, better tolerated, curative for some?) Brexucabtagene autoleucel
- •For patients with relapsed or refractory mantle cell lymphoma.
- •For adult patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL)

Axicabtagene ciloleucel

- •For patients with the following conditions that have either not responded to or have relapsed following two or more lines of systemic therapy:
 - Diffuse large B-cell lymphoma (DLBCL)
 - Primary mediastinal B-cell lymphoma
 - High grade B-cell lymphoma
 - DLBCL that results from follicular lymphoma
 - Follicular lymphoma (failing 2 lines, ZUMA-5, curative for some?)

Careful with Bendamustine ahead of T-cell collection (follicular, etc)

Lisocabtagene maraleucel

- •For adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including:
 - Diffuse large B cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma)
 - High-grade B-cell lymphoma
 - Primary mediastinal large B-cell lymphoma
 - Follicular lymphoma grade 3B and
 - Relapsed/refractory follicular lymphoma failing 2 prior lines (5/15/24)
 - Relapsed/refractory mantle cell lymphoma failing 2 prior lines (5/30/24)
 - CLL failing 2 lines with BTK and Bcl2 inhibitors

Third line agents no transplant no CarT (Major question is whether these treatments cure as we think sometimes happens for CarT; no clear plateau at 12 months)

Antibody-drug conjugates

- Polatuzumab vedotin
- Pola-BR vs BR (phase II data approval)
- •Loncastuximab tesirine (third line)
- LOTUS2 (single arem phase 2, 25-30% CR-70% at 2 year for CR. Q3weeks for one year. Effusions/photosensitivity

Tafasitamab-Lenalidomide (second line and beyond)

LMINE Phase II

CD20 Bispecific Antibodies (CRS usually low grade, step up dosing, admission still recommend for first dose; first month at primary treatment center for potential grade 3 patients). Both B cell and T cell depletion through redirection (infectious prophylaxis needs)

- •Glofitamab: IV, fixed duration (first step up dose cycle 1 day 8 highest risk CRS, less than 5% by cycle 3)
 - Diffuse large B cell lymphoma (DLBCL) not otherwise specified (including DLBCL arising from indolent lymphoma)
 - High-grade B-cell lymphoma
 - Primary mediastinal large B-cell lymphoma
 - Follicular lymphoma grade 3B
 - Relapsed/refractory follicular lymphoma failing 2 prior lines (5/15/24)
 - Relapsed/refractory mantle cell lymphoma failing 2 prior lines (5/30/24)

Epcoritamab: subcutaneous, treat until relapse (first targeted dose cycle 1 day 15 highest risk CRS, less than 5% cycle 3)

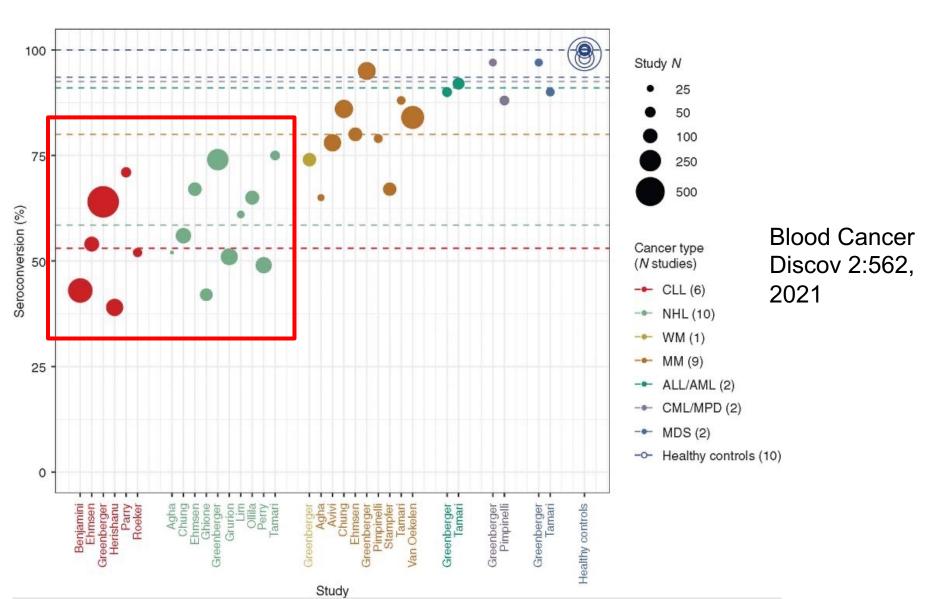
Mosunetuzumab: Follicular

CD20xCD3 in trial follicular NHL

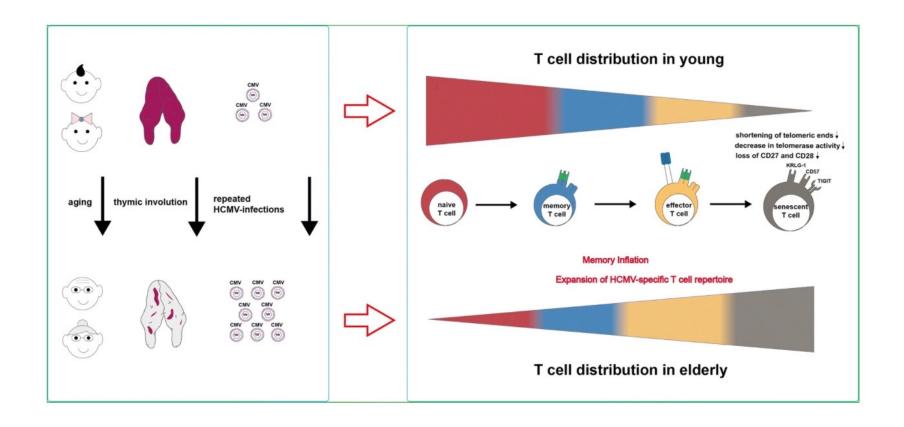
	Phase	N	ORR%	SAE%	Grade 3 AE
Mosunetuzumab	1/2	90	78.9	CRS 44	Neutropenia Hyponatremia
Glofitamab	1/2 with G	171	65.7	CRS 50 Fever 46	Neutropenia Infections
Plamotamab	1	53	43.4	CRS 63	
Epcortimab	1/2	68	68	CRS 59 Fever 69	Neutropenia, Anemia, Pneumonia, Low PO4
Odronextamab	1	145	51	CRS 61 Fever 73	Anemia, neutropenia, thrombocytopenia, Low PO4

Management of BiTE Toxicity

CD3:CD20 BiTE: Blood 143:1565, 2024 CRS: Higher lymphoma burden→higher risk Tumor flare in 3-7% with increased pain (steroids) Cytopenias: lowest levels 2-4 months (skip dose) Infections: previous higher mortality during COVID in trials. Vaccinate (VZV, COVID, Pneumo, Influenza), Pre-test (Hep B/C, HIV, CMV/EBV), prophylactic abx and measure Ig levels (replace) ICANS: Rare compared to CarT, mostly grade 1-2 (steroids, anti-epileptic drugs)


Immunotherapy in Community

Bottom line is to work with your transplant/cellular therapy center for CarT and initial treatment BiTE and become familiar with later potential SAE as these therapies mature. Immune based therapies are moving earlier in treatment.


Oncologist as Immunologist

Optimization and planning for inevitable immune based therapy

Rates of Anti COVID IgG

T-cell exhaustion

J of Hematology & Oncology 11:91, 2018

T-cell physiology

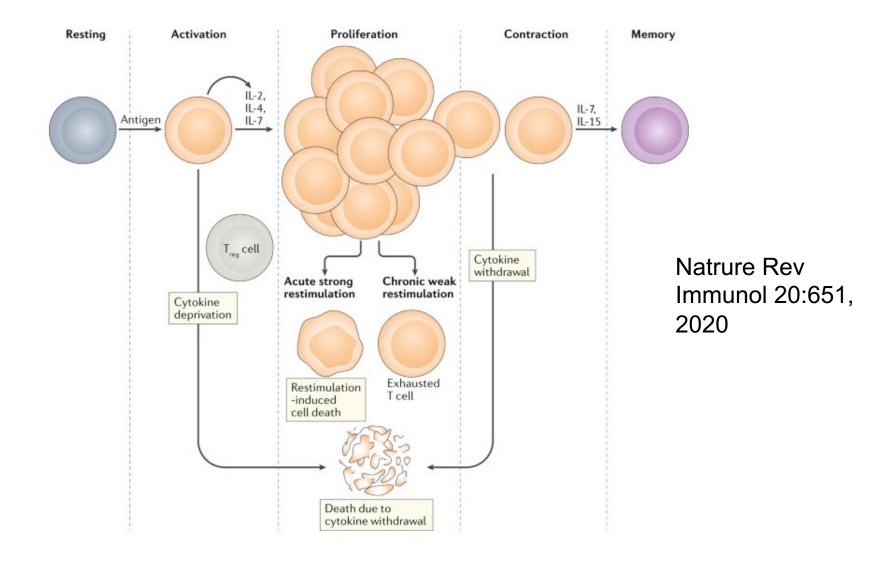


Figure 1.- CAR T-cell composition at peak expansion after infusion according to previous bendamustine exposure.

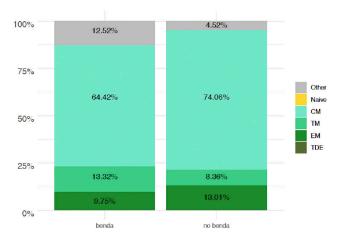
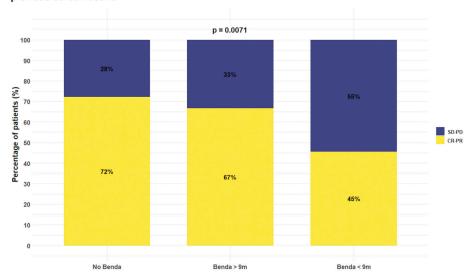
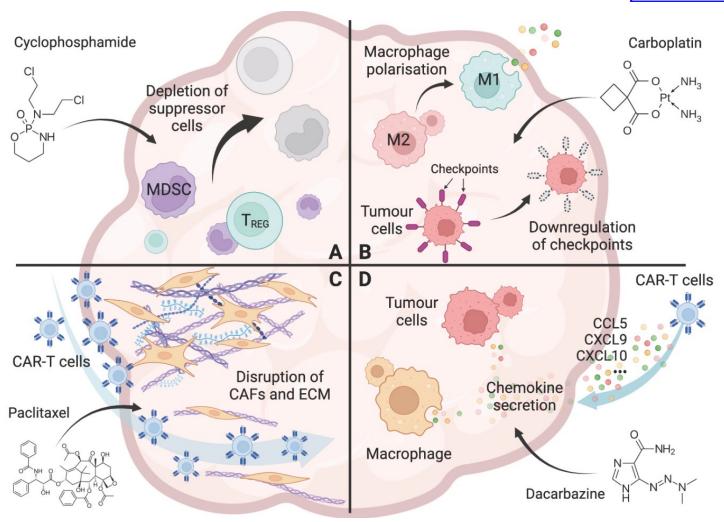
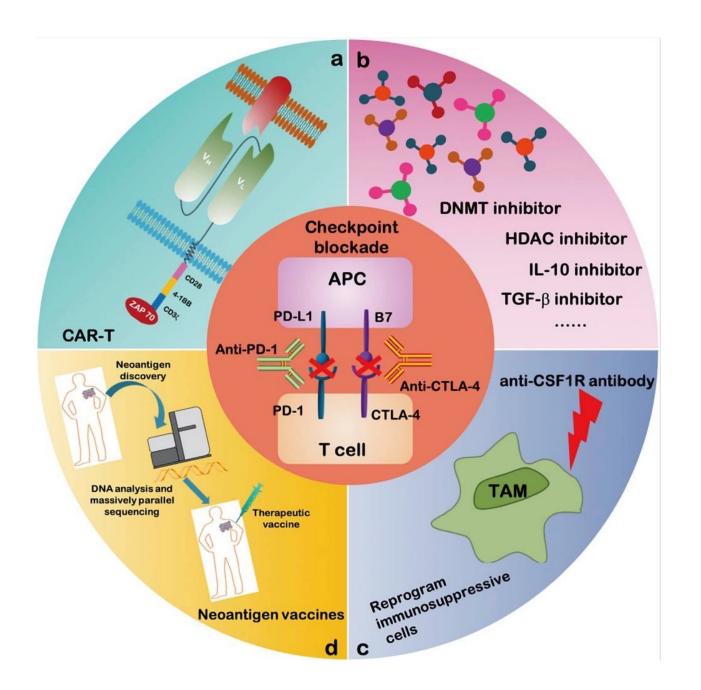


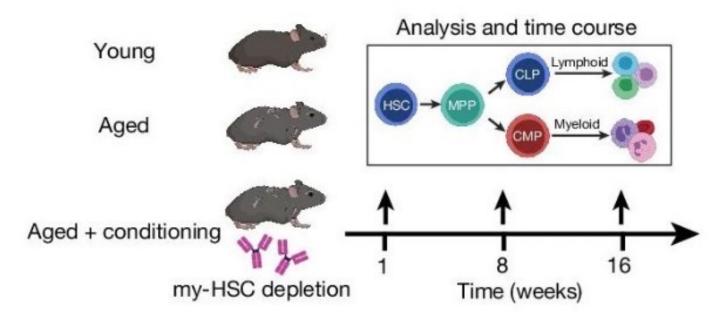
Figure 2.- Best response achieved after CAR T-cell therapy depending on the use and timing of previous bendamustine.

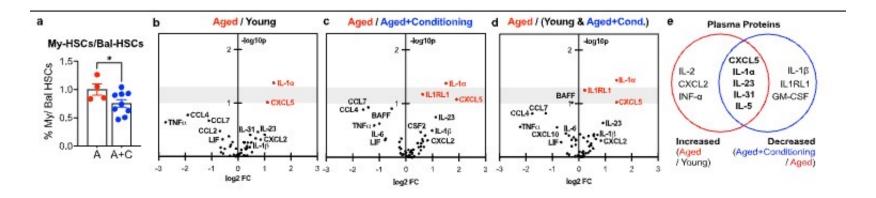




Figure abbreviations: CM central memory, TM transitional memory, EM, effector memory, TDE terminal effector, CR complete response, PR partial response, SD stable disease, PD progressive disease

Gloria Iacoboni et al. Recent Bendamustine Treatment before Apheresis Has a Negative Impact on Outcomes in Patients with Large B-Cell Lymphoma Receiving Chimeric Antigen Receptor T-Cell Therapy, Blood, 2022, Figure 1

Chemotherapy Helpful?


https://doi.org/10.3389/fimmu.2023.1140541



doi: <u>10.3389/fc</u> <u>ell.2020.00017</u>

Depletion of my-HSCs in aged mice

Nature 628:162, 2024

Questions?