Systemic Therapy Updates in HCC and Cholangiocarcinoma

Amit Mahipal MBBS, MPH

Professor, Case western Reserve University

Director, GI Oncology Program, Seidman Cancer Center MLS Cleveland | Precision Medicine and Immunotherapy April 13, 2024

Role of adjuvant systemic therapy in HCC

- There is no standard of care adjuvant therapy after potentially curative therapy for BCLC B patients
 - Ablation
 - Surgery
 - Embolization (TACE or TARE)
- Systemic therapy with TKIs had limited utility
- Immunotherapy may change how we treat patients
- Rates of recurrences/progression is >50% after locoregional modalities

Hepatocellular Cancer: Adjuvant trials

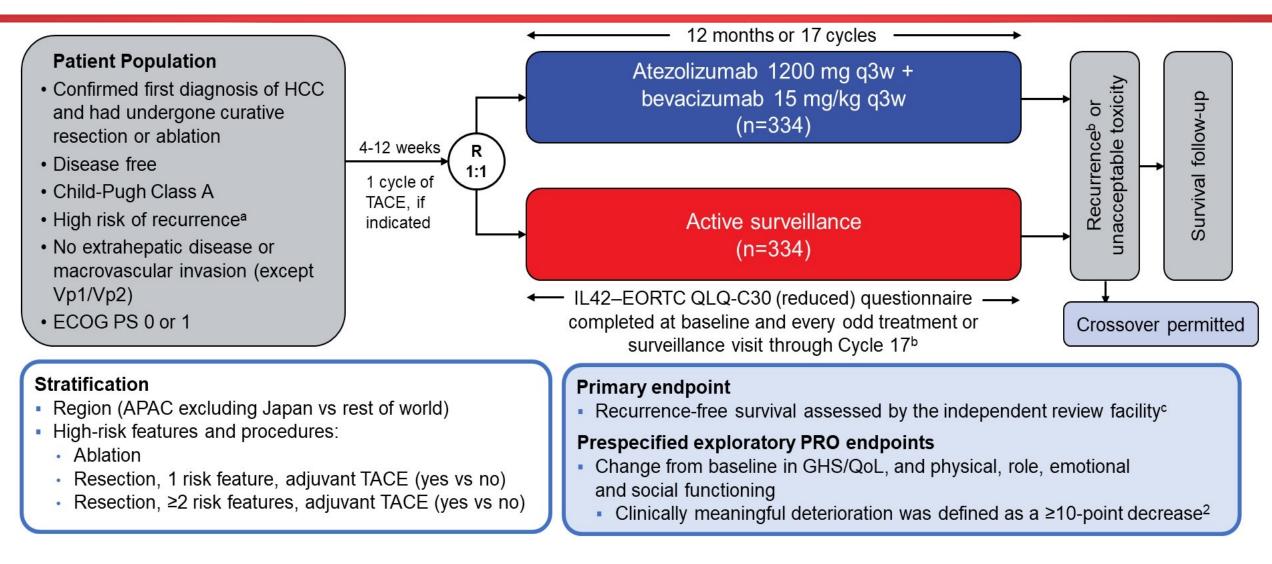
IMbrave050 Trial

Emerald-1 Trial

IMbrave050

Efficacy, safety and patient-reported outcomes from the Phase III IMbrave050 trial of adjuvant atezolizumab + bevacizumab vs active surveillance in patients with hepatocellular carcinoma at high risk of disease recurrence following resection or ablation

Masatoshi Kudo,¹ Minshan Chen,² Pierce Chow,³ Ahmed Kaseb,⁴ Han Chu Lee,⁵ Adam Yopp,⁶ Lars Becker,⁷ Sairy Hernandez,⁸ Bruno Kovic,⁹ Qinshu Lian,⁸ Ning Ma,⁸ Chun Wu,¹⁰ Shukui Qin,¹¹ Ann-Lii Cheng¹²

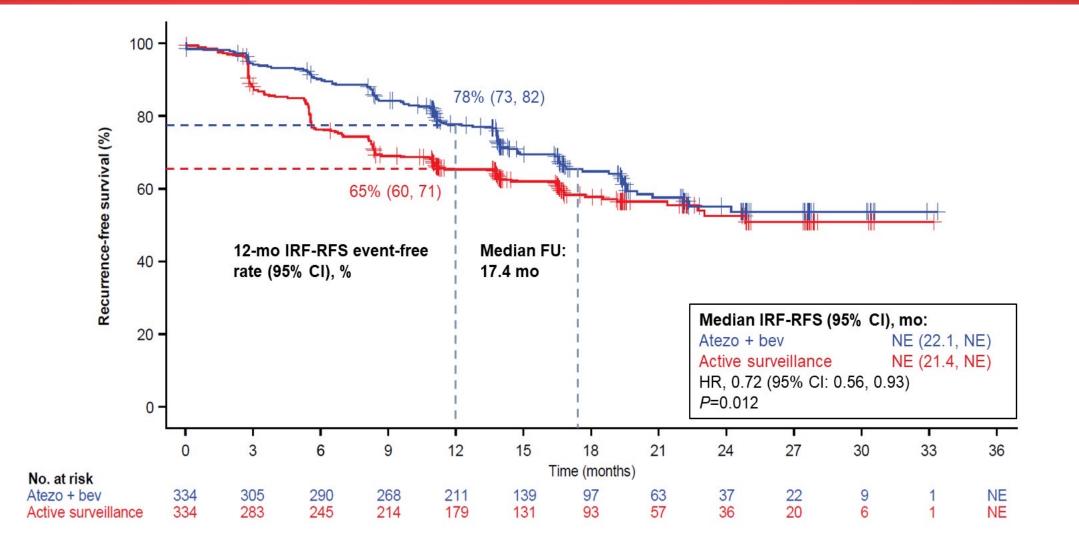


IMbrave050: High Risk Features

- Tumor size > 5 cm
- > 3 tumors
- Microvascular invasion
- Grade 3/4 pathology

IMbrave050: Study Design

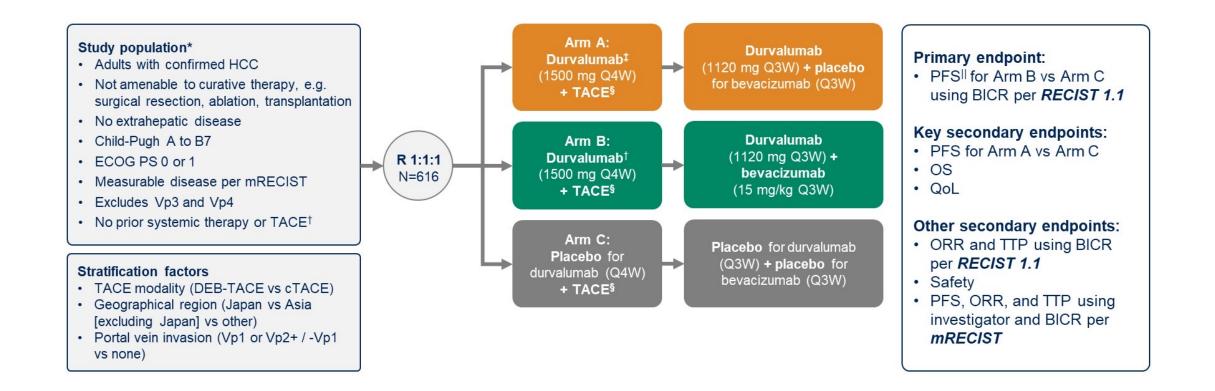
IMbrave050: Baseline Characteristics


Characteristic	Atezo + Bev (n=334)	Active surveillance (n=334)
Median age (range), years	60 (19-89)	59 (23-85)
Male sex, n (%)	277 (82.9)	278 (83.2)
Ethnicity, n (%)		
Asian	276 (82.6)	269 (80.5)
White	35 (10.5)	41 (12.3)
Other	23 (6.9)	24 (7.2)
Geographic region, n (%)		
Asia-Pacific excluding Japan rest of world	237 (71.0) 97 (29.0)	238 (71.3) 96 (28.7)
ECOG PS score, n (%)		
0 1	258 (77.2) 76 (22.8)	269 (80.5) 65 (19.5)
PD-L1 status, n (%) ^{a,b}		
≥1% <1%	154 (54.0) 131 (46.0)	140 (50.2) 139 (49.8)
Etiology, n (%)		
Hepatitis B	209 (62.6)	207 (62.0)
Hepatitis C	34 (10.2)	38 (11.4)
Non-viral unknown	45 (13.5) 46 (13.8)	38 (11.4) 51 (15.3)
BCLC stage at initial diagnosis, n (%)		
0	2 (0.6)	3 (0.9)
A	287 (85.9)	277 (82.9)
В	25 (7.5)	32 (9.6)
С	20 (6.0)	22 (6.6)

IMbrave050: Baseline Characteristics

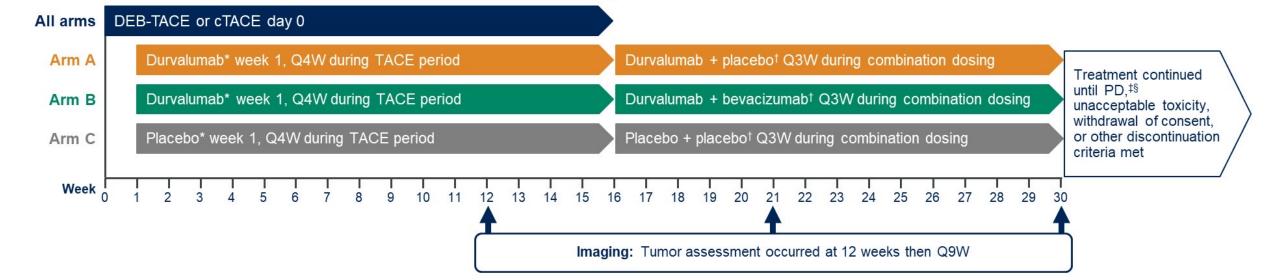
Characteristic	Atezo + Bev (n=334)	Active surveillance (n=334)
Resection, n (%)	293 (87.7)	292 (87.4)
Longest diameter of the largest tumor at diagnosis, median (range), cm ^a	5.3 (1.0-18.0)	5.9 (1.1-25.0)
Tumors, n (%)		
1	266 (90.8)	260 (89.0)
2	20 (6.8)	29 (9.9)
3	4 (1.4)	2 (0.7)
4+	3 (1.0)	1 (0.3)
Adjuvant TACE following resection, n (%)	32 (10.9)	34 (11.6)
Any tumors >5 cm, n (%)	152 (51.9)	175 (59.9)
Microvascular invasion present, n (%)	178 (60.8)	176 (60.3)
Minor macrovascular invasion (Vp1/Vp2) present, n (%)	22 (7.5)	17 (5.8)
Poor tumor differentiation (Grade 3 or 4), n (%)	124 (42.3)	121 (41.4)
Ablation, n (%)	41 (12.3)	42 (12.6)
Longest diameter of the largest tumor at diagnosis, median (range), cm	2.5 (1.2-4.6)	2.6 (1.5-4.6)
Tumors, n (%)		
1	29 (70.7)	31 (73.8)
2	11 (26.8)	8 (19.0)
3	1 (2.4)	3 (7.1)

IMbrave050: RFS



EMERALD-1: a Phase 3, randomized, placebocontrolled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization

EMERALD-1: Study Design

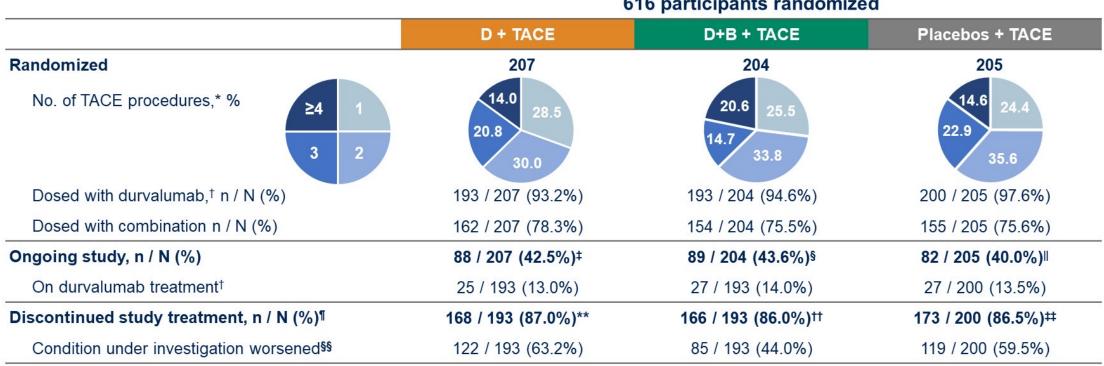

EMERALD-1: Study Treatment

Number and timings of TACE at the investigator's discretion:

• 1–4 TACE procedures within 16 weeks

Combination therapy begins after the final TACE procedure

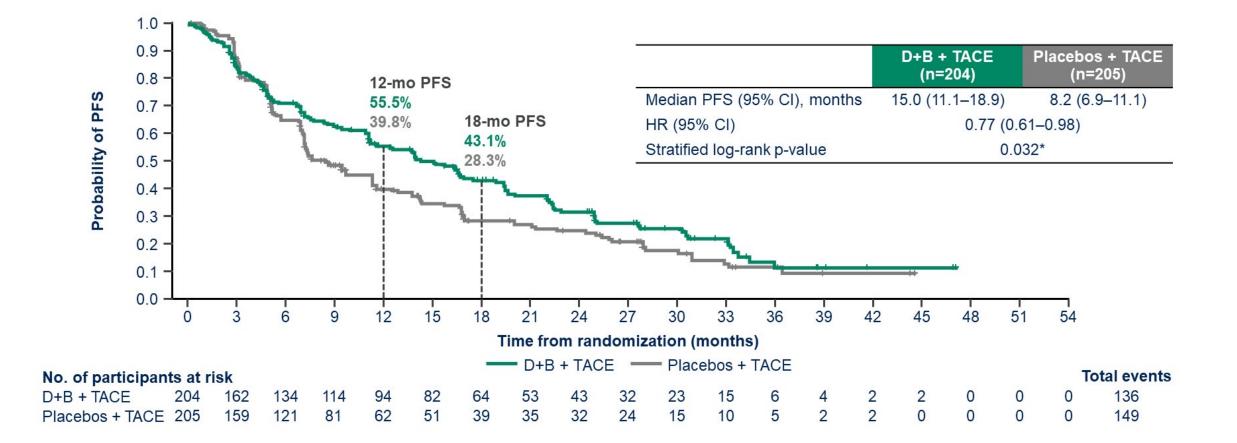
 Median (range) start of combination systemic therapy: 14 (2–113) weeks post first dose of TACE at Day 0



EMERALD-1

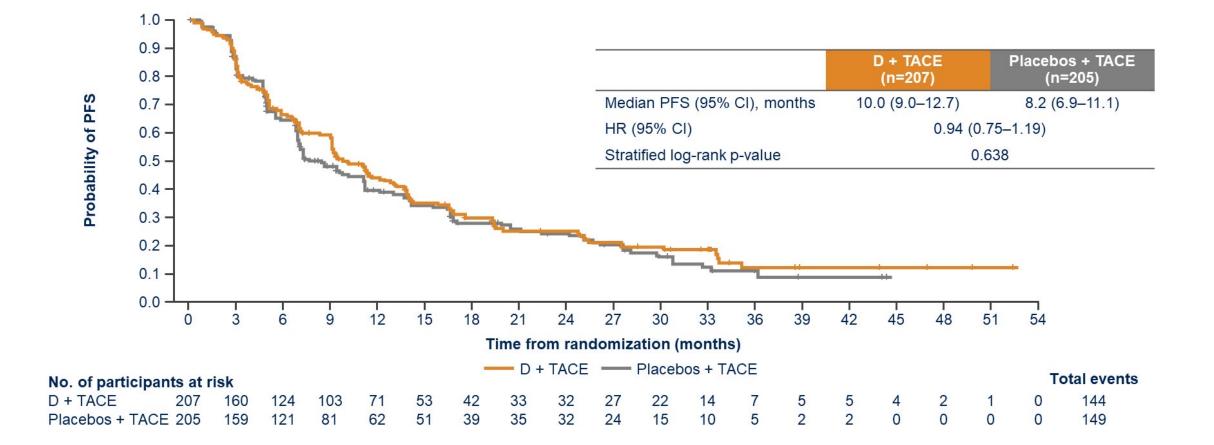
Participant disposition

The majority of participants had 1 or 2 TACE procedures with or without durvalumab



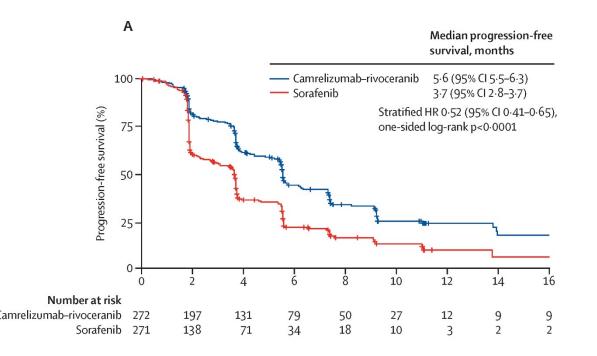
EMERALD-1: Baseline Characteristics

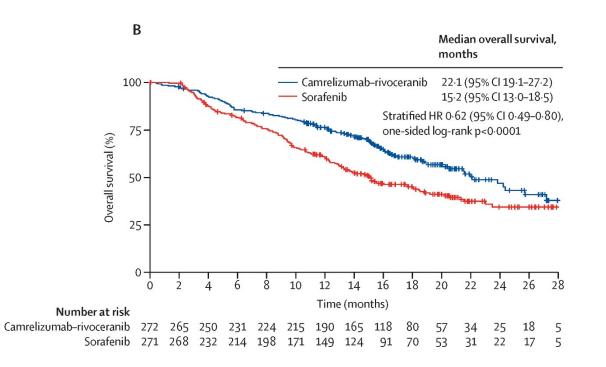
		D + TACE (n=207)*	D+B + TACE (n=204)*	Placebos + TACE (n=205)*
Age (years)	Median	65.0	64.5	66.0
Sex, n (%)	Male	156 (75.4)	162 (79.4)	163 (79.5)
Geographical region, n (%)	Japan	15 (7.2)	15 (7.4)	15 (7.3)
	Asia (non-Japan)	108 (52.1)	107 (52.4)	107 (52.1)
	Others	84 (40.5)	82 (40.1)	83 (40.4)
TACE modality, n (%)	DEB-TACE	81 (39.1)	84 (41.2)	84 (41.0)
	CTACE	123 (59.4)	119 (58.3)	120 (58.5)
Etiology of liver disease, n (%)	HBV	70 (33.8)	75 (36.8)	74 (36.1)
	HCV	48 (23.2)	42 (20.6)	54 (26.3)
	Non-viral	88 (42.5)	86 (42.2)	76 (37.1)
BCLC stage, n (%)	A	59 (28.5)	51 (25.0)	49 (23.9)
	В	114 (55.1)	117 (57.4)	122 (59.5)
	С	33 (15.9)	35 (17.2)	31 (15.1)
Portal vein invasion, n (%)	No	194 (93.7)	188 (92.2)	192 (93.7)
	Yes	13 (6.3)	16 (7.8)	13 (6.3)
Screening ECOG PS, n (%)	0	173 (83.6)	167 (81.9)	175 (85.4)
0	1	34 (16.4)	37 (18.1)	30 (14.6)
Baseline PD-L1 [†] , n (%)	High (≥1%)	63 (30.4)	61 (29.9)	64 (31.2)
	Low (<1%)	97 (46.9)	93 (45.6)	88 (42.9)
	Unknown	47 (22.7)	50 (24.5)	53 (25.9)
Child-Pugh score, n (%)	A	201 (97.1)	200 (98.0)	201 (98.0)
	В	6 (2.9)	4 (2.0)	4 (2.0)
ALBI at baseline, n (%)	Grade 1	107 (51.7)	117 (57.4)	126 (61.5)
	Grade ≥2	100 (48.3)	87 (42.6)	79 (38.5)
Tumor burden at baseline, n (%)	Within up-to 7 criteria (≤7)	97 (46.9)	97 (47.5)	102 (49.8)
	Beyond up-to-7 criteria (>7)	110 (53.1)	106 (52.0)	103 (50.2)
HAP score, n (%)	A	63 (30.4)	66 (32.4)	64 (31.2)
	В	72 (34.8)	74 (36.3)	75 (36.6)
	C	52 (25.1)	41 (20.1)	48 (23.4)
	D	20 (9.7)	20 (9.8)	18 (8.8)
	Missing	0	3 (1.5)	0



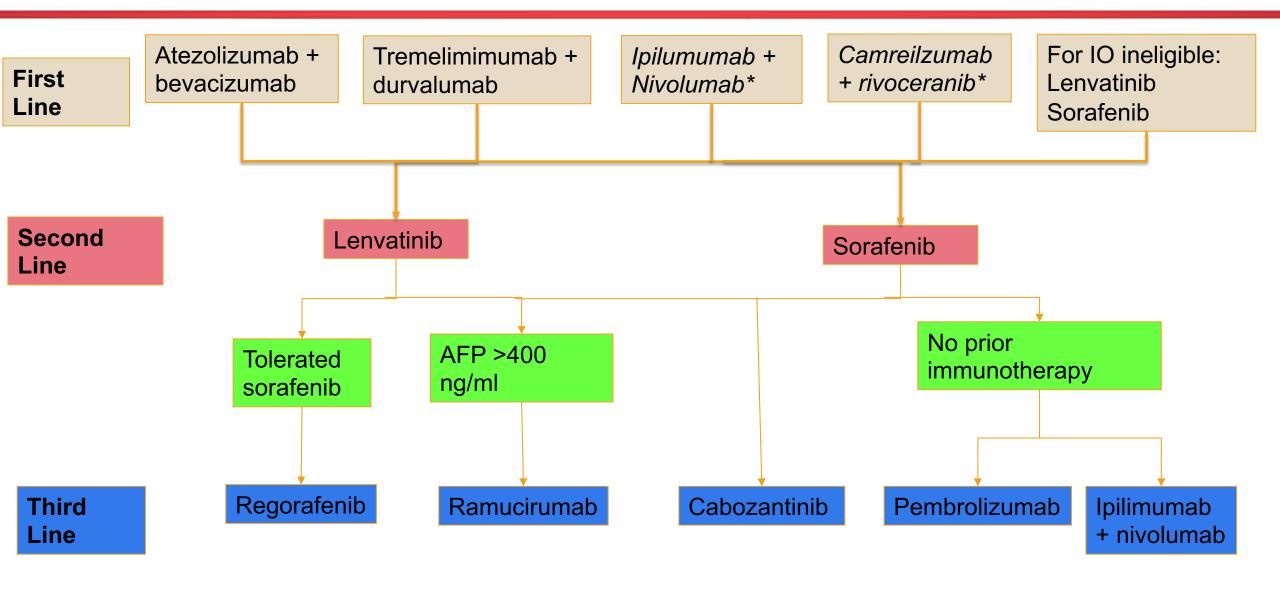
Emerald-1: PFS (D + B + TACE)

EMERALD-1: PFS (D + TACE)


Key Takeaways


- First time we have positive adjuvant trials in HCC
 - Atezolizumab + bevacizumab post ablation/resection
 - Durvalumab + bevacizumab post TACE
- OS data is immature for both trials
- Relevant for patients with high risk disease
- TACE vs TARE
- Is adjuvant therapy delaying recurrences vs increasing cure rates
- Increasing role of systemic therapy in HCC
- Eagerly awaiting mature OS data
- Is there role of radiation therapy in adjuvant setting

Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study

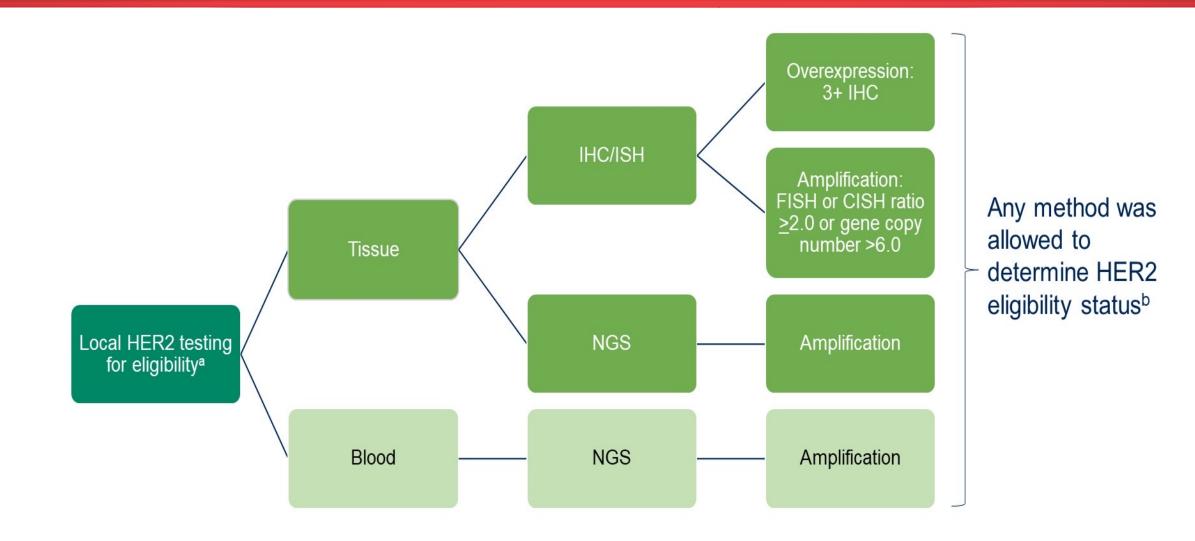

CARES-310: Camrelizumab + Rivoceranib

Systemic therapy for HCC: How to treat

Bile Duct Cancers: Targeted Therapy

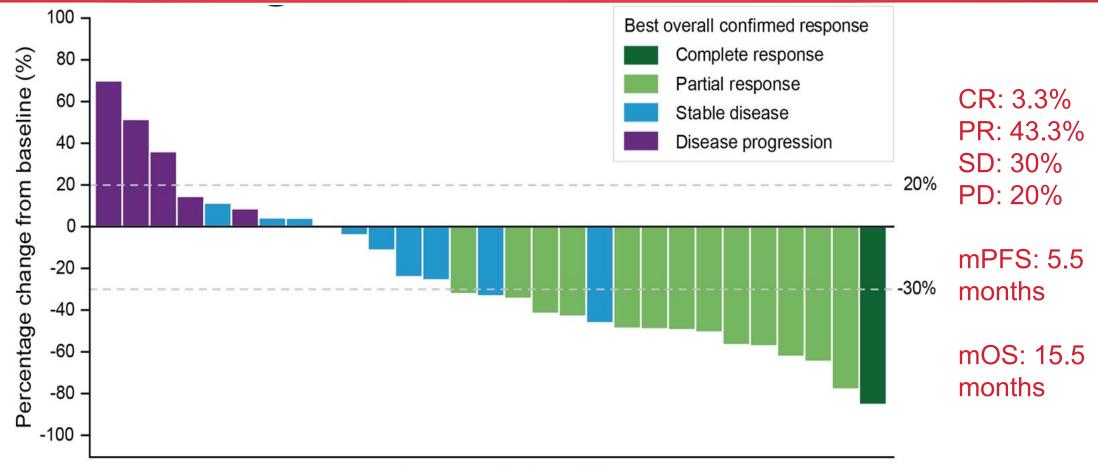
- FGFR2 fusions
 - Futibatinib
 - Pemigatinib
 - Infigratinib (withdrawn from the market)
- IDH1 mutation
 - Ivosidenib
- MSI-high
 - Pembrolizumab
 - Ipilimumab + nivolumab
- Her-2 overexpression/amplification

Tucatinib and Trastuzumab for Previously Treated HER2-Positive Metastatic Biliary Tract Cancer (SGNTUC-019): A Phase 2 Basket Study


Yoshiaki Nakamura

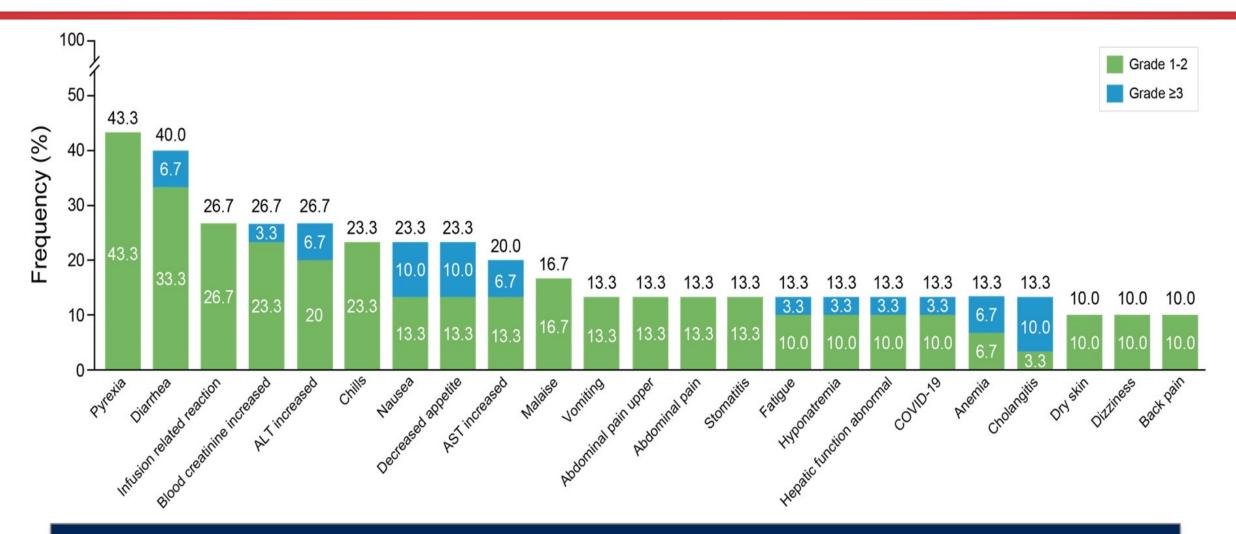
National Cancer Center Hospital East, Kashiwa, Japan

Nobumasa Mizuno, Yu Sunakawa, Erika P. Hamilton, Hidetoshi Hayashi, Seung Tae Kim, Keun-Wook Lee, Bradley J. Monk, Danny Nguyen, Alicia Okines, David M. O'Malley, Paula R. Pohlmann, Martin Reck, Evan Y. Yu, Roman Groisberg, Jorge Ramos, Sherry Tan, Thomas E. Stinchcombe, Tanios S. Bekaii-Saab



SGNTUC-019: Her-2 eligibility

SGNTUC-019: Waterfall Plot


Individual patients (n=29^a)

Twenty-one patients (70.0%^b) had a reduction in tumor size Median time to first response was 2.1 months (range, 1.2-4.3)

Mizuno et al. 2023 ASCO Annual Meeting

SGNTUC-019: Adverse Events

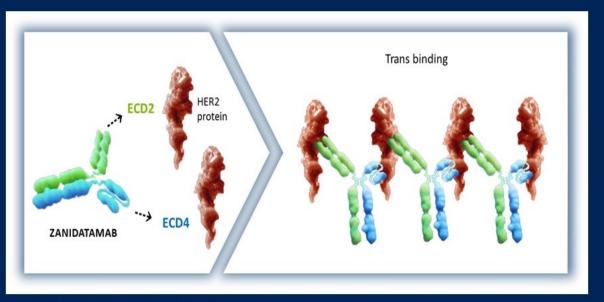
Most common grade ≥3 TEAEs were nausea, decreased appetite, and cholangitis (each in 3 patients [10.0%])

SGNTUC-019: Central vs Local Her-2 testing

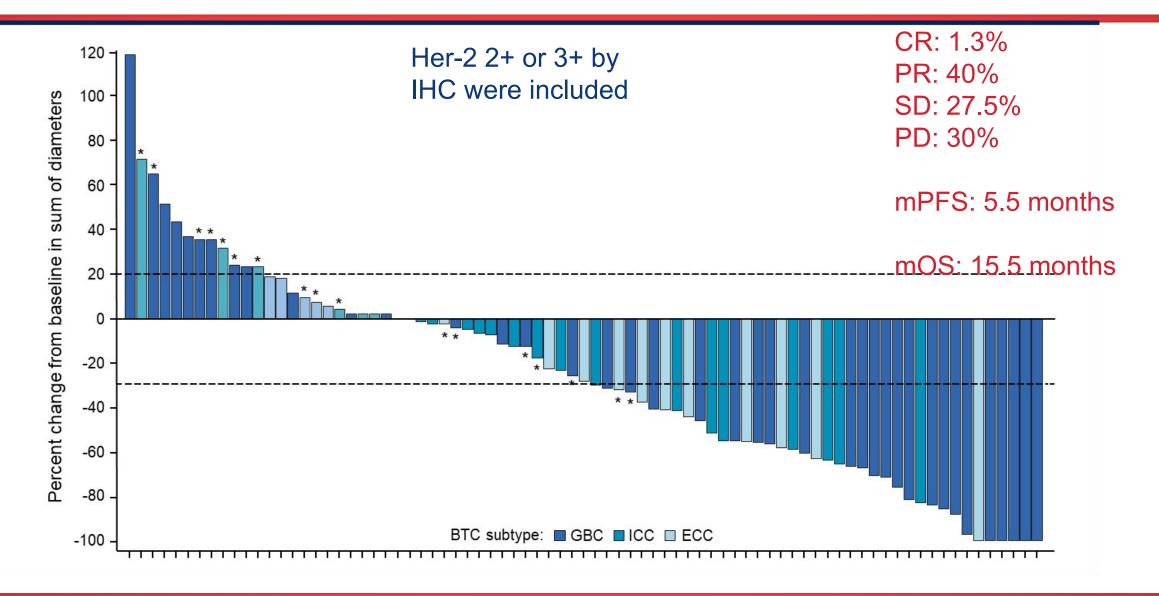
Centrally HER2+		Centrally HER2–		
	Responder/Total	ORR (90% CI)	Responder/Total	ORR (90% CI)
IHC/FISH ^a	12/21	57.1% (37.2-75.5)	0/3	0% (0-63.2)
FISH ^b	12/21	57.1% (37.2-75.5)	0/3	0% (0-63.2)
Blood-based NGS ^c	14/22	63.6% (43.9-80.4)	0/7	0% (0-34.8)

Regardless of testing method, all central HER2– patients were nonresponders

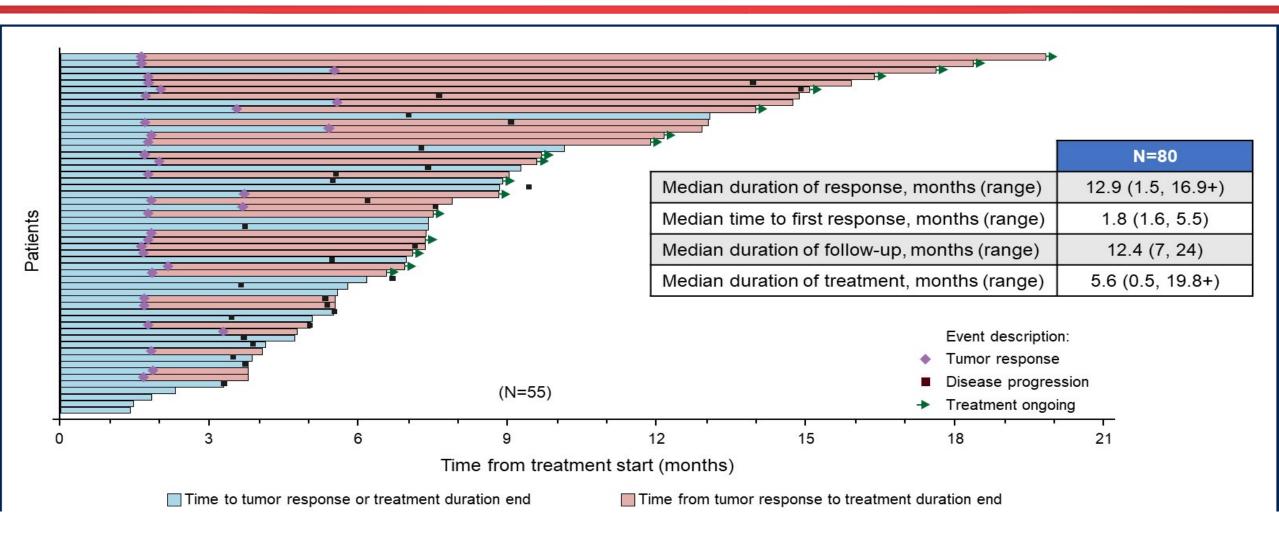
Zanidatamab


Results from the Pivotal Phase 2b HERIZON-BTC-01 Study: Zanidatamab in Previously-treated HER2-amplified Biliary Tract Cancer (BTC)

Shubham Pant, MD¹; Jia Fan, MD, PhD²; Do-Youn Oh, MD, PhD³; Hye Jin Choi, MD, PhD⁴; Jin Won Kim, MD, PhD⁵; Heung-Moon Chang, MD, PhD⁶; Lequn Bao, MD⁷; Sun Huichuan, MD, PhD²; Teresa Macarulla, MD, PhD⁸; Feng Xie, MD⁹; Jean-Philippe Metges, MD¹⁰; Jie'er Ying, MD¹¹; John A Bridgewater, MD, PhD¹²; Myung-Ah Lee, MD, PhD¹³; Mohamedtaki A Tejani, MD¹⁴; Emerson Y Chen, MD, MCR¹⁵; Dong Uk Kim, MD¹⁶; Harpreet Wasan, MD, FRCP¹⁷; Michel Ducreux, MD, PhD¹⁸; Yuanyuan Bao, MS¹⁹; Lin Yang, PhD²⁰; JiaFang Ma, MD¹⁹; Phillip M Garfin, MD²⁰; James J Harding, MD²¹

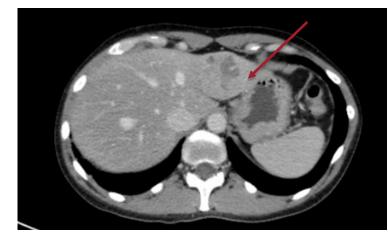

Zanidatamab: Her-2 targeted bispecific antibody

- Zanidatamab simultaneously binds
 2 separate HER2 molecules in *trans*¹
- Unique binding properties of zanidatamab to HER2 result in multiple MOAs¹
- Preclinical studies demonstrate greater activity than trastuzumab ± pertuzumab¹
- Zanidatamab has shown a manageable safety profile and encouraging antitumor activity in patients with HER2-expressing BTC in a Phase 1 trial²


ECD = extracellular domain

Zanidatamab: Waterfall Plot

Zandatamab: Duration of Response


Key takeaways

- Tucatinib + trastuzumab had ORR of 46.7% and DCR of 76.7% in Her-2 amplified BTCs
 - The benefit was seen regardless of methodology: IHC, FISH, tissue or blood based NGS
- Zanidatamab had ORR of 41.3% and DCR of 68.8%
 - Her-2 2+ and 3+ were included
- Relatively well tolerated regimens
- Her-2 is becoming a viable target with multiple therapies being tested
- Due to rarity of disease, it may not be feasible to do a randomized trial
- Possibly consider Her-2 targeted therapies as second line treatment in advanced BTCs

Case Presentation

44 year old female presented with right upper quadrant pain

1/2022: Recurrence

3/2021: Left hepatectomy, T2N0 4/2021-12/2021: Adjuvant capecitabine

Biopsy consistent with recurrence

1/2023: Solid tumor NGS showed mutation in *IDH1, KRAS G12C, BAP1, PBRM1, ERBB3*

2/2023-6/2023: Gemcitabine + cisplatin + durvalumab. Progressive disease

7/2023-9/2023: Sotorasib targeting *KRAS G12C*. Progressive disease 9/2023-10/2023: FOLFOX. Progressive disease

11/2023-1/2024: Ivosidenib targeting *IDH1*. Progressive disease

Case Presentation

2/2024

2/2024: Repeat NGS showed mutation in CHEK2, TERT, TP53, ERBB2, IDH1

What would be next steps:

Hospice? Phase 1 Clinical trial? Others?

Case Presentation

2/2024: Fam-trastuzumab deruxtecan (6.4 mg/kg), 21 Day Cycles

Keep in mind that this patient had *ERBB2* mutation and not ERBB2 overexpression or amplification

Questions

