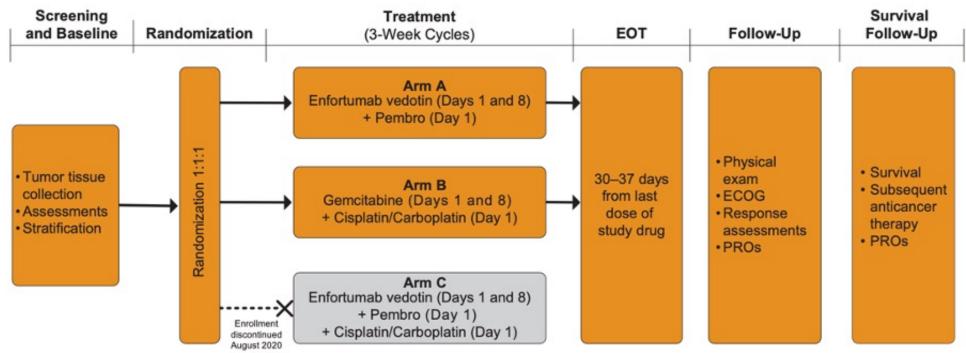
Updates in RCC and Urothelial Cancer

Ulka Vaishampayan, M.D.

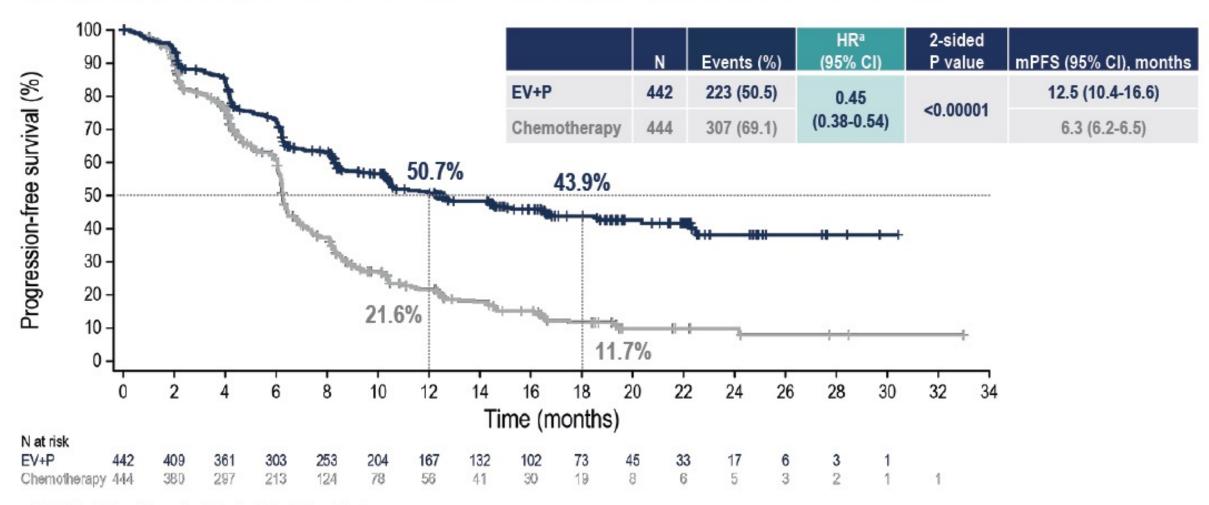
Director of Phase I Therapeutics
Rogel Cancer Center
Professor of Medicine/GU Oncology
University of Michigan School of Medicine
Ann Arbor MI


Urothelial Cancer: Remarkable Advances

Enfortumab + pembro shows remarkable OS benefit

Checkmate 901: Cis + gem +/- nivo shows OS benefit

EV-302 Enfortumab vs Platinum Based Chemo

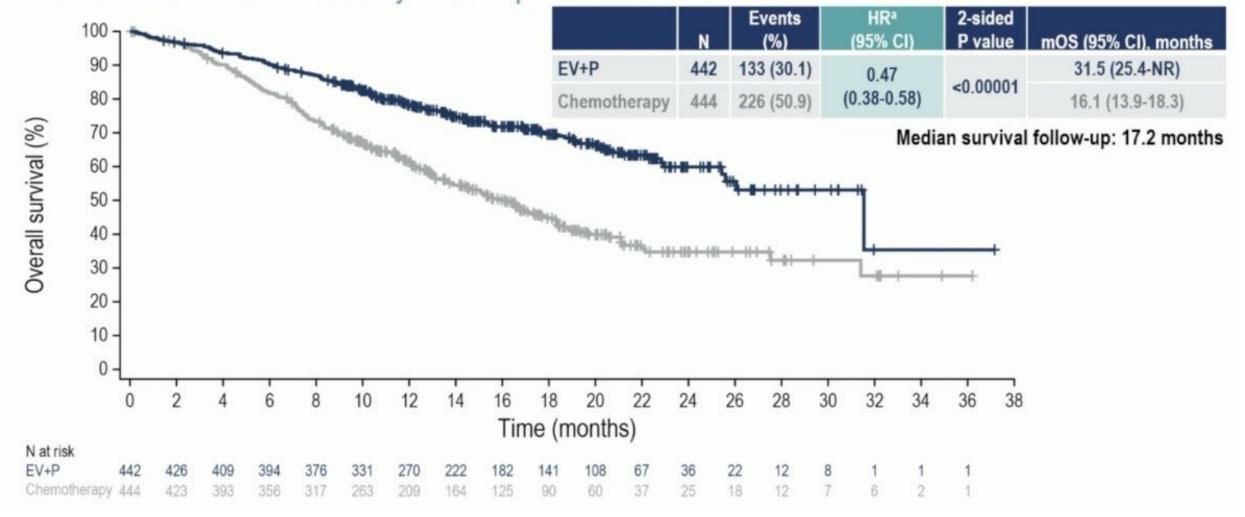


EOT= End of Treatment; Pembro=pembrolizumab; PROs=patient reported outcomes

- Stratification Factors for Randomization: cisplatin eligibility (eligible/ineligible), liver metastases (present/absent), PD-L1 expression (high/low)
- · Follow-up until disease progression, death, consent withdrawal, or study closure

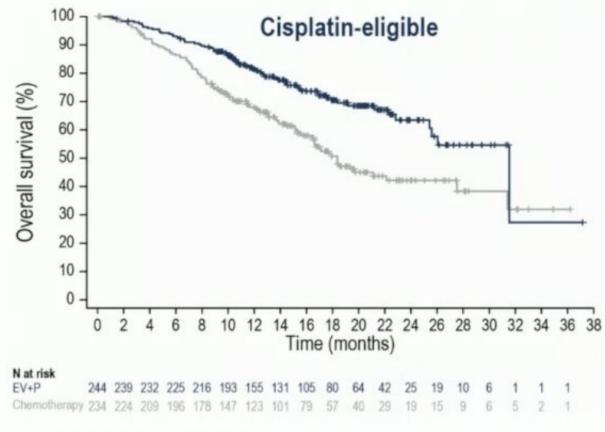
Progression-Free Survival per BICR

Risk of progression or death was reduced by 55% in patients who received EV+P

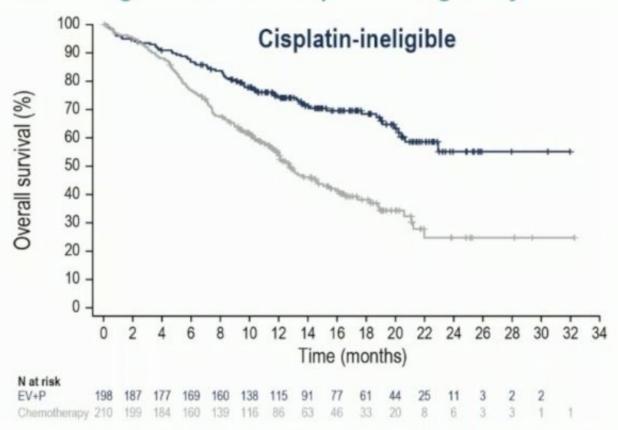


mPFS at 12 and 18 months as estimated using Kaplan-Meier method HR, hazard ratio; mPFS, median progression-free survival

^aCalculated using stratified Cox proportional hazards model; a hazard ratio <1 favors the EV+P arm

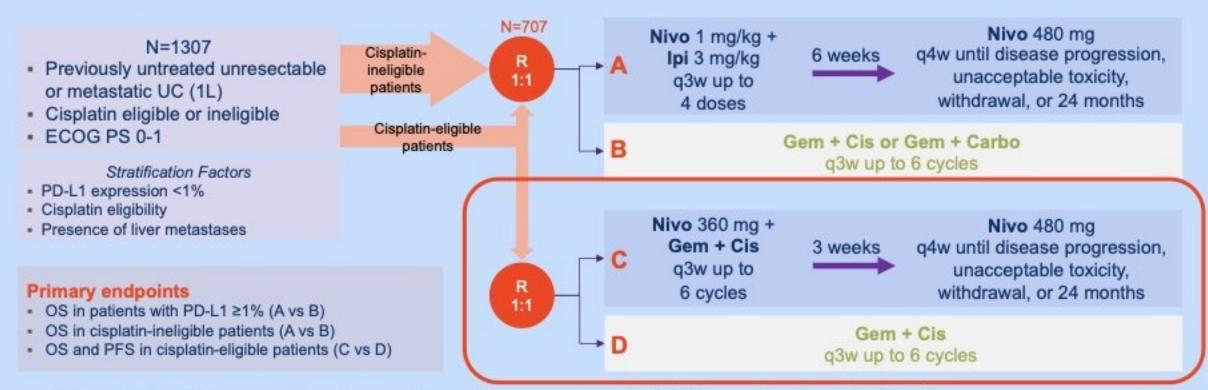

Overall Survival

Risk of death was reduced by 53% in patients who received EV+P

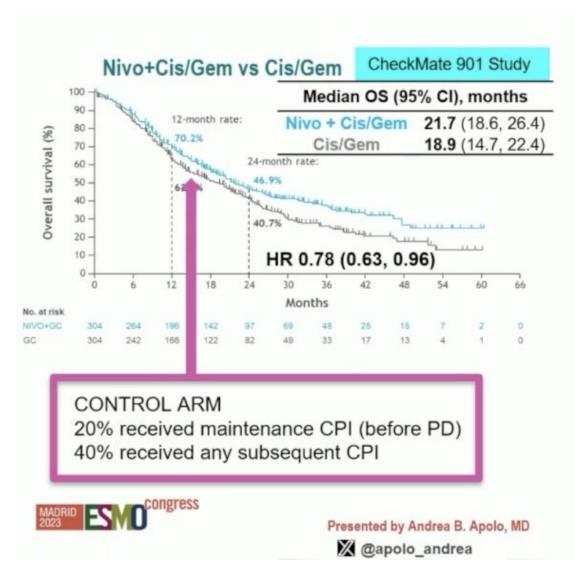


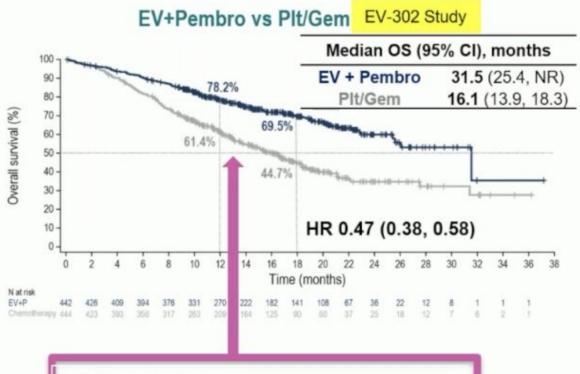
OS Subgroup Analysis: Cisplatin Eligibility

OS benefit was consistent with overall population regardless of cisplatin eligibility



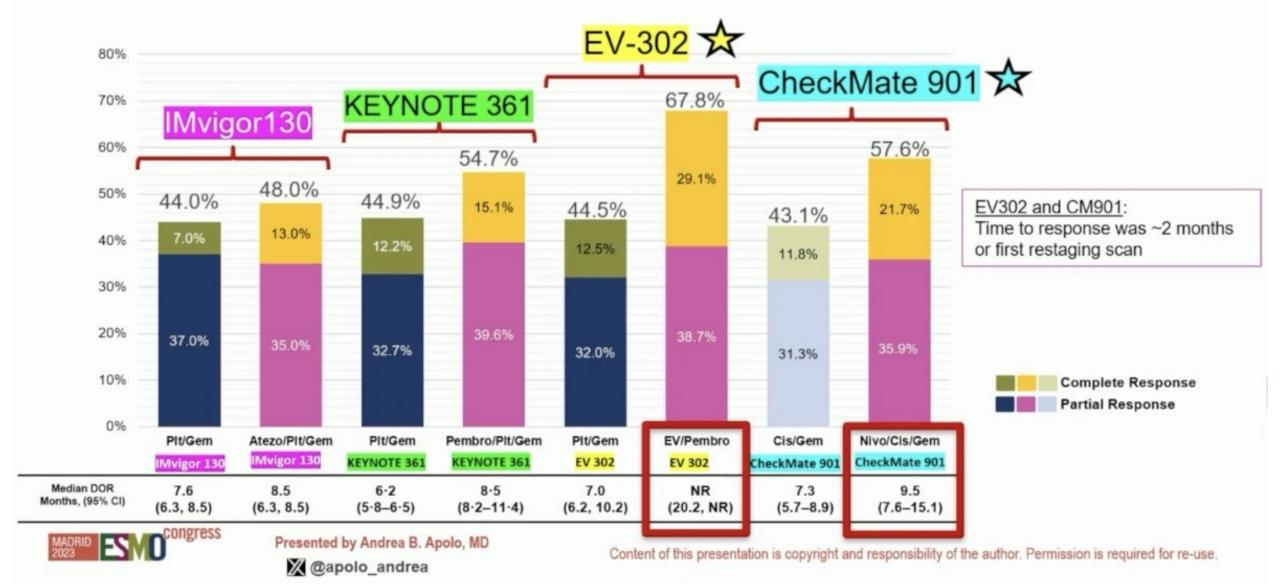
	Events, n	HR (95% CI)	mOS (95% CI), months
EV+P	69	0.53	31.5 (25.4-NR)
Chemotherapy	106	(0.39-0.72)	18.4 (16.4-27.5)


	Events, n	HR (95% CI)	mOS (95% CI), months
EV+P	64	0.43	NR (20.7-NR)
Chemotherapy	120	(0.31-0.59)	12.7 (11.4-15.5)

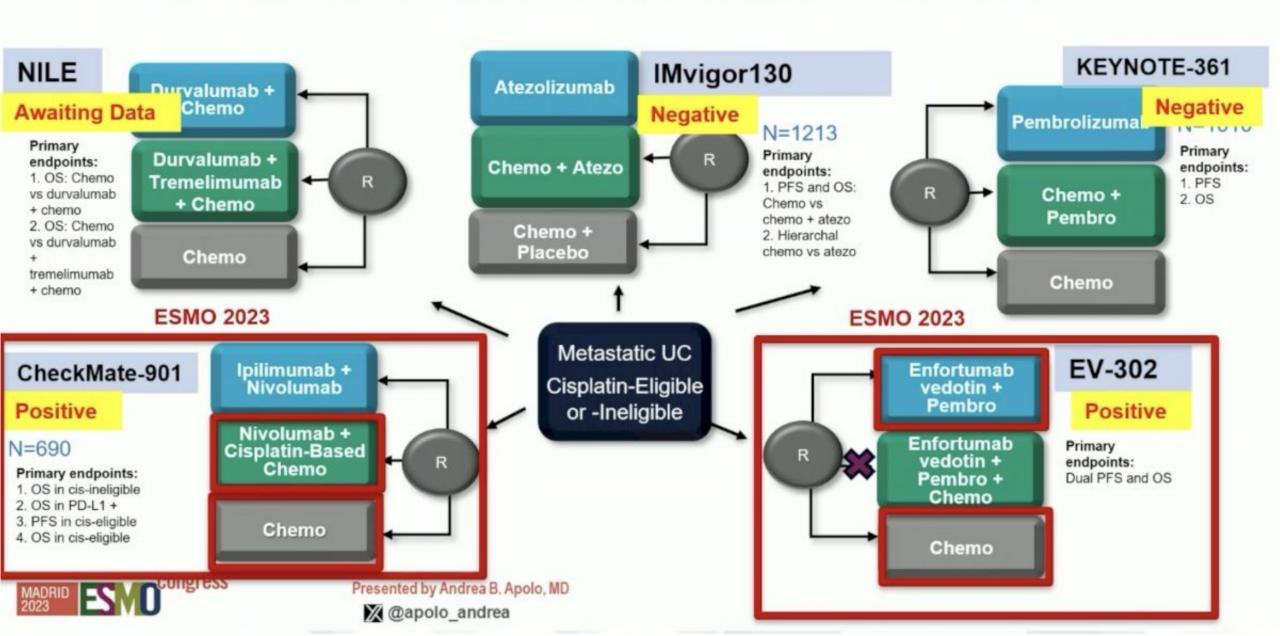

CheckMate 901: Phase 3 Trial of Nivolumab in Combination

- Nivo + Ipi vs Chemo did not meet the primary endpoint of OS in patients with PD-L1 ≥1%
- Ongoing assessment of Nivo + Ipi vs Carbo + Gem in cisplatin-ineligible patients
- Ongoing substudy of Nivo + Cis + Gem vs Cis + Gem

EV302 and Checkmate 901



CONTROL ARM


32% received maintenance CPI (before PD) 59% received any subsequent CPI

EV + Pembro's Duration of Response is longer

First-line Phase 3 Trials with Checkpoint-Inhibitor Combinations vs Platinum-based Chemo for Metastatic Urothelial Carcinoma

New Paradigm of Bladder Cancer Therapy

Front Line Therapy Options: Enfortumab + Pembro OR Cisplatin + Gemcitabine + Nivolumab

Second Line:
Enfortumab
Sacituzumab?
Platinum + Gem?

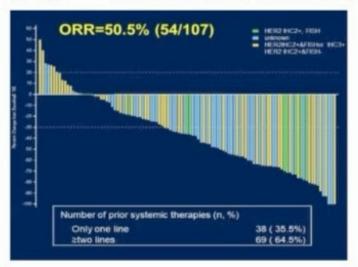
Clinical trial: S1937 Eribulin + gem vs physicians choice

FGFR3 mutation: Erdafitinib

Third Line:

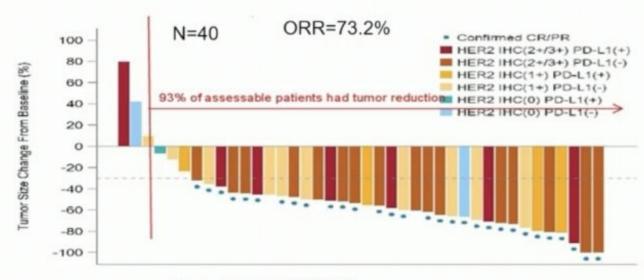
Clinical Trial

Her-2 ADC?


Sacituzumab

Does CPI combine best with ADCs with MMAE payloads?

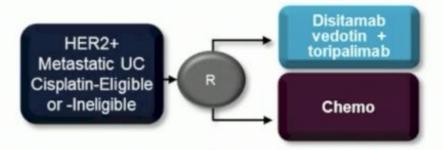
Disitamab vedotin in HER2 2/3+ Metastatic Urothelial Carcinoma


Disitamab vedotin

N=107 In the Second or Third-line setting

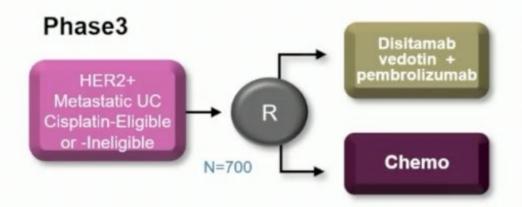
Sheng, et al. ASCO 2022 abstract 4518

Disitamab vedotin + toripalimab



Sheng, X., et al. ASCO 2023

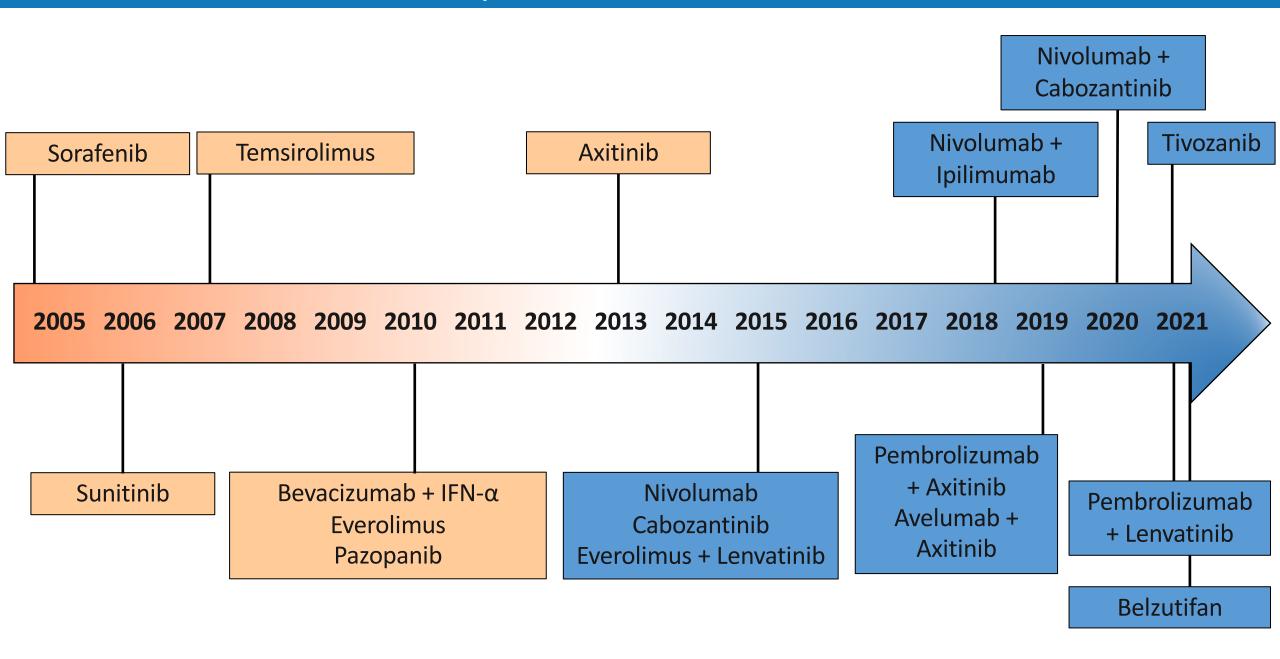
Phase 3


Disitamab vedotin

N=452

Presented by Andrea B. Apolo, MD

@apolo_andrea



Therapy in RCC

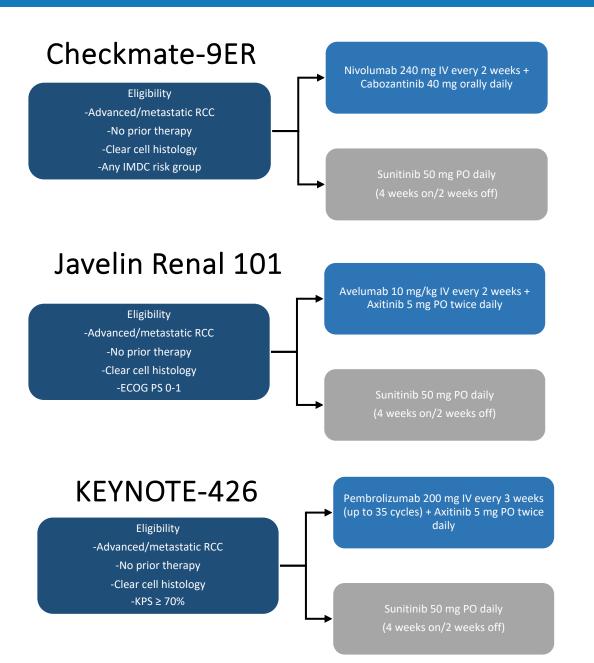
- Updates on nivo + ipi in met RCC
 - Updates on Checkmate 9ER
- RFS and OS benefit with adjuvant pembrolizumab

Treatment Landscape of Metastatic RCC

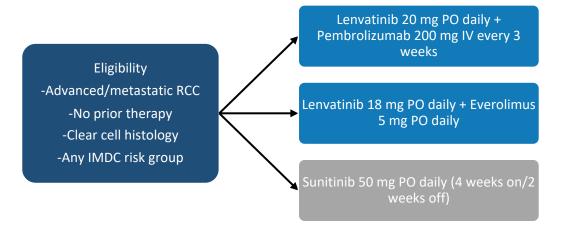
Key Studies in Front Line Metastatic RCC

Motzer et al. NEJM 2021 Lenvatinib + Pembro vs Sunitinib: (CLEAR)

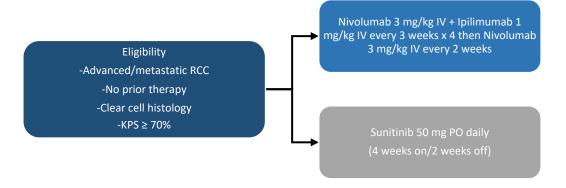
Choueiri T, et al. NEJM 2021 Cabo + Nivo vs Sunitinib: (Checkmate 9ER)


Motzer et al. NEJM 2019 Nivolumab/Ipilimumab vs Sunitinib (CheckMate 214)

Choueiri et al. NEJM 2019 Axitinib/Avelumab vs Sunitinib (JAVELIN 101)


Rini B et al. NEJM 2019 Axitinib/Pembrolizumab vs Sunitinib (KEYNOTE 426)

Choueiri T, et al. J Clin Oncol 2017 CABOSUN trial: Cabozantinib vs Sunitinib


Bird's-eye view of practice-changing trials

Phase 3 Clear Trial

CheckMate - 214

Frontline Immunotherapy Combination Studies

Baseline Characteristics

Variable		Nivolumab + Ipilimumab CheckMate-214 n=1096	Pembrolizumab + Axitinib Keynote 426 n=861	Avelumab + Axitinib Javelin 101 n=886	Nivolumab + Cabozantinib CheckMate-9ER n=651	Pembrolizumab + Lenvatinib Clear n=1096
IMDC Risk Group	Favorable	23%	33%	21%	23%	32%
	Intermediate	61%	56%	62%	58%	54%
	Poor	17%	13%	16%	19%	10%
Previous Neph	nrectomy	81%	83%	80%	69%	73%
PD-L1 Express	ion ≥1%	24% (Dako PD-L1 28-8; Tumor)	60% (Agilent Tech PD-L1 22C3; CPS)	63% (Ventana PD-L1 SP263; Immune)	25% (Dako PD-L1 28-8; Tumor)	31% (Agilent Tech PD-L1 22C3; CPS)
Primary Endpo	oint	ORR, PFS, OS in Int/Poor (IRC)	OS, PFS (IRC)	OS, PFS in PD-L1+ (IRC)	PFS (IRC)	PFS (IRC)

IMDC=International Metastatic RCC Database Consortium; PD-L1=Programmed Death Ligand 1; CPS=Combined positive score (TC+IC positive/TC all); ORR=Objective response rate; PFS=Progression-free survival; OS=Overall survival; Int=Intermediate; IRC=Independent review committee.

Motzer et al, NEJM, 2018; Rini et al, NEJM, 2019; Motzer et al, NEJM, 2019; Choueiri et al, NEJM, 2021; Motzer et al, NEJM, 2021.

First-line IO Combination Trials in mRCC

	CheckMate 214 ¹ Ipi/Nivo vs Sun (n = 550 vs n = 546)	KEYNOTE-426² Axi/Pembro vs Sun (n = 432 vs n = 429)	CheckMate 9ER³ Cabo/Nivo vs Sun (n = 323 vs n = 328)	CLEAR ⁴ Len/Pembro vs Sun (n = 355 vs n = 357)
mOS, mo HR (CI)	55.7 vs 38.4 0.72 (0.62-0.85)	45.7 vs 40.1 0.73 (0.60-0.88)	NR vs 29.5 0.66 (0.50-0.87)	NR vs NR 0.72 (0.55-0.93)
Landmark OS 12 mo Landmark OS 24 mo	83% vs 78% 71% vs 61%	90% vs 79% 74% vs 66%	86% vs 76% 72% vs 60% (est)	90% vs 79% (est.) 79% vs 70%
mPFS, mo HR (CI)	12.2 vs 12.3 0.86 (0.73-1.01)	15.7 vs 11.1 0.68 (0.58-0.80)	17.0 vs 8.3 0.52 (0.43-0.64)	23.9 vs 9.2 0.39 (0.32-0.49)
ORR, %	39 vs 32	60 vs 40	55 vs 27	71 vs 36
CR, %	12 vs 3	10 vs 4	9 vs 4	16 vs 4
Median f/u, mo	67.7	42.8	23.5	33.7
Primary PD, %	18	11	6	5
Prognostic risk, %	23 61 17	32 55 13	23 58 19	31 59 9
Prior nephrectomy	82%	83%	69%	74%
Subsequent systemic Tx for Sun arm, %	Overall (68%) IO (42%)	Overall (69%) IO (48%)	Overall (40%) IO (29%)	Overall (71%) IO (53%)

^{1.} Motzer. ESMO 2021. Abstr 661P. 2. Rini. ASCO 2021. Abstr 4500.

^{3.} Motzer. ASCO GU 2021. Abstr 308. 4. Motzer. ASCO GU 2021. Abstr 269.

Subgroups: Synchronous Mets had 50% the Median OS as compared to entire group!

McDermott D, et al. IKCS 2018, Albiges L et al ESMO 2020 abstr 711P

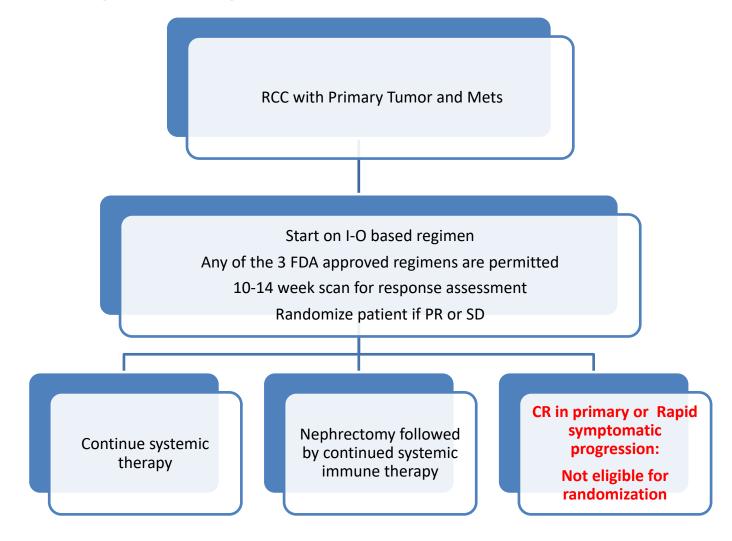
Patient population	lpi + Nivo	Sunitinib
Intermediate/Poor Risk	ORR 41.9%/ CR 10.2% Median OS 48 months	ORR 29.4%/ CR 1.3% Median OS 26 months
Sarcomatoid RCC	ORR 56.7%/ CR 18.3 % Median OS 31.2 months 30 month OS 53%	ORR 19.2%/ CR 0% Median OS 13.6 months 30 month OS 29%
Synchronous mRCC with primary	Primary ORR 34% DOR 20.5 months Med OS 26 months	Primary ORR 14.5% DOR 14.5 months Med OS 14 months
Treatment Free Survival	31% free of therapy Median TFS 7.8 months	12% free of therapy Median TFS 3.3 months

Synchronous Primary Tumor and Metastases

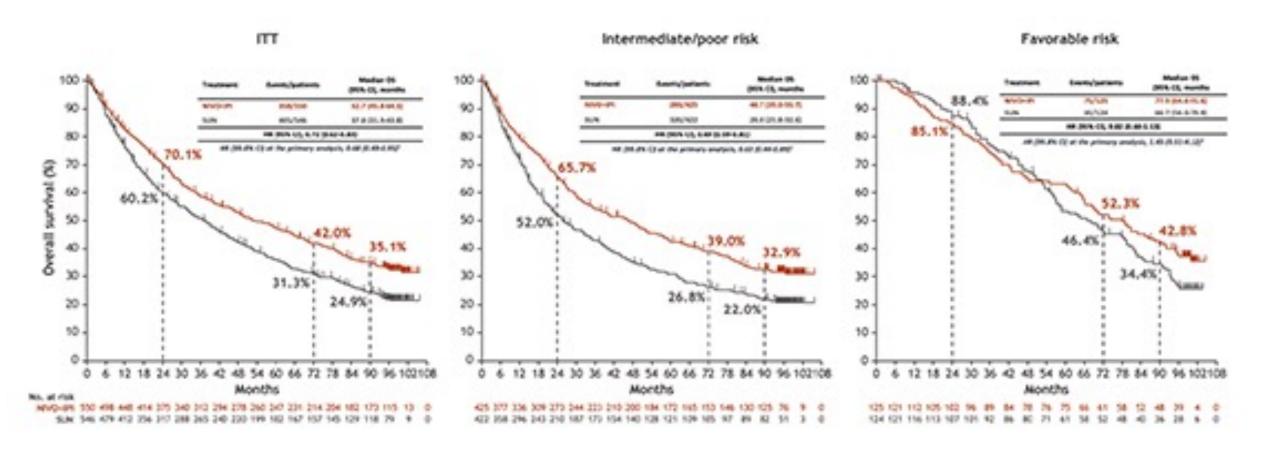
- Contemporary randomized cytoreductive nephrectomy trials reveal that resection of primary tumor did not improve survival outcomes {CARMENA and SURTIME}
- Sequential trial shows that initial systemic therapy followed by nephrectomy has better survival outcomes than upfront nephrectomy
- In setting of I-O based regimens the role of nephrectomy has not been evaluated
- SWOG 1931 (PROBE) trial is addressing this question.

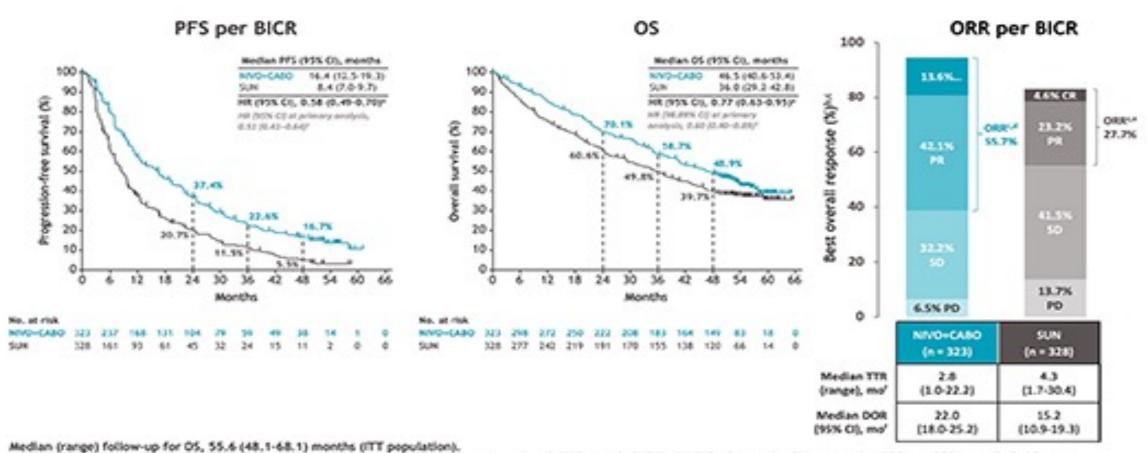
Phase III Trial of Immunotherapy-based Combination Therapy with or without Cytoreductive Nephrectomy for Metastatic Renal Cell Carcinoma (SWOG 1931/PROBE Trial)

Lead investigators:


Hyung Kim MD
Ulka Vaishampayan MD

Biostatisticians: Cathy Tangen and Eddie Mayerson


Patient Advocate: Peggy Zuckerman


SWOG 1931/PROBE Trial Primary Endpoint: Overall Survival

Long term OS with Ipi +Nivo CM-214

Checkmate 9ER Update

"Stratified Cox proportional hazards model used for HR. "Unable to determine/not reported: 5.6% for NIVO-CABO: 17.1% for SUN. 'No. of patients with ORR and BOR in NIVO-CABO arm: ORR, n = 180; CR. n = 44; PR. n = 136; SD. n = 104; PD. n = 21. No. of patients with ORR and BOR in SUN arm: ORR, n = 91; CR. n = 15; PR. n = 76; SD. n = 136; PD. n = 45. "95% CI, 50.1-61.2. "95% CI, 23.0-32.9. "TTR and DOR were calculated only for patients who had a CR or PR.

1. Chouse'ri TK, et al. N Enel J Med 2021;384:829-841.

Systemic Therapy of RCC: Second line and Beyond

Cabozantinib

Nivolumab

Lenvatinib + Everolimus

Tivozanib

Belzutifan

Type of Progression: Oligoprogression/ Diffuse Progression

- Oligo progression
- Consider size/location
- Symptomatic vs asymptomatic
- Amenable to local therapy
- Consider SBRT/ resection and continue systemic therapy
- Consider time to progression on current therapy
- Tolerability of current therapy

- Diffuse Progression
- Prior therapy MOA
- Location: symptomatic vs asymptomatic
- Location of metastases: adrenal/pancreas mets consider local therapy
- Bone mets: consider systemic and local therapy
- Prior therapy depth and duration of response

Key Studies in Pretreated Metastatic RCC

Chouieri T. et al. NEJM 2015 Cabozantinib vs Everolimus: (METEOR)

Motzer R, et al. NEJM 2015 Nivo vs Everolimus: (Checkmate 025)

Rini B, et al. Lancet 2011 Axitinib vs Sorafenib (AXIS)

Rini B. et al. Lancet Oncol 2020 TIVO-3 Tivozanib vs Sorafenib (TIVO-3)

Motzer R, et al. Lancet Oncol 2015 Lenvatinib + Everolimus vs Everolimus

HCRN GU-16-260 trial, Fraction trial and Omnivore trial, McKay R, et al.

Therapies for Relapsed or Refractory Stage IV RCC

 Second-line treatments for advanced or metastatic RCC may include targeted therapies and immunotherapy combinations

Immunotherapy-Based Regimens

- Nivolumab
- Nivolumab + ipilimumab
- Axitinib + pembrolizumab
- Axitinib + avelumab
- Cabozantinib + nivolumab
- Lenvatinib + pembrolizumab

Targeted Therapies

- Cabozantinib
- Lenvatinib + everolimus
- Axitinib
- Everolimus
- Pazopanib
- Sunitinib
- Tivozanib
- Belzutifan

Other Targeted Treatments for Select Circumstances

- Belzutifan (for VHLassociated RCC)
- Bevacizumab
- Sorafenib
- High-dose IL-2
- Temsirolimus

HIF 2 alpha inhibitor belzutifan

ORRs with belzutifan for von Hippel-Lindau disease-associated cancers

49%

for patients with renal cell carcinoma 63%

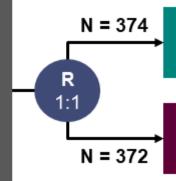
for patients with CNS hemangioblastomas

for patients with pancreatic neuroendocrine tumors

83%

Healio

Belzutifan Versus Everolimus in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma: Randomized Open-Label Phase 3 LITESPARK-005 Study


Laurence Albiges¹, Brian Rini², Katriina Peltola³, Guillermo de Velasco⁴, Mauricio Burotto⁵, Cristina Suarez Rodriguez⁶, Pooja Ghatalia⁷, Roberto Iacovelli⁸, Elaine T. Lam⁹, Elena Verzoni¹⁰, Mahmut Gumus¹¹, Walter M. Stadler¹²; Christian Kollmannsberger¹³, Bohuslav Melichar¹⁴, Balaji Venugopal¹⁵, Aobo Wang¹⁶, Rodolfo F. Perini¹⁶, Donna Vickery¹⁶, Thomas Powles¹⁷, Toni K. Choueiri¹⁸

¹Département de Médecine Oncologique, Gustave Roussy, Université Paris Saclay, Villejuif, France; ²Vanderbilt Ingram Cancer Center, Nashville, TN, USA; ³HUS Helsinki University Hospital, Comprehensive Cancer Center, Helsinki, Finland; ⁴University Hospital 12 de Octubre, Madrid, Spain; ⁵Bradford Hill Clinical Research Center, Santiago, Chile; ⁶Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁶Fox Chase Cancer Center, Philadelphia, PA, USA; ⁶Fondazione Policlinico Universitario A. Gemelli IRCC, Rome, Italy; ⁶University of Colorado Cancer Center, Aurora, CO, USA; ¹olstituto Nazionale dei Tumori, Milano, Italy; ¹¹Göztepe Prof. Dr. Süleyman Yalçın Şehir Hastanesi-oncology, Istanbul, Türkiye; ¹²The University of Chicago Medical Center, Chicago, IL, USA; ¹³BC Cancer–Vancouver Center, Vancouver, BC, Canada; ¹⁴ Department of Oncology, Palacký University Hospital, Olomouc, Czech Republic; ¹⁵The Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁵St Bartholomew's Hospital–Barts Health NHS Trust, London, UK; ¹⁵Dana-Farber Cancer Institute, Boston, MA, USA

LITESPARK-005 Study (NCT04195750)

Key Eligibility Criteria

- Unresectable, locally advanced or metastatic clear cell RCC
- Disease progression after 1-3 prior systemic regimens, including ≥1 anti-PD-(L)1 mAb and ≥1 VEGFR-TKI
- Karnofsky Performance Status score ≥70%

Belzutifan 120 mg orally daily

Everolimus 10 mg orally daily

Stratification Factors

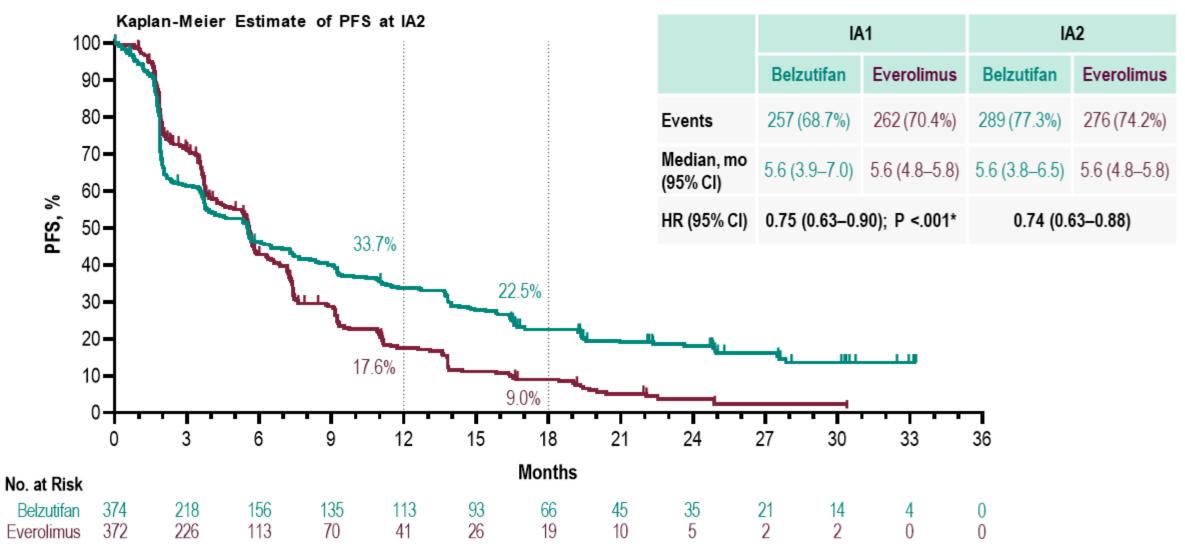
- IMDC prognostic score^a: 0 vs 1-2 vs 3-6
- Prior VEGF/VEGFR-targeted therapies: 1 vs 2-3

Dual Primary Endpoints:

- PFS per RECIST 1.1 by BICR
- OS

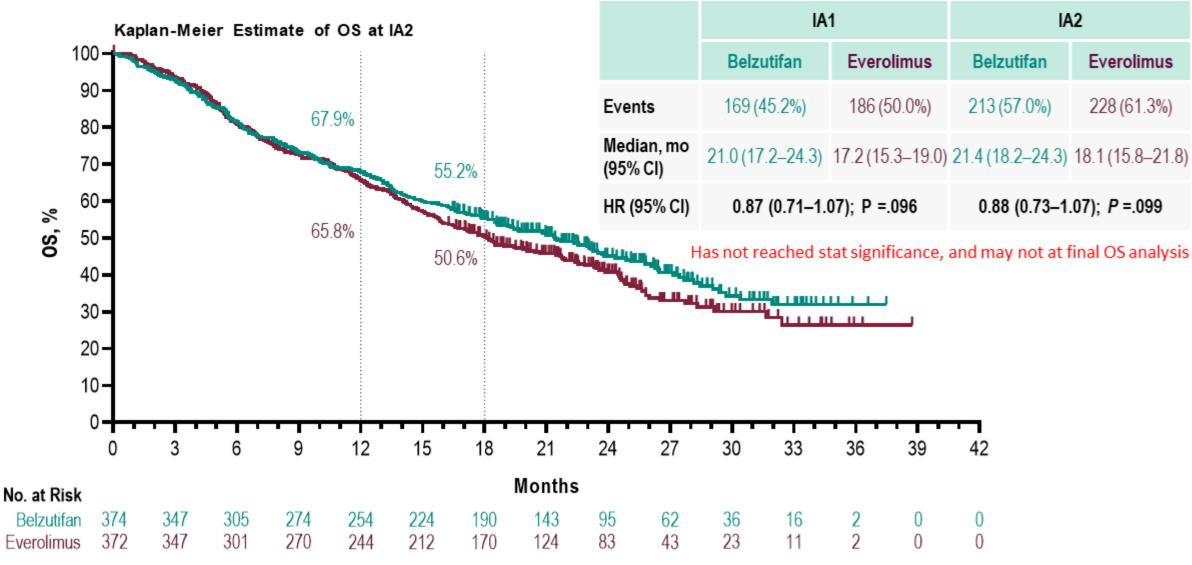
Key Secondary Endpoint:

• ORR per RECIST 1.1 by BICR


Other Secondary Endpoints Include:

- DOR per RECIST 1.1 by BICR
- Safety
- Time to deterioration in FKSI-DRS and EORTC QLQ-C30 GHS/QoL

^a Based on the number of present risk factors according to the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC).

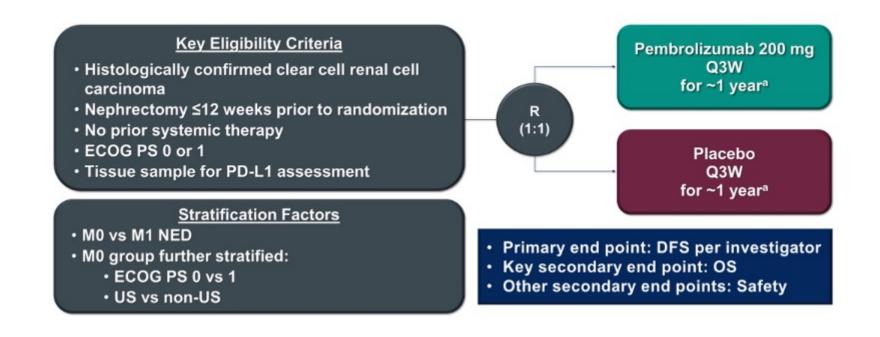

BICR, blinded independent central review; DOR, duration of response; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality-of-Life Questionnaire; FKSI-DRS, Functional Assessment of Cancer Therapy Kidney Symptom Index – Disease-Related Symptoms; GHS, global health status; mAb, monoclonal antibody; QoL, quality of life.

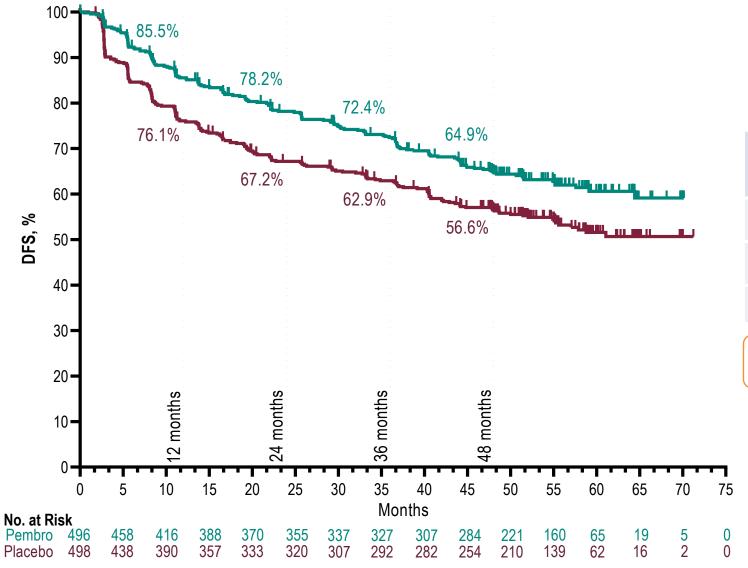
Primary Endpoint: PFS per RECIST 1.1 by BICR

^{*} denotes statistical significance. Primary PFS endpoint was met at IA1 and was not formally statistically tested at IA2. Data cutoff date for IA1: November 1, 2022. Data cutoff date for IA2: June 13, 2023.

Primary Endpoint: OS

Data cutoff date for IA1: November 1, 2022. Data cutoff date for IA2: June 13, 2023.

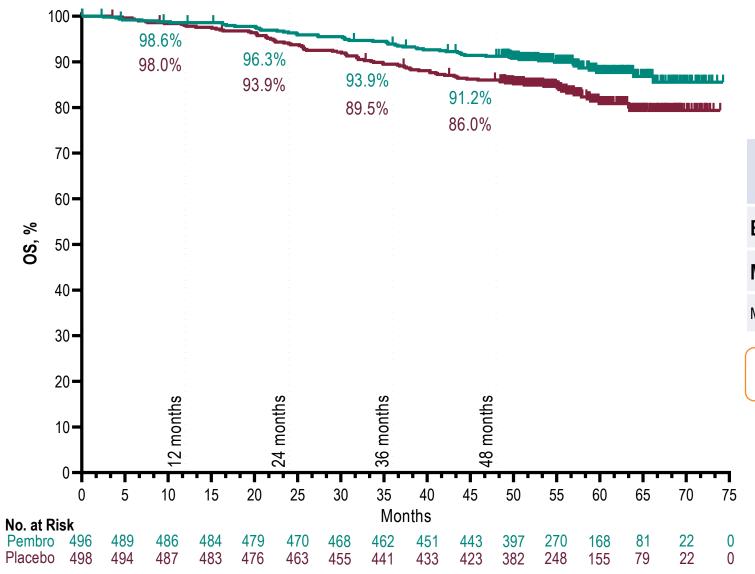

Adjuvant Therapy in RCC


RFS and OS benefit with pembrolizumab

Adjuvant Pembro trial: Keynote 564 Pembro Vs Placebo Trial: Choueiri T, et al ASCO 2021

Updated Disease-Free Survival by Investigator, Intention-to-Treat Population

	Pembro (N = 496)	Placebo (N = 498)
Events, n	174	224
Median, mo (95% CI)	NR (NR-NR)	NR (54.9-NR)


Median follow-up was 57.2 months (range, 47.9–74.5)

HR 0.72 (95% CI 0.59-0.87)

Primary DFS endpoint was met at IA1 and was not formally statistically tested thereafter.

Data cutoff date: September 15, 2023.

Overall Survival, Intention-to-Treat Population

	Pembro (N = 496)	Placebo (N = 498)
Events, n	55	86
Median, mo (95% CI)	NR (NR-NR)	NR (NR-NR)

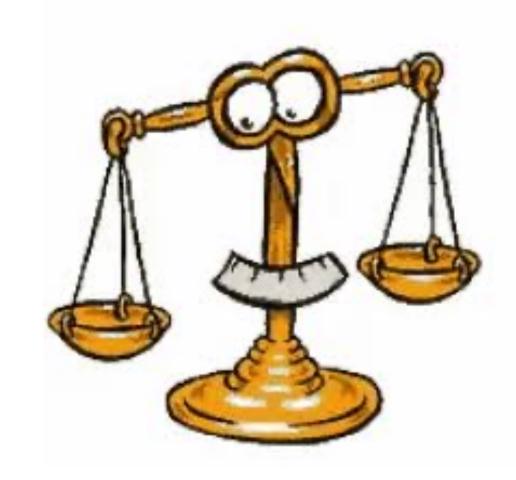
Median follow-up was 57.2 months (range, 47.9–74.5)

HR 0.62 (95% CI 0.44–0.87); P = .002*

Data cutoff date: September 15, 2023.

^{*} denotes statistical significance. P-value boundary for OS at IA3 was 0.0072 (1-sided) per Lan-DeMets O'Brien-Fleming spending approximation α-spending function. As this key secondary endpoint was formally met, any future OS analyses will be descriptive only.

ADJUVANT THERAPY in RCC


- Sunitinib showed benefit in one trial (S-TRAC) and no benefit in the ASSURE trial
- Pazopanib, Axitinib and Sorafenib- no benefit in adjuvant setting
- Pembro: 11% DFS benefit, and OS benefit noted in one trial
- Adjuvant atezolizumab: no benefit
- Adjuvant nivolumab : No benefit
- Nivo + ipi adjuvant 6 months : no benefit
- S0931 Everolimus: benefit only in very high risk subset, Overall no benefit.
- Majority of adjuvant trials in RCC are negative

CONCLUSIONS/TAKE AWAY: RCC

- PD-1 inhibition is now considered the backbone of frontline combination regimens in RCC. About 30% of met RCC patients are in long term remission CM-214 trial 99 months update.
- The subset of patients presenting with primary tumor and metastases are still showing attenuated survival [median OS 27 mths vs 46 mths with ipi+nivo]
- S1931/PROBE trial is evaluating the impact of adding nephrectomy after 10-14 weeks of I-O based combination systemic therapy.
- VEGF-TKI is the backbone of second line therapy.
- Addition of ipilimumab in later lines gives minimal benefit
- Hif-2 alpha inhibitor is a new target, Belzutifan was FDA approved in RCC third line setting

How do you decide on Therapy Choice?

- Toxicity/efficacy balance
- Histology
- Sites of mets
- IMDC risk
- Oligometastatic disease
- QOL
- Cost/access

New Directions

- Live biotherapeutics to enhance IO in RCC
- Novel HIF-2 alpha inhibitors
- CD70 Antibody Drug Conjugates
- Immune therapy in combination with TGF beta inhibitors
- Novel cytokines

RCC and Urothelial Cancer Therapy is now a MARATHON!