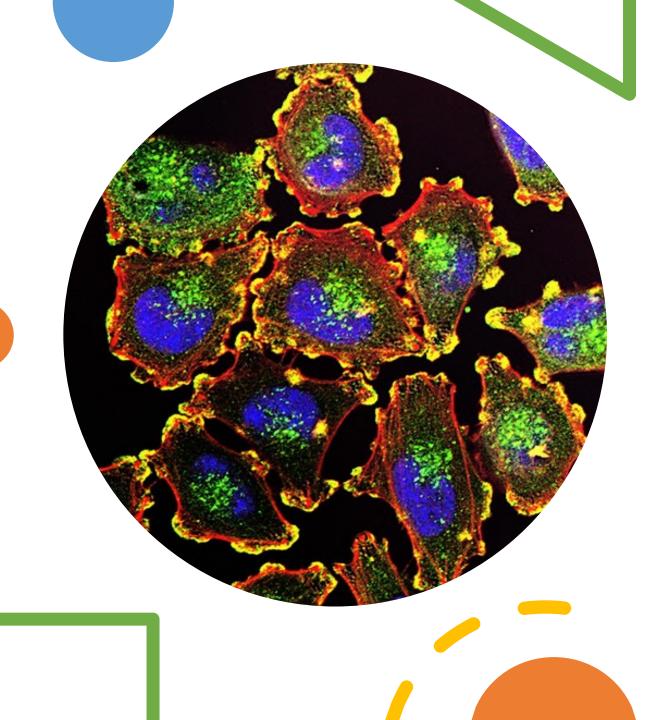


Deciphering the HER2 Puzzle: Shedding Light on HER2-Positive Breast Cancer and Unraveling Modern Systemic Therapies. Ragisha Gopalakrishnan, MD Attending Hematologist/Oncologist Mount Sinai Assistant Professor of Hematology Oncology CIUMC Assistant Professor of Hematology Oncology at FIU

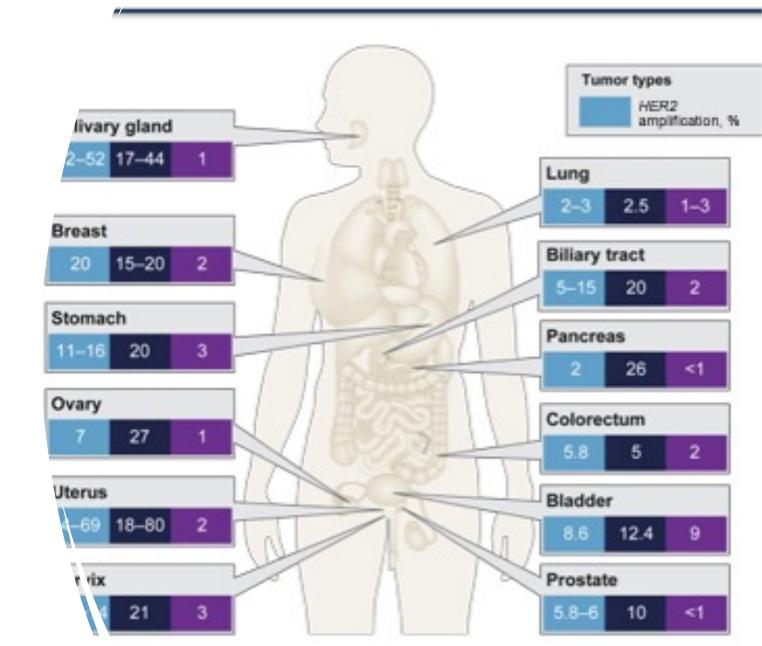
Our Goals for Today

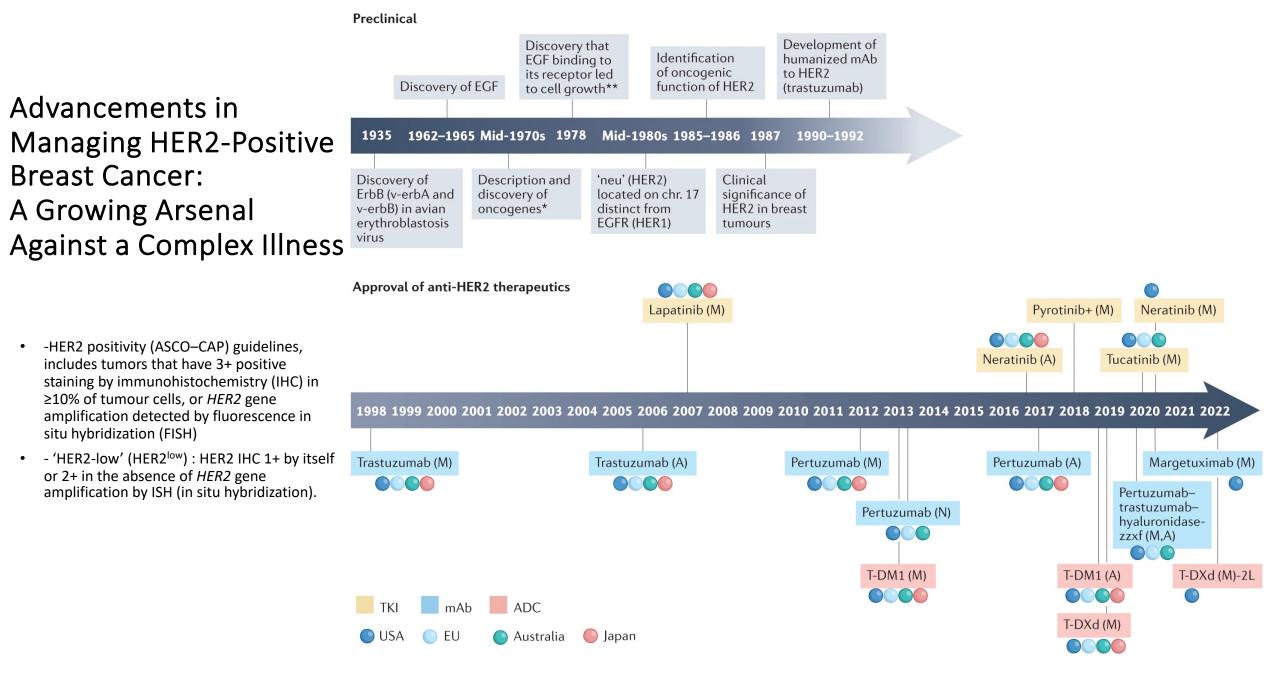

Enhance your knowledge of the current and evolving role of HER2-targeted therapies in HER2-positive breast cancer

Equip all of you with skills to optimally integrate HER2-targeted therapies into individualized treatment plans and help considering sequencing options

Agenda

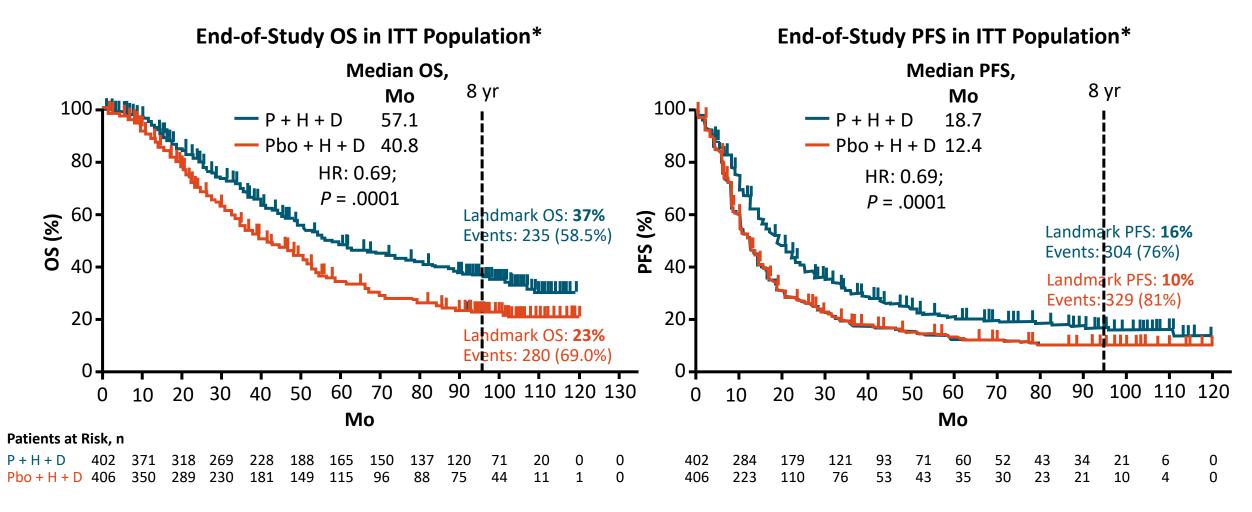
- Brief history of HER2 & Current Systemic Landscape
- The role of resistance of HER2 therapy & Brain as a Sanctuary Site
- Emerging Therapeutics and diagnostic assays in the HER2 site

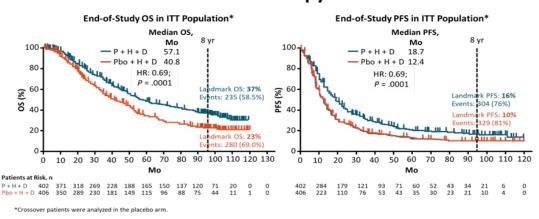

Unlocking the HER2 Code


Illuminating Insights into HER2 positive Breast Cancer and understanding current systemic treatments

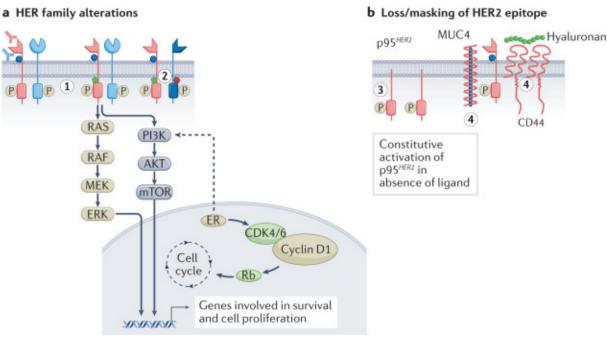
HER2 Expression¹

HER2: A excellent oncogenic drug target


- HER2 : control cell growth, proliferation, and survival→ uncontrolled cell division and tumor growth.
- Targeting HER2 can disrupt these signaling pathways, inhibiting tumor progression.
- HER2 : ~15% of all cancers
- HER2 targeted therapies have revolutionized natural history

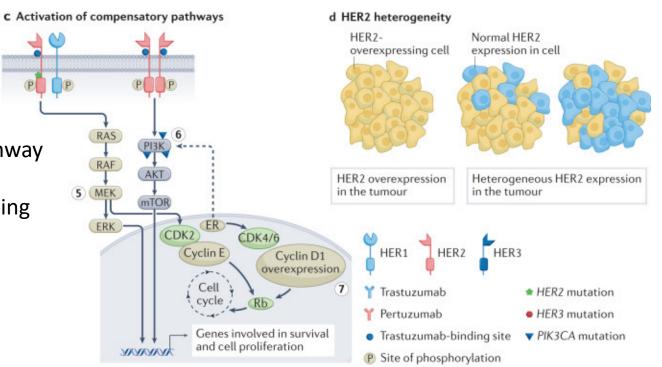

Current Standards of Care in Metastatic Breast Cancer

CLEOPATRA: Survival With Pertuzumab, Trastuzumab, and Docetaxel as 1L Therapy in HER2+ MBC

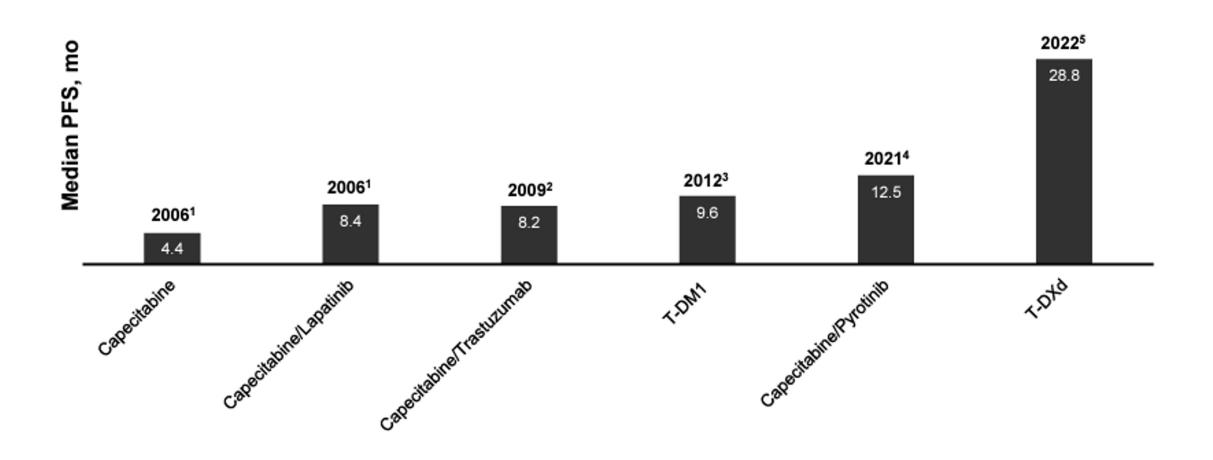


*Crossover patients were analyzed in the placebo arm.

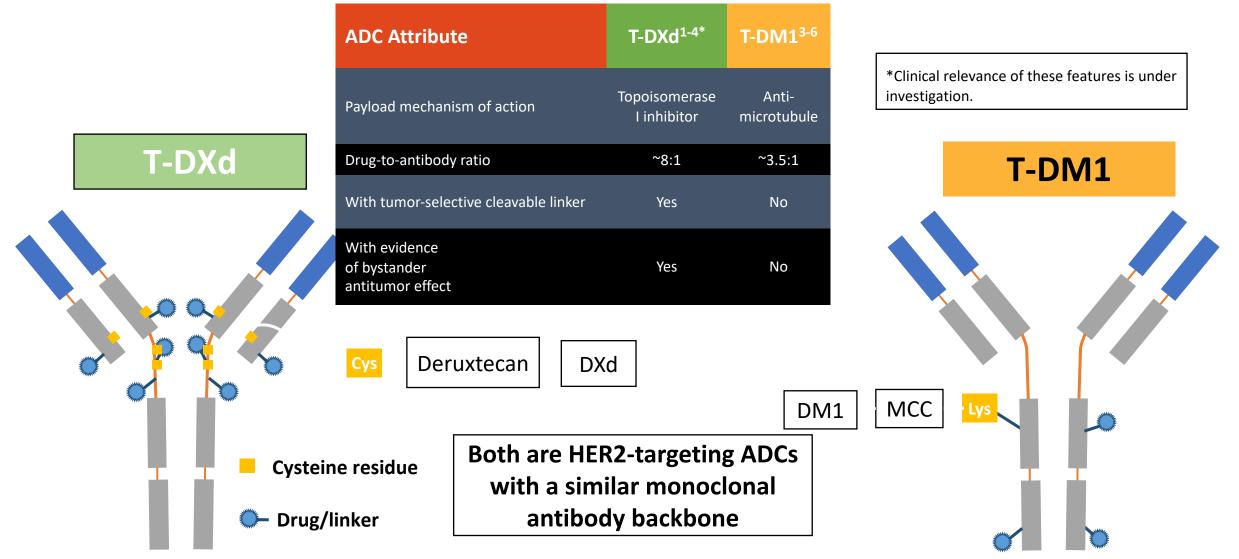
Swain. Lancet Oncol. 2020;21:519.



CLEOPATRA: Survival With Pertuzumab, Trastuzumab, and Docetaxel as 1L Therapy in HER2+ MBC

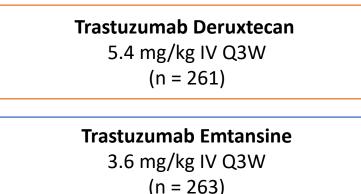


So why are we not seeing more durable responses long term with taxane + trastuzumab and pertuzumab?


- Mutations in *HER2* → P13K– AKT and RAS–MAPK pathway activation.
- Loss of HER2 extracellular domain in cells overexpressing p95*HER2* receptor.
- Loss of HER2 epitope
- HER family alterations

How do we improve the next generation of TKI's to help us get durable responses?

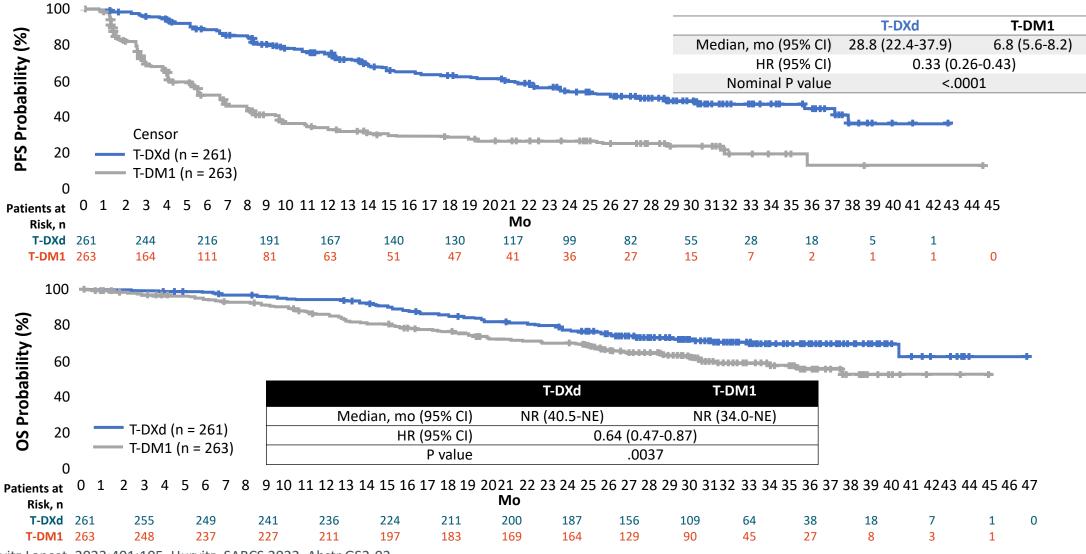
Characteristic Differences Between T-DXd and T-DM1


1. Nakada. Chem Pharm Bull (Tokyo). 2019;67:173. 2. Ogitani. Clin Cancer Res. 2016;22:5097. 3. Trail. Pharmacol Ther. 2018;181:126. 4. Ogitani. Cancer Sci. 2016;107:1039. 5. LoRusso. Clin Cancer Res. 2011;17:6437. 6. Barok. Breast Cancer Res. 2014;16:209.

DESTINY-Breast03: T-DXd vs T-DM1 in Previously Treated HER2+ MBC

• Randomized, multicenter, open-label phase III study (data cutoff: July 25, 2022)

pertuzumab, history of visceral disease


Patients with unresectable or metastatic HER2+ breast cancer; previous trastuzumab + taxane tx in metastatic setting or (neo)adjuvant with recurrence ≤6 mo of tx; ECOG PS 0/1 (N = 524)

Median Follow-up T-DXd: 28.4 mo T-DM1: 26.5 mo

- Primary endpoint: PFS by BICR
- Key secondary endpoint: OS
- Other secondary endpoints: ORR (BICR and investigator), DoR (BICR), safety

DESTINY-Breast03: Updated PFS and OS

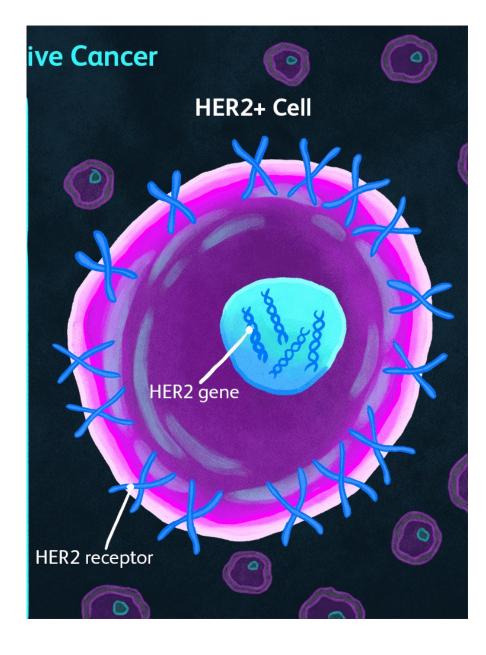
Hurvitz Lancet. 2023;401:105. Hurvitz. SABCS 2022. Abstr GS2-02.

DESTINY-Breast03: Updated OS by Subgroup

	Events, n/N		Median OS <i>,</i> Mo (95% Cl)				
	Trastuzumab Deruxtecan	Trastuzumab Emtansine	Trastuzumab Deruxtecan	Trastuzumab Emtansine		HR for Death (95% CI)	
All patients	72/261	97/263	NR (40.5-NE)	NR (34.0-NE)	— —	0.64 (0.47-0.87)	
Hormone receptor status							
Positive	42/133	51/139	NR (40.5-NE)	37.7 (34.0-NE)	— •+	0.76 (0.50-1.14)	
Negative	30/126	45/122	NR (NE-NE)	NR (28.5-NE)	——•—	0.55 (0.35-0.87)	
Previous pertuzumab					i i		
Yes	41/162	50/158	NR (40.5-NE)	NR (37.7-NE)	— —	0.70 (0.46-1.06)	
No	31/99	47/105	NR (NE-NE)	31.5 (22.7-NE)	— —	0.59 (0.38-0.93)	
Baseline visceral disease							
Yes	64/195	80/189	NR (40.5-NE)	35.4 (29.9-NE)		0.68 (0.49-0.95)	
No	8/66	17/74	NR (NE-NE)	NR (NE-NE)	ł	0.44 (0.19-1.02)	
Previous lines of systemic th	erapy*				i		
<3	44/188	57/191	NR (40.5-NE)	NR (37.7-NE)	—	0.70 (0.47-1.04)	
≥3	28/73	40/72	NR (27.4-NE)	22.8 (16.1-31.5)	—— — i	0.55 (0.34-0.89)	
Baseline brain metastases							
Yes	17/43	22/39	NR (23.8-NE)	25.1 (12.6-NE)	—— — ——	0.54 (0.29-1.03)	
No	55/218	75/244	NR (40.5-NE)	NR (37.7-NE)	— —	0.66 (0.47-0.94)	
*Not including hormone the	ару.			0.1 T-DX	1.0 Better	2.0 T-DM1 Better	

DESTINY-Breast03: Updated Overall Safety

	РХО-Т	T-DM1	AE of Special Interest, n (%)	T-DXd (n = 257)	T-DM1 (n = 261)
Safety Outcome Any drug-related TEAE, n(%) Grade ≥3 Serious Drug-related TEAE associated with the following, n (%) Discontinuation Dose reduction Drug interruption Outcome of death	T-DXd (n = 257) 252 (98.1) 121 (47.1) 33 (12.8) 51 (19.8) 65 (25.3) 108 (42.0) 0 (0)	T-DM1 (n = 261) 228 (87.4) 110 (42.1) 20 (7.7) 17 (6.5) 38 (14.6) 45 (17.2) 0 (0)	Drug-related ILD/pneumonitis Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 With longer treatment exposure increased from 10.5% at interim – 4 additional grade 1 events		
Median treatment duration, mo (range)	18.2 (0.7-44.0)		 8 additional grade 2 events Overall incidence of grade 3 events from interim analysis 		ged


- Rates of drug-related grade ≥3 TEAEs were similar between arms
- Most common drug-related TEAEs associated with treatment discontinuation:
 - T-DXd: pneumonitis (5.8%), ILD (5.1%), pneumonia (1.9%)
 - T-DM1: decreased platelet count (1.5%), pneumonitis (1.1%), thrombocytopenia (1.1%)

Hurvitz. SABCS 2022. Abstr GS2-02. Cortes. NEJM. 2022;386:1143

Management of ILD Associated With T-DXd: "Five S Rules"


Screen	Scan	Synergy	Suspend Treatment	Rx = Steroids
 Careful selection of patient needed → T-DXd initiation to optimize monitoring based on the BL risk Continue screening during therapy + regular clinical evaluations to exclude symptoms and signs of ILD 	 Radiologic scans are the fundamental diagnostic tools for ILD; preference is for high-resolution chest CT scans At baseline, a scan is recommended + regular repeat scans every 6-12 wk 	ILD risk minimization requires team efforts, including patient education and education of healthcare team Multidisciplinary management is warranted once ILD is suspected	 Once ILD is suspected, T-DXd should always be interrupted T-DXd should only be restarted in the case of asymptomatic ILD that fully resolves 	 Mainstay for the treatment of T-DXd-associated ILD is the administration of corticosteroids Corticosteroid dose should be adapted according to the toxicity grade

Brain Metastases in HER2 positive Breast Cancer

Brain Mets and Resistance

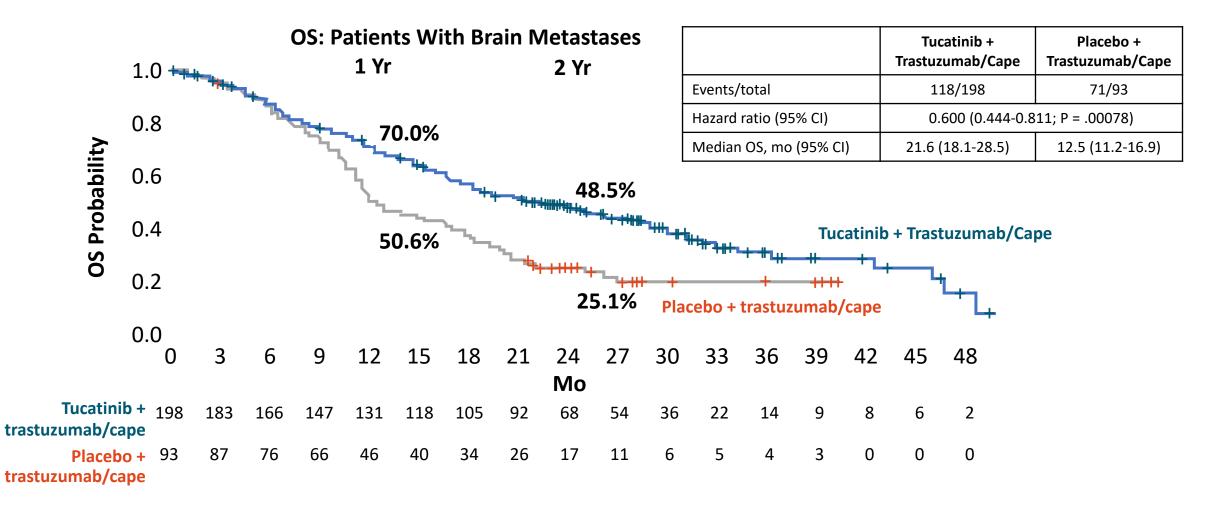
- Breast cancer is one of the most common causes of BM and LMC
- The incidence in HER2-positive tumors is 20%-30% and is associated with better prognosis than in other subtypes of breast cancer
- There are different options to treat BM depending on several factors

Brain Mets and Resistance

- Breast cancer is one of the most common causes of BM and LMC
- The incidence in HER2positive tumors is 20%-30% and is associated with better prognosis than in other subtypes of breast cancer
- There are different options to treat BM depending on several factors

Multidisciplinary Tumor Board

In Favor of Local Strategies


- Neurological symptoms
- <10 lesions (maybe radiation oncologists will say more!) → SRS or surgery
- Big lesions
- "Bad" localization (cerebellar lesions)
- Important edema
- Need for tissue

Medical oncologists Radiation oncologists Neurosurgeons Neuroradiologists Pathologists

In Favor of Systemic Therapies

- HER2+ subtype
- Asymptomatic disease
- Good drugs (with evidence of CNS activity) available
- Previous radiation

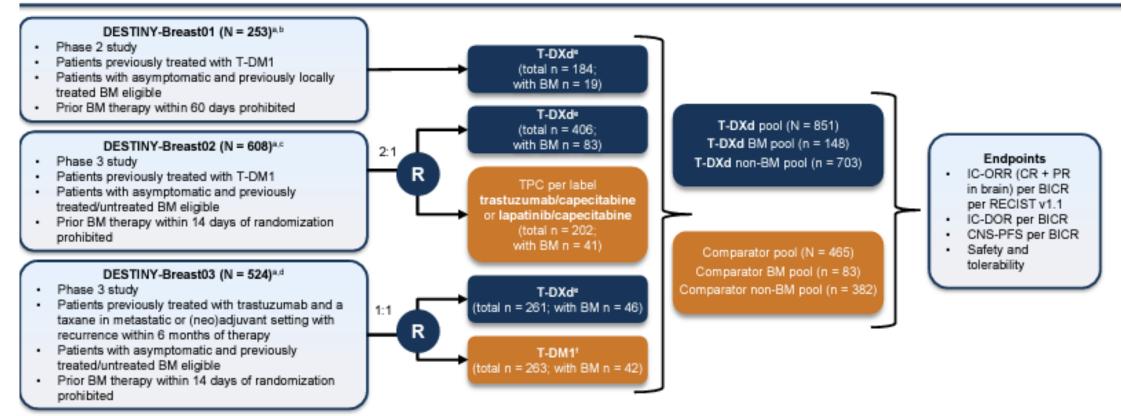
HER2CLIMB: OS in All Patients With Brain Metastases

Improved OS benefit with longer follow-up: previous analysis OS 18.1 mo vs 12.0 mo

Lin. SABCS 2021. Abstr PD4.04. Lin. JAMA Oncol. 2022;[Epub].

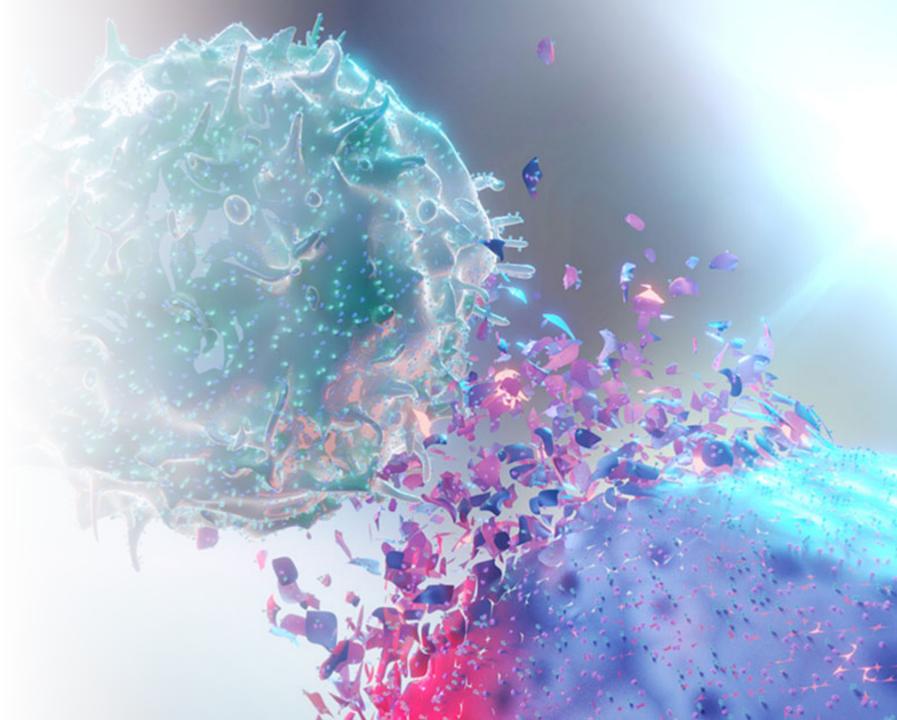
HER2CLIMB:

Intracranial Overall Response and Duration of Response in Patients With Active Brain Metastases


	Tucatinib + Trastuzumab/Cape	Placebo + Trastuzumab/Cape		
	(n = 55)	(n = 20)		
Patients with CR or PR, n	26	4		
Confirmed ORR-IC, % (95% CI)	47.3 (33.7-61.2)	20.0 (5.7-43.7)		
DoR-IC mo, (95% CI)*	8.6 (5.5-10.3)	3.0 (3.0-10.3)		

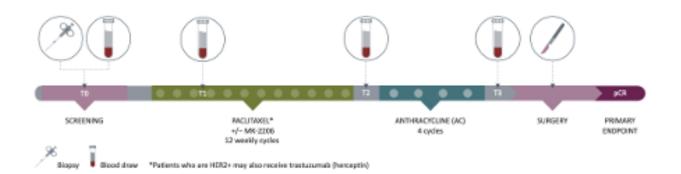
Patients had active brain mets and measurable IC lesions at baseline

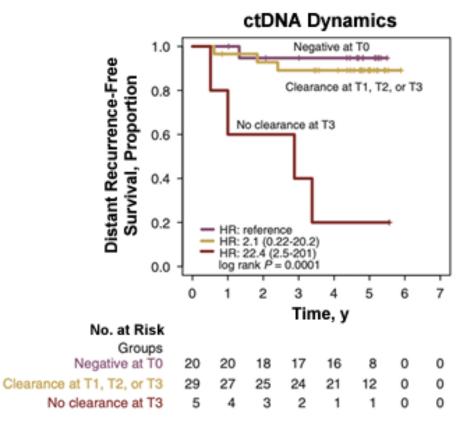
*Calculated using Collet and colleagues 1994 complementary log-log transformation method.


Lin. SABCS 2021. Abstr PD4.04. Lin. JAMA Oncol. 2022;[Epub].

Pooled Analysis of T-DXd in HER2+ MBC With Brain Metastases From DESTINY-Breast01, 02, and 03¹

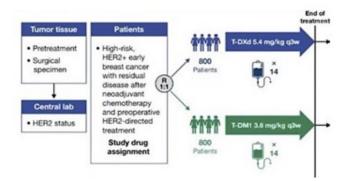
The BM and non-BM pools were determined by BICR at baseline among all patients based on mandatory brain CT/MRI screening

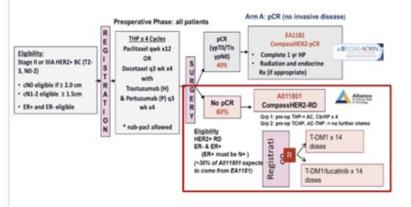

Emerging New Concepts



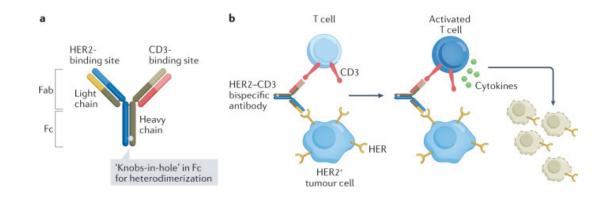
ctDNA¹

Q ctdna


- The dynamics of circulating tumor DNA (ctDNA) in plasma can provide important prognostic information
- Patients with persistence of detectable ctDNA after (neo)adjuvant treatment have a poor prognosis and may warrant an escalation of treatment



Can We Deescalate Chemotherapy and potentially cure patients ?


DESTINY-Breast05: Substituting Post-Neoadjuvant T-DM1 with T-DXd

CompassHER2-RD: Adding Tucatinib to Post-Neoadjuvant T-DM1

Future Directions

Table 1 | Select HER2-targeted antibody-drug conjugates in development

Drug name	Linker type	Payload	Payload MOA	DAR	Clinical trial ID	Clinical trial data	Reference
Trastuzumab duocarmycin	Cleavable	Duocarmycin (vc-seco-DUBA)	DNA alkylator	2.8	NCT04602117 (phase I), NCT03262935 (phase III)	Phase III trial SYD985 vs TPC: median PFS 7 vs 4.9 mo; HR 0.64, P=0.002	Saura Manich et al. ¹⁴⁴
Disitamab vedotin (RC48-ADC)	Cleavable	MMAE	Microtubule inhibitor	4	NCT02881190 (phase I), NCT03500380 (phase II), NCT04400695 (phase III)	Phase I trial in HER2 ⁺ cancers: ORR 15%; DCR 45%	Xu et al. ²¹⁶
A166	Cleavable	Duo-5	Microtubule inhibitor	2.8	CTR20181301 NCT03602079 (phase I)	Phase I trial in advanced solid tumours: ORR 59-71% based on the dose, DCR -85%	Hu et al. ²¹⁷
ALT-P7	Cleavable	MMAE	Microtubule inhibitor	2	NCT03281824 (phase I)	Phase I trial in HER2* MBC: DCR 72%, CBR 32%	Park et al. ²¹⁸
ARX788	Non-cleavable	AS269- synthetic dolastatin	Microtubule inhibitor	2	CTR20171162 (phase I), NCT04829604 (phase II)	Phase I trials in HER2* MBC: ORR 66%; DCR 100%	Hurvitz et al. ²¹⁹
BB-1701	Cleavable	Eribulin	Microtubule inhibitor	4	NCT04257110 (phase I)	Not applicable	Not applicable
DB-1303	Cleavable	DXd derivative	Topoisomerase 1 inhibitor	8	NCT05150691 (phase I)	Not applicable	Not applicable
DX126-262	Unknown	Tubulysin	Microtubule inhibitor	NR	CTR20191224 (phase I)	Not applicable	Zhang et al. ²²⁰
FS-1502/IKS014(Unknown	MMAE	Microtubule inhibitor	NR	NCT03944499 (phase I)	Not applicable	Fasching ²²¹
Zanidatamab zovodotin	Cleavable	Auristatin based	Microtubule inhibitor	2	NCT03821233 (phase I)	Phase I trial in advanced solid tumours. ORR 13%; DCR 50%; CBR 25%; MTD not reached	Jhaveri et al. ²²²

CBR, clinical benefit rate; DAR, drug-to-antibody ratio; DCR, disease control rate; DXd, deruxtecan; HR, hazard ratio; MBC, metastatic breast cancer; MMAE, monomethyl auristatin E; MOA, mechanism of action; MTD, maximum tolerated dose; NR, not reported; ORR, overall response rate; PFS, progression-free survival; TPC, treatment of physician's choice.