

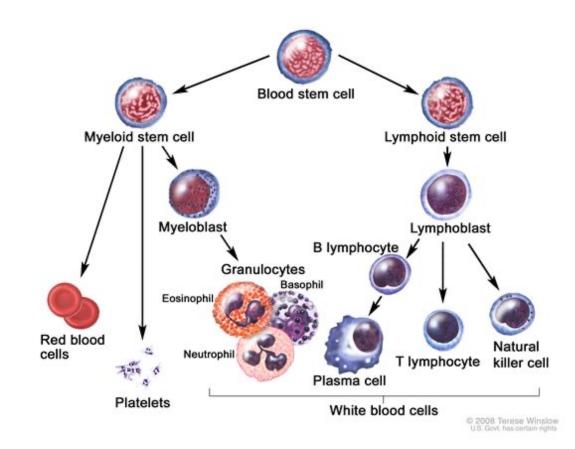
A Cancer Center Designated by the National Cancer Institute

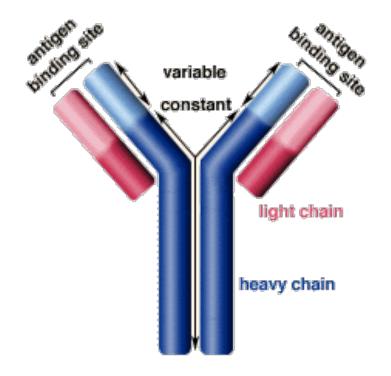
Multiple Myeloma: Update on Immune-Targeted Agents

Maxwell M. Krem, MD, PhD April 13, 2024 MLS Cleveland

CONFESSION

- Host of the Classical Music Clinic
- Sundays 1 pm Eastern on Clubhouse
- 3+ hours of classical music therapy
- https://www.clubhouse.com/@mxk214




OBJECTIVES/OUTLINE

- Very good, but partial background
 - Basic pharmacology of anti-MM agents
- Targeted agents: mechanisms, indications, outcomes
 - Induction phase: RVD ± CD38 mabs
 - R/R disease: BiTE therapy
 - R/R disease: CAR T cells
- Conclusions and future directions
 - "Smoldering" questions in MM

PLASMA CELL DISEASES

Multiple myeloma is a malignancy of clonal plasma cells

Plasma cell = antibody factory

Molecular subtypes:

 Full Ig ("M-spike"), light chain, or oligo/non-secretory

MULTIPLE MYELOMA: The Toolbox

Major therapeutic drug classes in myeloma*:

Class	Representative Agent(s)				
Immunomodulator (IMiD)	lenalidomide, pomalidomide				
Proteasome inhibitor (PI)	bortezomib, carfilzomib, ixazomib				
Steroid	dexamethasone				
Cytotoxic chemotherapy	cyclophosphamide, melphalan ¹				
CD38 monoclonal antibody (mab)	daratumumab, isatuximab				
Immunotherapy					
BiTEs (BCMA, GPRC5D)	teclistamab, talquetamab, elranatamab				
CAR T cells (BCMA)	ide-cel, cilta-cel				

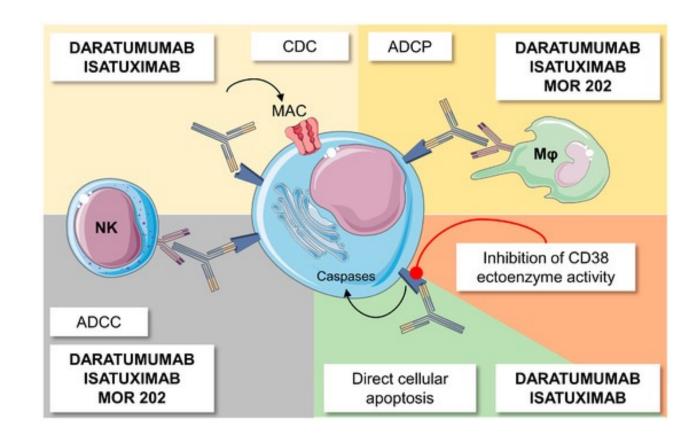
*not an exhaustive list

1. Off-label indication in HCT

Targeting CD38 During Induction:

RVD ± CD38 Monoclonal Antibody

Initial therapy to induce response and stop end-organ damage:


- "Triplet" seems to outperform "doublet"
- Transplant vs. non-transplant candidate
 - Attempt to transplant fit patients \leq 75 years old
 - **RVD**: most common "fit patient" induction: lenalidomide (<u>R</u>), bortezomib (<u>V</u>) and dexamethasone (<u>D</u>)

Sources: Durie BG, et al. Lancet 2017; Facon T, et al. Lancet Oncol 2021

MECHANISM: Anti-CD38 monoclonal antibodies

Mechanisms of action:

- ADCC: antibody-dependent cellmediated cytotoxicity
- CDC: complement-dependent cytotoxicity
- ADCP: antibody-dependent cellular phagocytosis
- Apoptosis
- Inhibit CD38 enzyme

Source: De Novellis D, et al. Int J Mol Sci 2023

INDUCTION: RVD + Targeting CD38

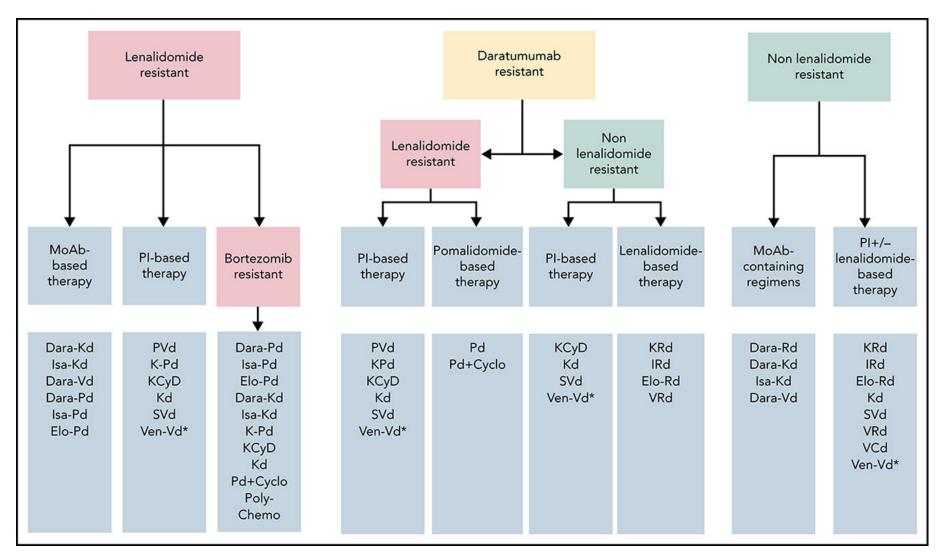
RVD:

- Lenalidomide (R), bortezomib (V), and dexamethasone (D)
- Standard-of-care triplet induction for fit patients (e.g. auto-HCT candidates) in US

RCTs adding CD38 mabs to RVD:

- GRIFFIN (phase II): RVD ± daratumumab¹
- GMMG-HG7: RVD ± isatuximab²
- PERSEUS: RVD ± daratumumab¹
- 1. FDA-approved 1st line or 2nd line+ with **other combinations**
- 2. FDA-approved 2nd line+ with **other combinations**

Sources: Goldschmidt H, et al. Lancet Haematol 2023; Sonneveld P, et al. NEJM 2024; Voorhees P, et al. Blood 2020


CD38 monoclonals added to RVD:

- Auto-HCT utilization is implicit
- Higher % MRD-negativity
- Deeper responses
- Toxicity not substantially increased
- Limited inclusion of:
 - Older patients
 - High-risk disease
 - Renal dysfunction
- Suboptimal auto-HCT in standard Rx arms (some studies)
- Cost-effective? Implications for CD38 mab use in relapse?

Aiming T-cells at Relapsed/Refractory Myeloma

BiTE therapy and CAR T cells

CHOICE OVERLOAD

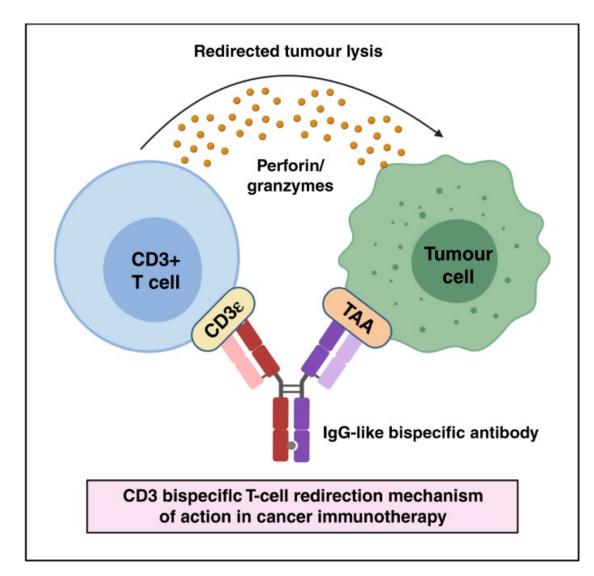
Source: Kastritis E, et al. *Blood* 2022

CHOICE OVERLOAD

RELAPSED/REFRACTORY DISEASE

Sequencing of therapies:

- Initiate new Rx with recurrence of paraprotein or CRAB
- Introduction of new agents or drug combinations
- Decreasing depth/duration of response
- Can new targeted therapies do better?


Variable timeline dependent on individual risk factors including genetic and phenotypic changes, depth and duration of response to therapy, persistence of a malignant multiple myeloma stem cell, and evolution of competing multiple myeloma clones

Source: Kurtin SE. J Adv Pract Oncol. 2013

Bi-Specific T-cell Engagers (BiTEs):

- Target CD3 on T-cells AND tumor antigen
- E.g., B-cell maturation antigen (BCMA):
 CD269, on B-cells and mature plasma cells
- Activate T-cell/facilitate immunological synapse → Lysis of target tumor cells

Sources: Singh A et al. *Br J Cancer* 2021; Tian Z et al. *J Hematol Oncol* 2021

BCMA BiTE IN R/R MM: Teclistamab

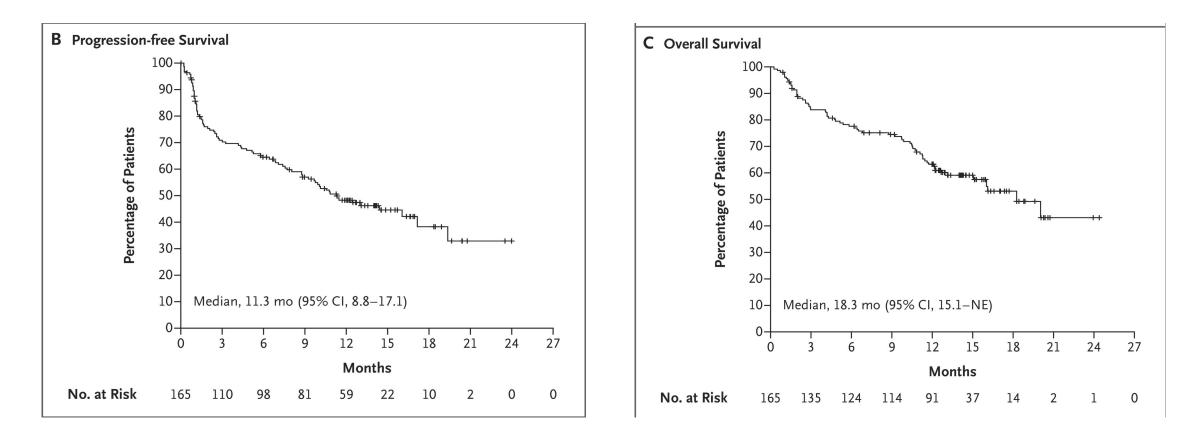
Majes-TEC1:

- Phase 1-2 trial of teclistamab, CD3-BCMA BiTE
- R/R disease
- N = 165
 - Age ≥ 18
 - ≥ 3 prior lines*, no prior BCMA
 - ECOG 0/1
 - Admission and premeds for 3 step-up doses: CRS, ICANS, REMS
 - Primary endpoint: ORR
 - Secondary endpoints: PFS, OS, MRD negativity, etc.

*FDA approval: ≥ 4 prior lines (including PI, IMiD, CD38)

Source: Moreau P et al. *NEJM*, 2022.

Study outcomes:


Cohort	Median age (y)	N	ORR (%)	≥ CR (%)	MRD - (%)	PFS (months)	OS (months)	Grade ≥3 CRS (%)	Grade ≥3 neuro (%)	Toxic discont. (%)
Teclistamab	64	165	63	39	27	11.3	18.3	1	1	1

*Other tox: Grade 1-2 CRS 71%, grade 1-2 neuro 14%, grade ≥ 3 infection 45%

Source: Moreau P et al. NEJM, 2022

Majes-TEC1: Teclistamab

Survival curves:

Source: Moreau P et al. NEJM, 2022

GPRC5D BiTE in R/R MM: Talquetamab

MonumenTAL-1:

- •Phase 1-2 trial of talquetamab, CD3-GPRC5D BiTE
- •R/R disease
- •N = 232
 - Age ≥ 18
 - R/R to established therapies, including IMiD and PI, Cr Cl \geq 40
 - ECOG 0/1
 - Admission and premeds for 1st dose: CRS, ICANS, REMS
 - Primary endpoint: AEs
 - Secondary endpoints: RR, MRD negativity, etc.

Source: Chari A et al. NEJM, 2022.

Study outcomes (updated):

Cohort	Median age (y)	N	ORR (%)	≥ VGPR (%)	MRD - (%)	PFS (months)	OS (months)	Grade ≥3 CRS (%)	Grade ≥3 neuro (%)	Toxic discont. (%)
Subcutaneous q week	64	288	74	59	11/16 with	7.5	n/a	1	0	5
Subcutaneous q 2 week	04	145	73	57	≥CR	11.9	n/a	0	0	8

*Other tox: Grade 1-2 CRS 75-79%, grade 1-2 neuro 11%, grade ≥ 3 infection 16-26%

**Similar efficacy and toxicity for cohort with prior "T-cell redirection" (CAR-T, bispecific)

Source: Chari A et al. NEJM, 2022; Schinke C et al. ASCO 2023

BCMA BiTE in R/R MM: Elranatamab

MagnetisMM-3:

•Phase 2 trial of elranatamab, CD3-BCMA BiTE

•R/R disease

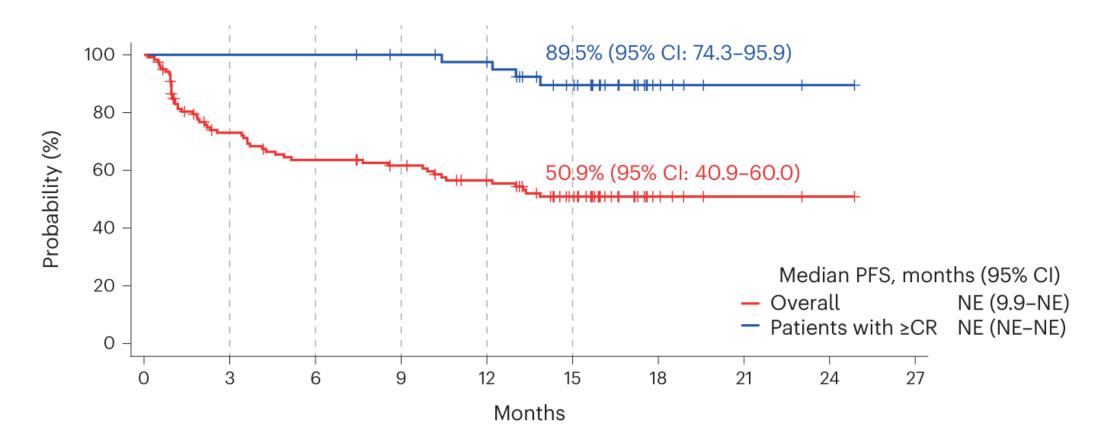
- N = 123 (cohort A)
 - Age ≥ 18
 - R/R disease (PI, IMiD, CD38)*, no prior BCMA (cohort A), Cr Cl \geq 30, LVEF \geq 40%
 - ECOG 0-2
 - Admission and premeds for 2 step-up doses: CRS, ICANS, REMS
 - Primary endpoint: ORR
 - Secondary endpoints: PFS, OS, MRD negativity, etc.

*FDA approval 8-14-23: ≥ 4 prior lines (including PI, IMiD, CD38)

Source: Lesokhin A et al. *NEJM*, 2022.

Study outcomes:

Cohort	Median age (y)	N	ORR (%)	≥ CR (%)	MRD - (%)	PFS (months)	OS (15 months)	Grade ≥3 CRS (%)	Grade ≥3 ICANS (%)	Toxic discont. (%)
Elranatamab	68	123	61	35	~21	15	57%	0**	0	14


*Other tox: Grade 1-2 CRS 58%, grade 1-2 ICANS 3.4%, grade ≥ 3 infection 40%, grade 5

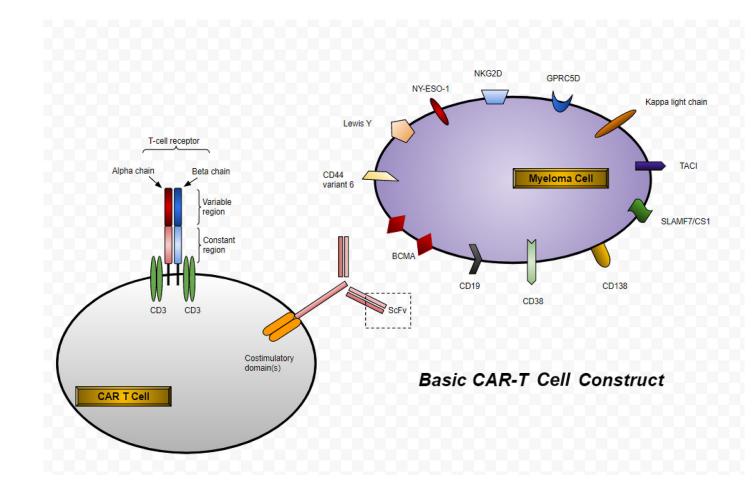
infection 6.5%; grade \geq 3 neutropenia 49%

**grade 3 CRS 0.5% first report

Source: Lesokhin AM et al. Nat Med, 2023

PFS, entire cohort (red) and CRs (blue):

BiTEs targeting BCMA and GPRC5D:


- Responses in triple-class and penta-refractory disease
- Some responses are deep
- Option for non-CAR T-cell candidates
- Reasonable inclusion of older and minority populations
- Require toxicity-monitoring admission(s) and premeds, but...
- Low rates of grade ≥3 CRS and ICANS
- Kaplan-Meier curves appear linear: treatment is palliative.

*Current FDA approval for all MM BiTES: ≥ 4 prior lines (including PI, IMiD, CD38)

BCMA IN R/R MM: CAR T cells

Chimeric antigen receptor (CAR) T cells:

- Autologous CD8 T cells, engineered TCR
- T cells bind tumor antigen
- MHC-independent T cell activation
- **BCMA**; other targets in development
- Activate T cell and facilitate
 immunological synapse → Lysis of
 target tumor cells

Sources: Parikh RH and Lonial S. CA Cancer J Clin 2023; Wang Z et al. Front Immunol 2022

BCMA CAR T CELLS: Phase 2 pivotal studies

Idecabtagene vicleucel: triple class refractory, ≥ 3 prior lines, approval March 2021

KarMMa	Median age (y)	N	ORR (%)	≥ CR (%)	MRD - (%)	PFS (months)	OS (months)	Grade ≥3 CRS (%)	Grade ≥3 neuro (%)	Toxic deaths (%)
lde-cel	61	128	73	33	26	8.8	19.4	5	3	2

Ciltacabtagene autoleucel: triple class refractory, ≥ 3 prior lines, approval February 2022

CARTITUDE-1	Median age (y)	Ν	ORR (%)	≥ CR (%)	MRD - (%)	12-month PFS (%)	12-month OS (%)		Grade ≥3 neuro (%)	Toxic deaths (%)
Cilta-cel	61	97	98	82	92 (n=61)	77	89	5	12	6

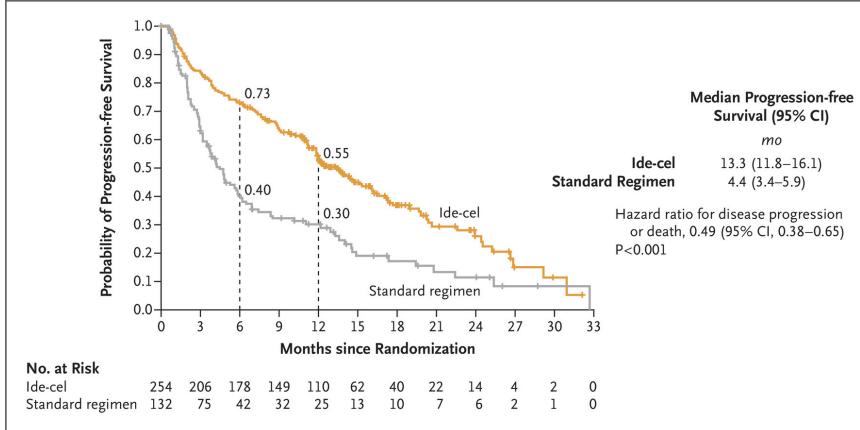
*FDA approval: ≥ 4 prior lines, warnings for CRS, ICANS, HLH, cytopenias, REMS

Sources: Munshi NC et al. NEJM 2021; Martin T et al. J Clin Oncol 2023

IDE-CEL: Phase 3 vs standard therapy

Idecabtagene vicleucel vs standard therapy: triple class treated (66% refractory), 2-4 prior

lines. Primary endpoint: PFS.*


KarMMa-3	Median age (y)	N	ORR (%)	≥ CR (%)	MRD - (%)	PFS (months)	Grade ≥3 overall (%)	Grade ≥3 CRS (%)	Grade ≥3 neuro (%)	Grade 5 event (%)
lde-cel	63	254	71	39	20	13.3	93	5	3	14
Std Tx: DPD, DVD, IRD, KD, EPD	63	132	42	5	1	4.4	75	-	-	6

*OS data not mature at time of data cutoff

**DPD = 43, KD = 30, EPD = 30, IRD = 22, DVD = 7

IDE-CEL: Phase 3 vs standard therapy

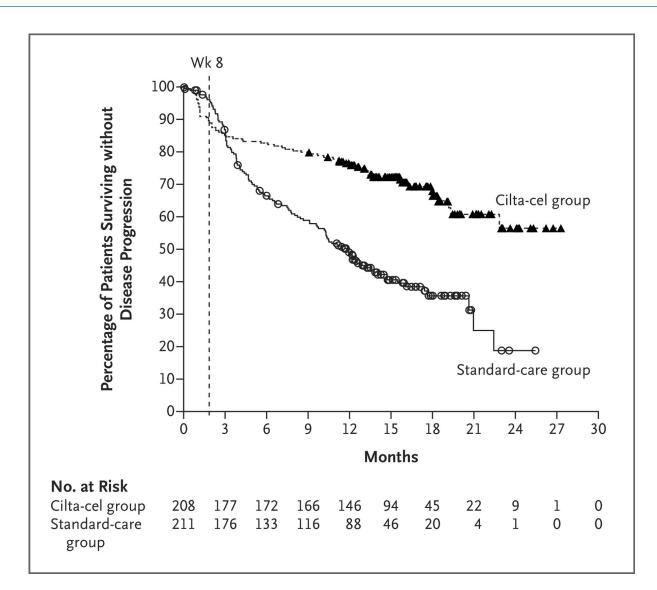
Idecabtagene vicleucel vs standard therapy: triple class treated (66% refractory), 2-4 prior lines. Primary endpoint: PFS.

CILTA-CEL: Phase 3 vs standard therapy

Ciltacabtagene autoleucel vs standard therapy: lenalidomide-refractory, prior IMiD + PI, 1-3

prior lines (26% triple class exposed). Primary endpoint: PFS.*

CARTITUDE-4	Median age (y)	N	ORR (%)	≥ CR (%)	MRD - (%)	PFS (months)	Grade ≥3 overall (%)	Grade ≥3 CRS (%)	Grade ≥3 neuro (%)	Toxic deaths (%)
Cilta-cel	61.5	208	85	73	61	23	96	1	2.3	4.8
Std Tx: PVD, DPD	61	211	67	22	16	12	94	-	-	2.4


*OS data not mature at time of data cutoff

**DPD = 183, PVD = 28

CILTA-CEL: Phase 3 vs standard therapy

Ciltacabtagene autoleucel vs standard therapy: lenalidomide refractory, 1-3 prior lines, 26% triple-class exposed. Primary

endpoint: PFS.

Source: San-Miguel J et al. NEJM 2023

R/R MM: CAR T cells

Ide-cel and cilta-cel:

- Responses in triple class- and penta-refractory disease
- Some responses are deep
- Option for cellular therapy (more robust) candidates
- Limited inclusion of older populations
- Requires cellular therapy-capable facility due to...
- Appreciable rates of grade ≥3 CRS and ICANS
- Kaplan-Meier curve is linear: treatment is palliative.

*FDA approval: ≥ 4 prior lines (including PI, IMiD, CD38)

UNANSWERED QUESTIONS

Selected "smoldering topics" in MM:

- Ideal induction regimen? Triplet or quadruplet?
- Best treatment endpoint? **MRD** assessment?
- What is the optimal timing/sequencing of BiTEs and CAR T cells?
- Which is the optimal CAR T cell in MM, ide-cel or cilta-cel?

CONCLUSIONS/FUTURE DIRECTIONS

Take-home points:

• CD38 mabs:

Increase MRD-negative rate and deepen response
 Seeing more use in 1st-line therapy

- BiTEs and CAR T cells buy time in heavily R/R MM, but
- Require specialized toxicity monitoring and/or centers

Future directions:

• Real-world datasets:

Multi-institution/health system studies of non-trial patients
 CIBMTR database comparisons of CAR T products

• Trials that incorporate:

 $\,\circ\,$ Novel sequencing and combinations

 $\,\circ\,$ More permissive age, ECOG, and organ function criteria

ACKNOWLEDGMENTS

Our patients and their families/caregivers

KANSAS CITY

Colleagues and collaborators

- Kansas City VAMC Hem/Onc Division
- Research Medical Center Blood Cancer Center
- Thomas Chauncey
- Daphne Friedman
- Suman Kambhampati
- Chandler Park
- Attaya Suvannasankha
- Sharv Yellapragada