Novel Therapy in Treatment of Brain Cancers

Manmeet S. Ahluwalia, MD, MBA, FASCO Fernandez Family Foundation Endowed Chair in Cancer Research Chief of Medical Oncology, Chief Scientific Officer & Deputy Director, Miami Cancer Institute, Baptist Health South Florida Professor of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University

Glioblastoma^{1,2}

Age,	У	5-Year Relative Survival Rate, %					
20-44			22				
45-54			9				
55-64			6				
		Treat	ment				
	Loca	l/Regional	Systemic				
	 Surgery Radiation TTFields 		ChemotherapyBiologic therapy				

 Targeted therapy Glioblastoma presents unique treatment challenges due to:

- Localization of tumors in the brain
- Inherent resistance to conventional therapy
- Limited capacity of the brain to repair itself
- Migration of malignant cells into adjacent brain tissue
- The variably disrupted tumor blood supply, which inhibits effective drug delivery
- Tumor capillary leakage

1. https://www.cancer.org/cancer/brain-spinal-cord-tumors-adults/detection-diagnosis-staging/survival-rates.html. 2. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Glioblastoma-Multiforme.

The Challenge With Glioblastoma¹

Delivery of TTFields in Glioblastoma¹⁻³

- A portable, noninvasive device that provides localized treatment with TTFields
- TTFields are low-intensity (1-3 V/cm), intermediate-frequency (200 kHz), alternating electric fields delivered in two directions
- Single-use transducer arrays are applied to the scalp to deliver TTFields
- Positioning of transducer arrays is individualized for every patient

1. https://www.accessdata.fda.gov/cdrh_docs/pdf18/H180002B.pdf. 2. https://www.mskcc.org/sites/default/files/node/105264/document/novocure_piom.pdf. 3. Lacouture ME et al. Semin Oncol. 2014;41(suppl 4):s1-s14.

EF-14: Addition of TTFields Improved OS vs Temozolomide Alone (ITT Population)¹⁻³

NCCN Recommended Treatment Approaches: Newly Diagnosed Glioblastoma¹

^a For patients with poor PS (KPS <60), adjuvant treatment consists of hypofractionated brain RT (preferred) ± concurrent or adjuvant TMZ, TMZ, or palliative/best supportive care, and follow-up consists of brain MRI 2-8 wk after RT, then every 2-4 mo for 3 y, then every 3-6 mo indefinitely.
 1. NCCN Clinical Practice Guidelines in Oncology. Central Nervous System Cancers. Version 1.2023. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.

NCCN Recommended Treatment Approaches: Newly Diagnosed Glioblastoma¹ (Cont'd)

^a For patients with poor PS (KPS <60), adjuvant treatment consists of hypofractionated brain RT alone, TMZ, or palliative/best supportive care, and follow-up consists of brain MRI 2-8 wk after RT, then every 2-4 mo for 3 y, then every 3-6 mo indefinitely.

1. NCCN Clinical Practice Guidelines in Oncology. Central Nervous System Cancers. Version 1.2023. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.

Treatment Approaches for Recurrent Glioblastoma^{1,a}

Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances
 Bevacizumab TMZ Lomustine or carmustine PCV Regorafenib 	 Systemic therapy + bevacizumab Carmustine or lomustine + bevacizumab TMZ + bevacizumab 	 If failure or intolerance to the preferred or other recommended regimens Etoposide (category 2B) Platinum-based regimens (category 3) NTRK gene fusion tumors Larotrectinib Entrectinib BRAF V600E activation mutation BRAF/MEK inhibitors Dabrafenib/trametinib Vemurafenib/cobimetinib

^a All recommendations are category 2A unless otherwise indicated.

1. NCCN Clinical Practice Guidelines in Oncology. Central Nervous System Cancers. Version 1.2023.

https://www.nccn.org/professionals/physician_gls/pdf/cns_blocks.pdf.

Studying Glioblastoma: A New Paradigm^{1,2}

- Fewer than 11% of patients with glioblastoma enroll in clinical trials
- Clinical need: changing the clinical trial paradigm
 - Improving patient access
 - Making criteria less restrictive
 - New agents tend to fail in the recurrent setting and are then abandoned

Precision Medicine in Cancer: A Top-Down Approach¹

1. Quant Lee E et al. J Clin Oncol. 2022;40(suppl 16):2012.

INSIGhT: Study Design¹

1. Alexander BM et al. JCO Precis Oncol. 2019:3:1-13.

GBM AGILE^{1,2}

- An adaptive phase 2/3 trial enrolling patients with newly diagnosed and recurrent glioblastoma
- Regorafenib was the first experimental drug in this trial
- Paxalisib and VAL-083 are also being tested in this trial

1. https://clinicaltrials.gov/ct2/show/NCT03970447. 2. Buxton M et al. SNO 2020. Abstract RTID-11.

Precision Medicine in Cancer: A Bottom-Up Approach¹

TRC102, in Bevacizumab-Naïve Glioblastoma at First

a S = saline (control), T = TMZ 75 mg/kg, M = TRC102 alone, TM = TMZ + TRC102. Unpublished data: courtesy of Andy Sloan, UH-Case Medical Center.
 1. Ahluwalia M et al. *Neuro Oncol.* 2018;20(suppl 6):vi15.

Responder Patients Show Overactivation of DNA Damage Response Pathways¹

1. Unpublished data.

Gene Fusions as Potential Therapeutic Targets in Glioblastoma¹⁻³

- Recurrent fusions thought to be likely drivers
 - Recurrent TCGA analysis estimated that fusions drive development of 16.5% of cancer cases and are the sole driver in more than 1%
- Many fusions result in activation of receptor kinases
- Several examples of successful therapeutic targeting in other cancer types
 - BCR-ABL, PML-RARA, and EML4-ALK
- Multiple fusions identified in small percentage of glioblastoma tumors from multiple studies
 - FGFR3-TACC3
 - EGFR-SEPT14
 - NTRK, ROS, and MET fusions

Investigator-Assessed Efficacy of Larotrectinib in NTRK Fusion–Positive Primary CNS Tumors^{1,2,a}

	Evaluable Patients (N = 14)
ORR, % (95% CI)	36 (13-65)
Best overall response, ^b n (%) CR ^c PR SD PD	2 (14) ^d 3 (21) ^d 9 (64) 0
DCR ≥16 wk, ^e n (%)	11 (79)
DCR ≥24 wk, ^e n (%)	10 (71)
mPFS <i>,</i> ^f mo (95% CI)	11.0 (2.8-NE)

^a Data cutoff date: February 19, 2019. ^b Investigator assessment based on RANO and RECIST v1.1. ^c Pending confirmation.

^d All responses were seen in pediatric cases (ORR = 45%; n = 5/11). ^e DCR = CR + PR + SD. ^f In 18 patients with median follow-up of 4.4 months.

1. Drilon AE et al. 2019 American Society of Clinical Oncology Annual Meeting (ASCO 2019). Abstract 2006. 2. Doz F et al. Neuro Oncol. 2019;21(suppl 6):vi231.

BRAF/MEK Inhibition in Glioblastoma¹⁻³

- Phase 2 VE-BASKET trial of vemurafenib
 - ORR: 42.9% (n = 7)
 - PFS: 5.7 mo
 - OS: not reached
- Phase 2 trial of dabrafenib/trametinib
 - ORR: 56%

Vemurafenib/cobimetinib is associated with improved outcomes and safety compared with vemurafenib monotherapy Challenges in Glioblastoma 1. Targeting EGFR 2. Immunotherapy

EGFR-Targeted Therapies in Glioblastoma: Depatuxizumab Mafodotin^{1,2}

- 50% of patients with glioblastoma have some form of genetic alteration in the EGFR pathway
- Antibody–drug conjugate: a monoclonal antibody that binds activated EGFR (WT and EGFRvIII mutant) linked to a microtubule-inhibitor toxin

EGFR-Targeted Therapies in Glioblastoma

Ongoing Trials Targeting EGFR

- D2C7-CED: single-chain, monoclonal antibody–fragment immunotoxin (also targets EGFRvIII)
- EGFR (V)-EDV-Dox: nanotechnology + panitumumab
- CAR-T cells that are anti-EGFRvIII
- BiTE: bispecific T-cell engagers
- BATs: bi-armed activated T cells
- ABBV-321: ADC for EGFR
- Cetuximab: intra-arterial infusion

Downstream signaling leads to invasion, survival, proliferation, and angiogenesis

Continued preclinical and clinical research is needed to understand the effect of targeting EGFR in newly diagnosed and recurrent glioblastoma

Immunotherapy Advances in Glioblastoma: Immune Checkpoint Inhibitors and Combination Therapies

In general, the neuro-oncology community has not enjoyed the groundbreaking studies and observations in glioblastoma that have been seen in other cancers with single-agent use of immune checkpoint inhibitors

In a rare subset of patients with glioblastoma whose tumors have a signature hypermutation burden because of germline biallelic mismatch repair deficiency, there can be a benefit from immune checkpoint inhibition¹

CheckMate -143: Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma¹

Intonuontion	Events, n	Median OS, mo (95% Cl)	OS Rate, % (95% Cl)			
intervention			6 mo	12 mo	18 mo	
Nivolumab	154	9.8 (8.2-11.8)	72.3 (65.2-78.2)	41.8 (34.7-48.8)	21.7 (16.1-27.9)	
Bevacizumab	147	10.0 (9.0-11.8)	78.2 (71.2-83.6)	42.0 (34.6-49.3)	21.6 (15.8-28.0)	

Although the primary endpoint was not met in this randomized clinical trial, mOS was comparable between nivolumab and bevacizumab in the overall patient population with recurrent glioblastoma

1. Reardon DA et al. *JAMA Oncology*. 2020;6:1003-1010.

CheckMate -498: RT + Nivolumab vs RT + TMZ for Newly Diagnosed Glioblastoma With Unmethylated MGMT¹

Intorvontion	Events, n	Median OS, mo (95% Cl)	OS Rate, % (95% Cl)				
			6 mo	12 mo	18 mo	24 mo	
Nivolumab + RT	244	13.4 (12.6-14.3)	88.5 (84.1-91.7)	58.3 (52.2-63.9)	28.5 (23.3-34.0)	10.3 (6.8-14.6)	
TMZ + RT	218	14.9 (13.3-16.1)	88.7 (84.4-91.9)	62.3 (65.3-67.8)	36.4 (30.7-42.2)	21.1 (16.4-26.5)	

1. Omuro A et al. Neuro Oncol. 2022 Apr 14 [Epub ahead of print].

CheckMate -548: RT + Temozolomide + Nivolumab for Newly Diagnosed Glioblastoma With Methylated MGMT^{1,2}

- Patients (N = 716) aged ≥18 y were randomized 1:1 regardless of tumor PD-L1 expression
- mPFS: 10.6 mo with nivolumab + RT + TMZ vs 10.3 mo with placebo + RT + TMZ (HR = 1.06 [95% CI, 0.90-1.25])
- mOS: 28.9 mo with nivolumab + RT + TMZ vs 32.1 mo with placebo + RT + TMZ (HR = 1.10 [95% CI, 0.91-1.33])

	All Patients		No Baseline Steroids				PD-L1 <1%	
Intervention	Events,	Median OS, mo	Events,	Median OS, mo	Events,	Median OS, mo	Events,	Median OS, mo
	n	(95% CI)	n	(95% CI)	n	(95% CI)	n	(95% CI)
Nivolumab + RT + TMZ	222	28.9 (24.4-31.6)	146	31.3 (28.6-34.8)	74	29.8 (23.3-34.6)	147	28.7 (23.2-32.2)
Placebo + RT + TMZ	216	32.1 (29.4-33.8)	150	33.0 (31.0-35.1)	71	31.0 (26.5-34.5)	145	32.1 (28.9-34.2)

1. Weller M et al. SNO 2021. Abstract CNTI-25. 2. Lim M et al. *Neuro Oncol*. 2022;24:1935-1949.

Challenges With Utilization of Immune Checkpoint Inhibition in Glioblastoma¹⁻³

- Immunosuppression via CTLA-4 is upregulated in patients with glioblastoma because the total fraction of Tregs is much higher, even though total CD4 counts are lower
- T cells that should be involved in tumor response are sequestered in the bone marrow

Inhibition of TILs because of PD-1/PD-L1 interactions and CTLA-4 interactions via Tregs Checkpoint inhibition of CTLA-4 and PD-1 reduces TIL suppression and increases TIL activity

Phase 2 Trial:

Nivolumab + Bevacizumab in Recurrent Glioblastoma¹

Neoadjuvant Anti–PD-1 Immunotherapy in Recurrent Glioblastoma¹

1. Cloughesy TF et al. Nat Med. 2019;25:477-486.

Temozolomide in MGMT Unmethylated Newly Diagnosed Glioblastoma¹

Stratify

- RTOG glioblastoma RPA, III vs. IV vs. V
- Intent to use TTFields
 - FDA approved therapy: concerns about disallowing TTFields for patients on control arm
 - Disallowed on treatment arm, concern regarding scalp tox/rash

Temozolomide in MGMT Unmethylated Newly Diagnosed Glioblastoma¹ (Cont'd)

Ipi+Nivo did not prolong survival vs. temozolomide (+-/TTFields)

1. Lassman et al. Neuro-Oncology. 2023;25:iii2.

Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma March 13, 2024, NEJM

- 3 participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells
- CAR T cells engineered to target the EGFR vIII tumor-specific antigen, as well as the wildtype EGFR protein, through secretion of a T-cell–engaging antibody molecule (TEAM)
- Radiographic tumor regression was dramatic and rapid, occurring within days after receipt
 of a single intraventricular infusion, but the responses were transient in two of the three
 participants

Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results

- In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS) and managed with high-dose dexamethasone and anakinra (anti-IL1R)
- Reductions in enhancement and tumor size at early MRI timepoints were observed in all six patients; however, none met criteria for ORR

https://doi.org/10.1038/s41591-024-02893-z

Published online: 13 March 2024

nature medicine

Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

Manmeet S. Ahluwalia, MD¹; David A. Reardon, MD²; Ajay P. Abad, MD³; William T. Curry, MD⁴; Eric T. Wong, MD⁵; Sheila A. Figel, PhD^{6,7}; Laszlo L. Mechtler, MD³; David M. Peereboom, MD¹; Alan D. Hutson, PhD⁸; Henry G. Withers, PhD⁸; Song Liu, PhD⁸; Ahmed N. Belal, MD⁹; Jingxin Qiu, MD, PhD¹⁰; Kathleen M. Mogensen, NP³; Sanam S. Dharma, PhD⁶; Andrew Dhawan, MD¹¹; Meaghan T. Birkemeier, BS⁶; Danielle M. Casucci, BS^{6,7}; Michael J. Ciesielski, PhD^{6,7}; and Robert A. Fenstermaker, MD^{6,7}

Journal of Clinical Oncology®

Volume 41, Issue 7 1453

- Temozolomide mPFS of 4 mos. and mOS of 16.0 mos. obtained from 2017 Stupp Phase 3 data
- Optune was approved as a medical device with mOS of 20.9 mos.
- SurVaxM mPFS is 11.4 months
- SurVaxM mOS at 26 months is still immature with ongoing follow-up

Methylation	mPFS (months)	95% CI	mOS (months)) 95% CI
All patients	11.4	9.9 to 12.7	25.9	22.5 to 29.0
unMGMT	7.0	5.7 to 8.2	16.5	13.4 to 19.3
meMGMT	17.9	14.7 to 20.7	41.4	32.1 to 49.4
Methylation/IDH	mPFS (months)	95% CI	mOS (months)) 95% Cl
All patients/IDHwt	10.3	8.9 to 11.6	23.0	19.8 to 25.9
unMGMT/IDHwt	6.9	5.6 to 8.0	15.6	12.6 to 18.3
meMGMT/IDHwt	19.3	15.4 to 22.6	NR (> 41.4)	37.1 to 59.4 (at 41.4)
Survival	PFS (%)	95% CI	OS (%)	95% CI
All patients				
6 months	69.80	56.8 to 79.5	—	—
12 months	47.60	34.9 to 59.3	87.20	76.1 to 93.4
24 months	26.60	16.4 to 37.9	51	38.3 to 63.0
36 months	22.60	12.9 to 33.9	41.40	27.8 to 54.5

Phase 2b Study of SurVaxM in nGBM (SURVIVE)

"Prospective Randomized Placebo-Controlled Trial of SurVaxM for Newly Diagnosed Glioblastoma"

NCT0516308U PHASE 2b RCT DESIGN:

NEWLY DIAGANOSED GLIOBLASTOMA (*n*=270)

Gross total resection (≤ 1cm³) & completed initial Standard of Care therapy (Same as Phase 2a)

Stratified for MGMT methylation & IDH1 status

RANDOMIZED 3:2

SurVaxM (Arm A) SurVaxM in emulsion with Montanide Sargramostim (local injection) Standard-of-care TMZ

Placebo (Arm B) Saline in emulsion with Montanide Saline (local injection) Standard-of-care TMZ

Dosing q2w x 4 doses and then q2m until tumor progression or unacceptable toxicity occurs.

ENDPOINTS:

- 1° Overall Survival:
 - OS12 (surrogate)
 - mOS (confirmatory)
- 2° Progression Free Survival:
 - mPFS
 - 1^{rst} per Central Imaging (RANO)
 - 2nd per Pl

3° Immune Response & Biomarker Analysis (DNA/RNA)

Targeting IDH Mutations: Current Treatment Approach to Newly Diagnosed IDH1/2-Mutant Gliooma

1. Weller M et al. Nat Rev Clin Oncol. 2021;18:170-86.

INDIGO: A Phase 3 Study of Vorasidenib Versus Placebo in Patients with Residual or Recurrent IDH1/2-Mutant Glioblastoma¹

Neuro-Oncology

XX(XX), 1–15, 2023 | https://doi.org/10.1093/neuonc/noad211 | Advance Access date 23 November 2023

Future Directions

Conclusions

- GBM Oncology Clinical trials = Soccer Match
- More shots on goal = more chances of success
- Not successful for GBM
- Bold Approach = Apollo Space Program
- First human landing on the moon in 1969 (Apollo -11)
- No multiple shots on goal- rather one space mission after other to test each component needed for success