

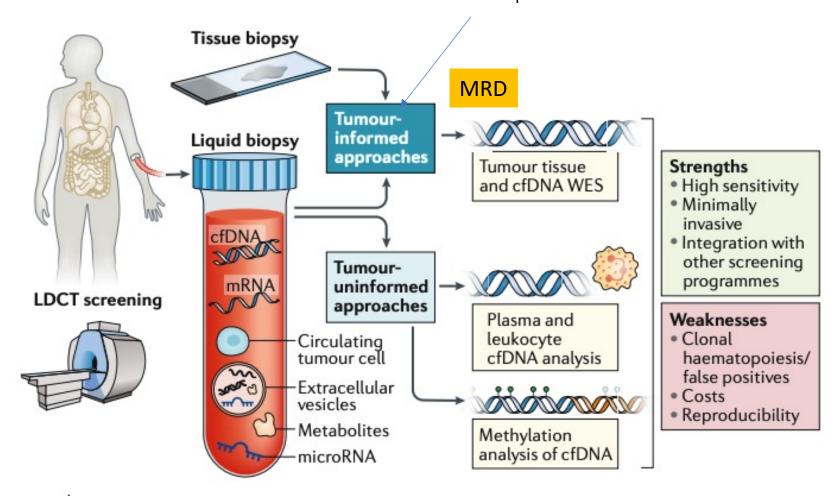
Liquid Biopsy and Precision Medicine Updates in GU

Pedro C Barata, MD, MSc, FACP
Miggo Family Chair in Cancer Research
Co-Leader GU Disease Team
Director of GU Medical Oncology Research Program
University Hospitals Seidman Cancer Center
Associate Professor of Medicine
Case Western Reserve University

Outline

Prostate Cancer

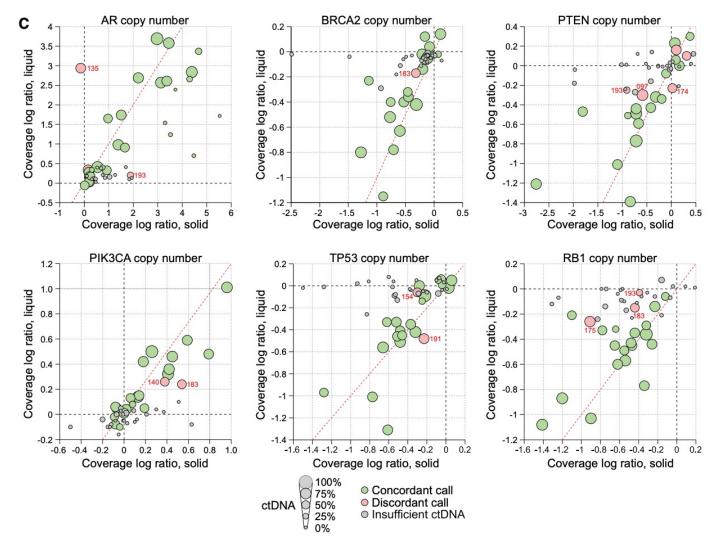
Urothelial Cancer


• RCC

Liquid biopsy

Require prior knowledge of tumor mutation profile

Rolfo et al, Nature Medicine 2020



Concordance tissue and ctDNA

N = 45 matched M1 tissue / ctDNA

- 88.9% concordant
- ctDNA-based assay is (most cases) sufficient to identify the driver DNA alterations present in matched metastatic tissue

Some Questions remain.....

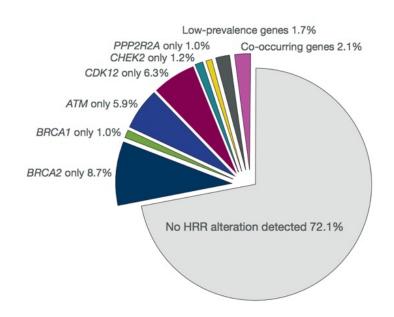
- What is the significance of 0.5% allele fraction?
- What assay to use?

Actionable alterations in advanced prostate cancer

Genomic Mutations	Method of Testing	Treatment	Status of Therapy
AR-V7 ⁵⁹	Circulating tumor cells	Resistance to androgen axis- targeted therapies Preliminary testing, validated	
BRCAI/BRCA2/ATM and other DNA repair mutations 126	NGS on tissue germline testing on blood/saliva sample	PARP inhibitors	FDA approved, Category I
MSI-H ²⁹	NGS on tissue or ctDNA	ICIs such as pembrolizumab	FDA approved
TMB>10 mut/Mb ¹²⁷	NGS on tissue or ctDNA	ICIs such as pembrolizumab	FDA approved
PTEN loss 128	IHC/NGS on tissue or ctDNA	PI3K inhibitors, ipatasertib or mTOR inhibitors	Promising preliminary information
CDK12 mutation ³⁰	IHC/NGS on tissue or ctDNA	ICIs Investigational therap	

Abbreviations: MSI-H, microsatellite index-high; TMB, tumor mutational burden; mut/Mb, mutation/megabase; NGS, next-generation sequencing; ctDNA, circulating tumor DNA; IHC, immunohistochemistry; PARP, poly (ADP-ribose) polymerase; ICIs, immune checkpoint inhibitors.

Jang et al, Onco Targets Ther 2022



HRR Genes Play Important Role in Repairing Double-Strand DNA Damage

DNA damage, including double-strand breaks, is a constantly occurring event^{1,2}

Impairment of genes involved in the HRR pathway can affect a cell's ability to accurately repair DNA double-strand breaks^{1,2,4}

N = 778/4,425 (27.9%) patients and the prevalence of HRR gene mutations in genes included in Cohort A was 17.1%. The most common gene mutation was *BRCA2* (8.7%)

TRITON3 Study Design

Key eligibility criteria

- Chemotherapy-naïve **mCRPC**
- BRCA or ATM alteration^a
- 1 prior second-generation ARPI in any setting^b

Prior docetaxel or other taxane chemotherapy for castration-sensitive disease was permitted

Randomization 2:1

Stratification:

- ECOG PS 0 vs 1
- · Hepatic metastases yes vs no
- BRCA1 vs BRCA2 vs ATM

Rucaparib (n=270) 600 mg BID

Physician's choice (n=135)^c

Docetaxel (n=75)

Second-generation ARPI (n=60)

Abiraterone acetate

Enzalutamide

Patients who progress on physician's choice of treatment may be considered for crossover to rucaparib

Endpointsd

Primary:

· rPFS by IRR

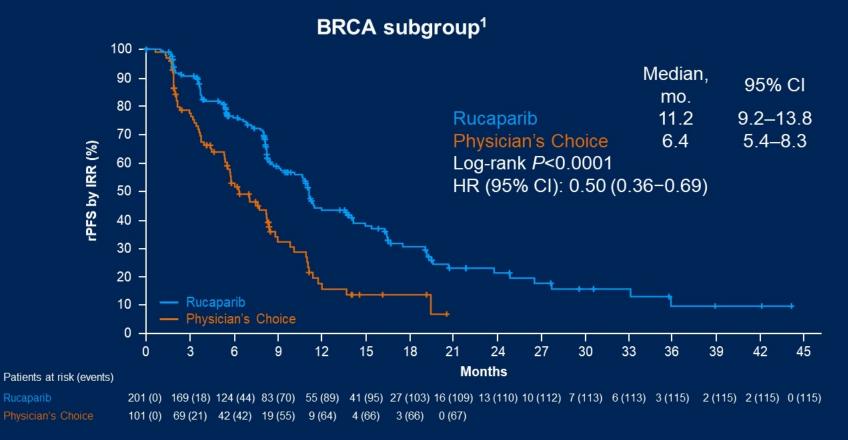
Key secondary:

- OS
- · ORR by IRR

Subgroup analyses:

· OS and rPFS for rucaparib vs docetaxel or second-generation ARPI

Visit cutoff date: 25 August 2022. Determined by Foundation Medicine testing of tissue or plasma. Protocol amendment 19 June 2018: patients' qualifying second-generation ARPI could be in any setting. Grosen, patients received whichever second-generation ARPI had not yet been received. Docetaxel: 75 mg/m² Q21D, 10 cycles max; Abiraterone acetate: 1000 mg QD; Enzalutamide: 160 mg QD; dumor assessments were conducted at baseline and every 8 weeks for 24 weeks, then every 12 weeks, via CT/MRI and technetium-bone scans. e84 patients had IRR-confirmed progression, including 3 who were later re-evaluated as having non-progressive disease by IRR. ARPI, androgen receptor pathway inhibitor; BID, twice daily, BRCA, BRCA1 and BRCA2; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group performance status; IRR, independent radiology review; mCRPC, metastatic castration-resistant prostrate cancer; OS, overall survival; Q21D, every 21 days; QD, daily; rPFS, radiographic progression-free survival.



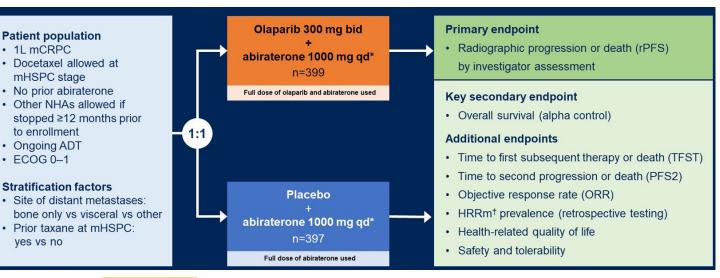
Radiographic PFS

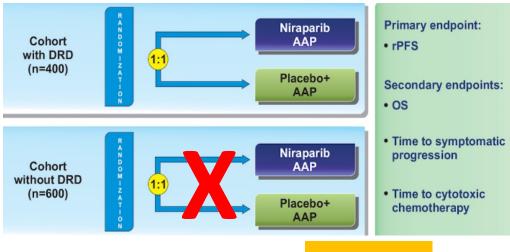
100		
	DODIL	lation
	DODU	lation ¹

	Rucaparib (n=270)	Physician's Choice (n=135)	
Median rPFS, mos (95% CI)	10.2 (8.3–11.2)	6.4 (5.6–8.2)	
Log-rank P	0.0003		
HR (95% CI)	0.61 (0.47–0.80)		

Fizazi et al, NEJM 2023

Visit cutoff date: 25 August 2022. BRCA subgroup data maturity (rucaparib vs physician's choice): 182/302 (60.3%). 1. Bryce et al. Presented at the 2022 PCF Annual Retreat. BRCA, BRCA1 and BRCA2; HR, hazard ratio; IRR, independent radiology review; ITT, intent to treat; PFS, progression-free survival; rPFS, radiographic progression-free survival.





How About PARP Inhibitors in Combination? (Selection tissue / ctDNA)

Magnitude

PROPEL

Patient population

mHSPC stage

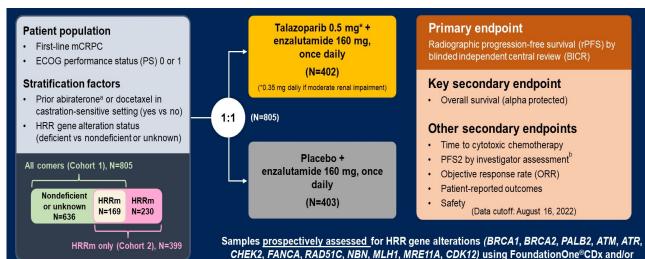
to enrollment

· Ongoing ADT

ECOG 0-1

yes vs no

· Docetaxel allowed at


No prior abiraterone

Stratification factors

Prior taxane at mHSPC:

· Other NHAs allowed if

• 1L mCRPC

TALAPRO-2

HRR selection by ctDNA in Ph. 3 Trials PARPI/ARPI

Abiraterone and Olaparib (n=399)	Abiraterone and Placebo (n=397)
98 (24.6)	100 (25.2)
269 (67.4)	267 (67.3)
32 (8.0)	30 (7.6)
• •	` ,
62 (15.5)	56 (14.1)
207 (51.9)	210 (52.9)
130 (32.6)	131 (33.0)
•	
111 (27.8)	115 (29.0)
279 (69.9)	273 (68.8)
9 (2.3)	9 (2.3)
	98 (24.6) 269 (67.4) 32 (8.0) 62 (15.5) 207 (51.9) 130 (32.6) 111 (27.8) 279 (69.9)

Magnitude

HRR- randomly assigned (tested by both tissue and plasma; n = 247)

HRR- by tissue and plasma (n = 171) HRR- by plasma only (n = 75)

HRR- by protocol (failed both; n = 1)

Chi et al, JCO 2023

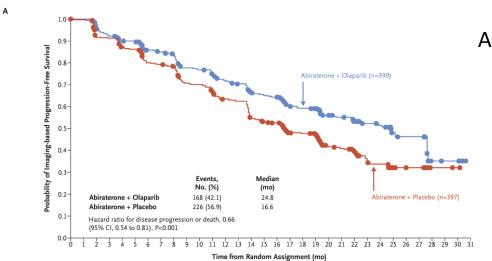
PROPEL

Clarke et al, NEJM Evid 2022

TALAPRO-2

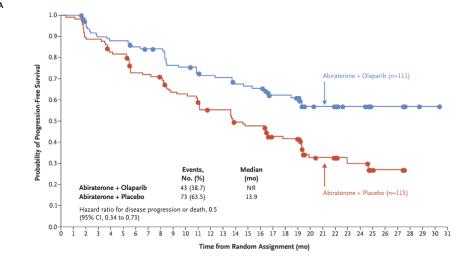
Table 1. Concordance of HRR Deficiency Status Between Prospective ctDNA- and Tumor Tissue-Based Tests (ITT All-Comers Population)

			Prosp	ective ctDI	NA Test	Results		
Tumor Tissue- Based Results		RR- icient		-HRR- icient	Unk	nown*	Te	otal
HRR-Deficient	26	(22.6)	1	(0.9)	4	(3.5)	31	(27.0)
Non-HRR- Deficient	4	(3.5)	64	(55.7)	8	(7.0)	76	(66.1)
Unknown	2	(1.7)	3	(2.6)	3	(2.6)	8	(7.0)
Total	32	(27.8)	68	(59.1)	15	(13.0)	115	(100.0)


Azad et al, ASCO 2023

N= 805 pts (100%) tissue N= 115 (14.5) tissue+plasma

PROPEL: Olaparib + abiraterone for mCRPC


No. at Risk

Abiraterone + Olaparib 399 395 367 354 340 337 313 309 301 277 274 265 251 244 227 221 219 170 167 163 104 100 87 59 57 28 26 26 5 4 4

Abiraterone + Placebo 397 393 359 356 338 334 306 303 297 266 264 249 232 228 198 190 186 143 141 137 87 84 73 45 43 21 17 16 2 2 1

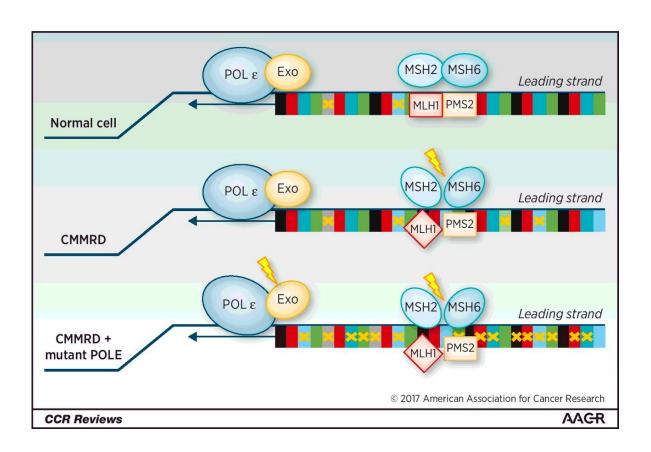
	Abiraterone and	Abiraterone and
	Olaparib (n=399)	Placebo (n=397)
HRRm status§		
Based on ctDNA, n (%)		
HRRm	98 (24.6)	100 (25.2)
Non-HRRm	269 (67.4)	267 (67.3)
HRRm unknown	32 (8.0)	30 (7.6)
Based on tumor tissue test, n (%)	` ,	` ,
HRRm	62 (15.5)	56 (14.1)
Non-HRRm	207 (51.9)	210 (52.9)
HRRm unknown	130 (32.6)	131 (33.0)
Based on aggregate, n (%)	` ,	, ,
HRRm	111 (27.8)	115 (29.0)
Non-HRRm	279 (69.9)	273 (68.8)
HRRm unknown	9 (2.3)	9 (2.3)

All comers

No at Bick

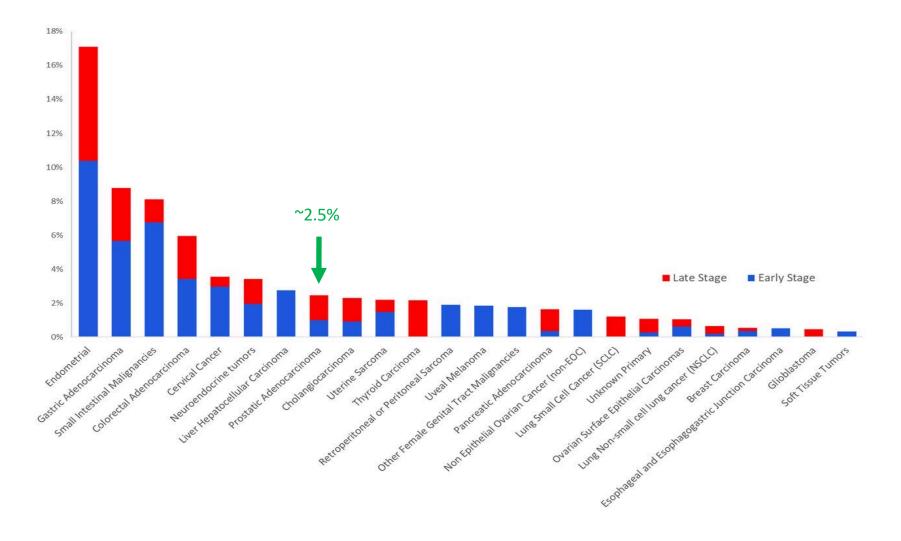
Abiraterone + Olaparib 111 111 103 96 94 94 90 88 87 79 78 74 72 71 66 65 64 52 52 49 34 33 28 14 14 8 8 8 2 1 1

Abiraterone + Placebo 115 114 103 102 94 93 81 80 78 69 68 63 58 58 51 49 49 40 39 38 22 21 20 11 11 3 2 2 0 0 0

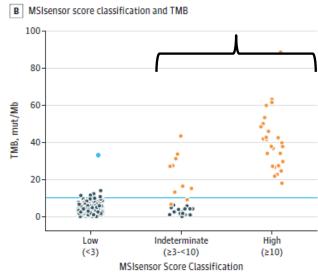

HRRm status (aggregate): HRRm		0.50 (0.34 to 0.73)	43/111 (38.7)	73/115 (63.5)
HRRm status (aggregate): non-HRRm	⊢	0.76 (0.60 to 0.97)	119/279 (42.7)	149/273 (54.6)
HRRm status based on ctDNA test: HRRm		0.54 (0.36 to 0.79)	42/98 (42.9)	66/100 (66.0)
HRRm status based on ctDNA test: non-HRRm		0.76 (0.59 to 0.97)	117/269 (43.5)	147/267 (55.1)
HRRm status based on ctDNA test: HRRm unknown	-	0.62 (0.26 to 1.44)	9/32 (28.1)	13/30 (43.3)
HRRm status based on tissue test: HRRm		0.44 (0.26 to 0.74)	22/62 (35.5)	37/56 (66.1)
HRRm status based on tissue test: non-HRRm	⊢	0.81 (0.62 to 1.07)	94/207 (45.4)	113/210 (53.8)
HRRm status based on tissue test: HRRm unknown		0.64 (0.45 to 0.90)	52/130 (40.0)	76/131 (58.0)

HRR+

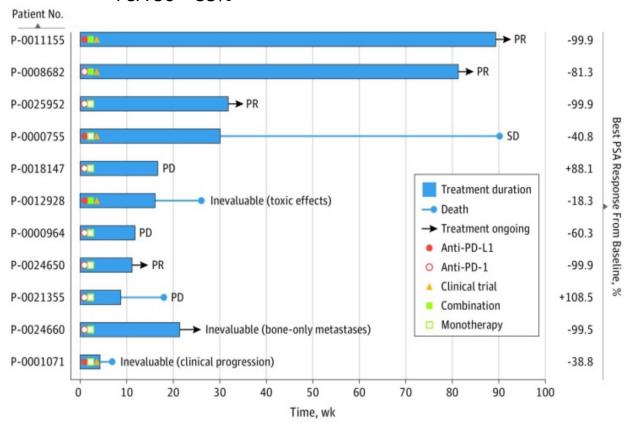
Mismatch Repair Deficiency and Microsatellite instability



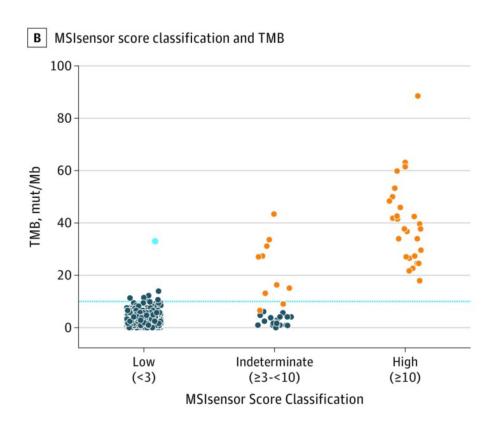
- Mutations in the four MMR genes (MSH2, MSH6, MLH1, and PMS2) result in known specific types of cancers and predisposition patterns:
- Germline (Lynch Syndrome) Or Somatic
- dMMR have many more mutations than MMR proficient
- IHC reveals loss of the corresponding MMR protein
- Microsatellite instability occurs when the genes that regulate DNA (MMR) don't work correctly



Mismatch Recombination Deficiency Across 12,019 Tumors



32 of 1033 (3.1%) mCRPC samples had MSI-High or MSI-Intermediate scores


IO in mPCa with MSI-H (tumor tissue MSK platform)

Twenty-three MSI+ score of 1033 patients (2.2%) N = 11 Pts MSI+ treated with pembrolizumab ORR = 4/8 (50%) - 4 PR PSA 50 = 55%

TMB – tumor mutational burden; MSI - microsatellite instability

TMB and MSI

IO in mCRPC with MSI-H detected by circulating tumor DNA (n=15/405)

Characteristic	N = 9 pts
Age, median (range), years	68 (57-88)
Location of metastases, n (%)	
Bones	5 (56)
Soft tissue	1 (11)
Liver	1 (11)
Lymph nodes	3 (33)
Prior lines of therapy for mCRPC, n (%)	
0	1 (11)
1	3 (33)
2	3 (33)
3+	2 (22)
Type of prior oncologic therapies, n (%)	
Abiraterone	6 (67)
Enzalutamide	3 (33)
Ketoconazole	1 (11)
Apalutamide	1 (11)
Docetaxel	2 (22)
Cabazitaxel	1 (11)
Lutetium-177-PSMA-617	1 (11)

ORR = 3/5 (60%) - 1 complete response, 2 partial response (total 5 eligible RECIST pts)
PSA50 = 4/9 (44%)

Estimated median Pembro duration = 9.9 (CI 95%, 1.0-18.8) months

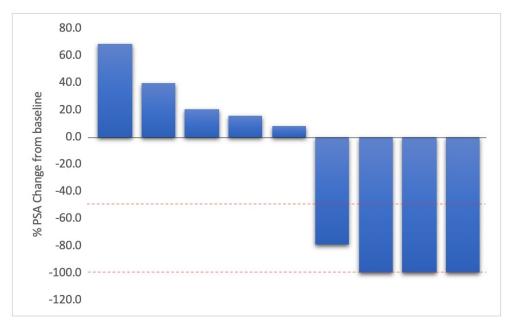
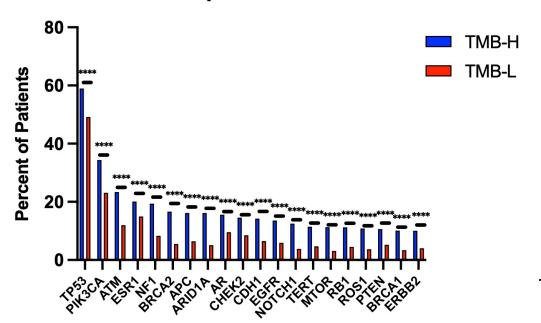
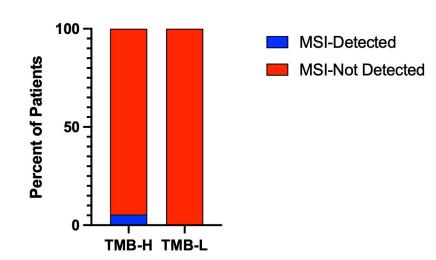
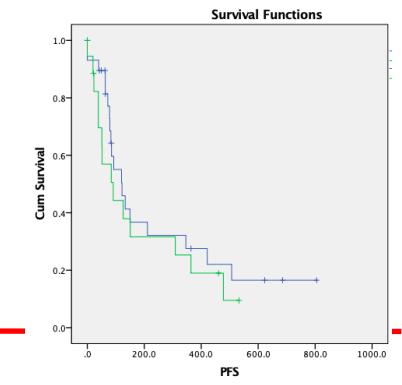


Figure 1 – Best PSA change from baseline in <u>mCRPC</u> patients treated with pembrolizumab (N=9).

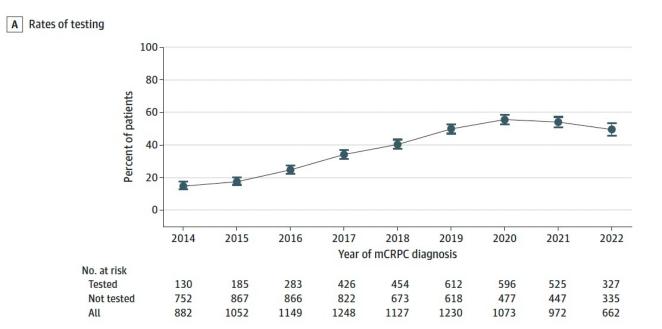


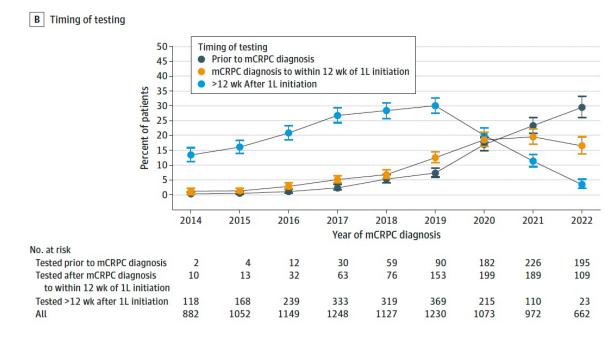

How reliable is TMB? It depends....


- N = 48 PC + BC treated with IO based on bTMB ≥ 10 Mut/Mb
- bTMB 10 or 16 or 20 Mut/Mb doesn't predict responses to IO
- tTMB correlates with MSI-H and predicts response to IO (Abida et al, JAMA 2019)

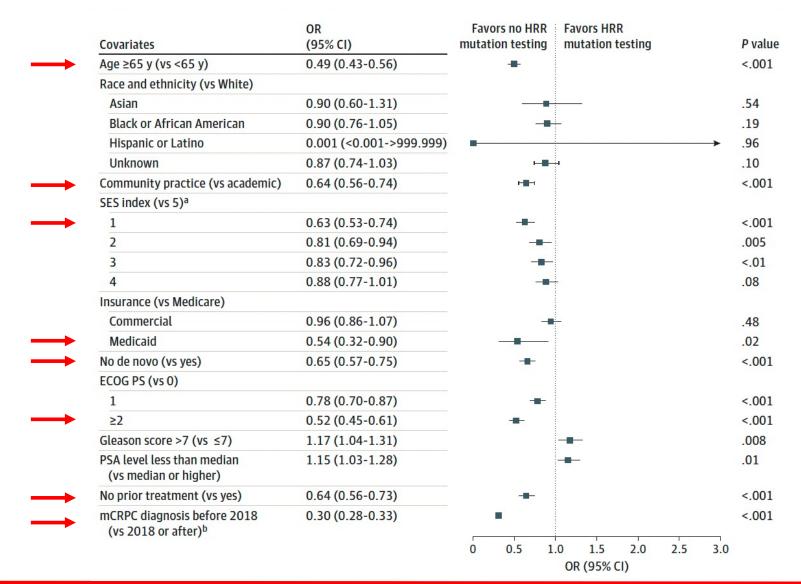
Genomic Landscape: TMB cut-off ≥10mut/Mb

Reagan, Barata et al, Jnpublished Data (PLS DO NOT POST)



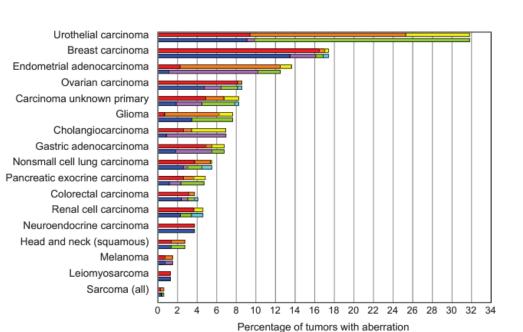


Genetic Testing in Men with mCRPC

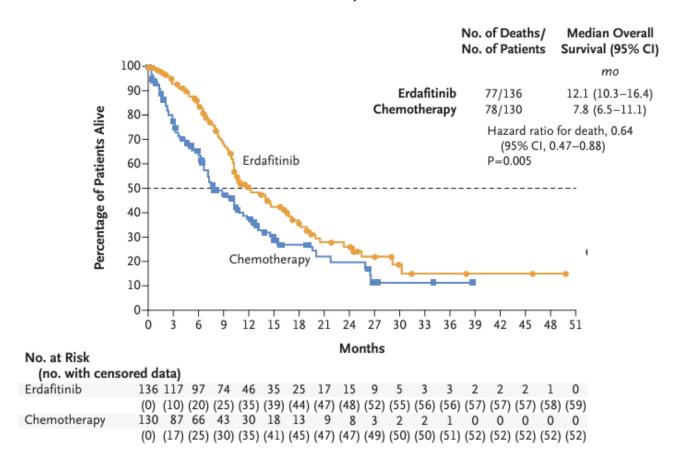


Pls do not tweet

Factors Associated with Genetic Testing in mCRPC



Pls do not tweet


Urothelial Cancer and the Case of FGFR

■FGFR2

Mutation

Ph. 3 THOR, Overall Survival

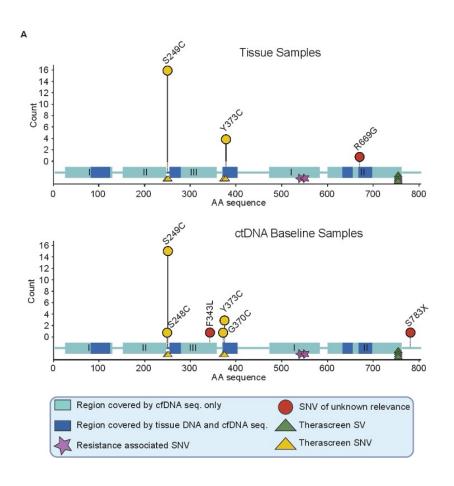
Helsten et al, CCR 2015

■FGFR3

Rearrangement

Loriot et al, NEJM 2023

■FGFR1


Amplification

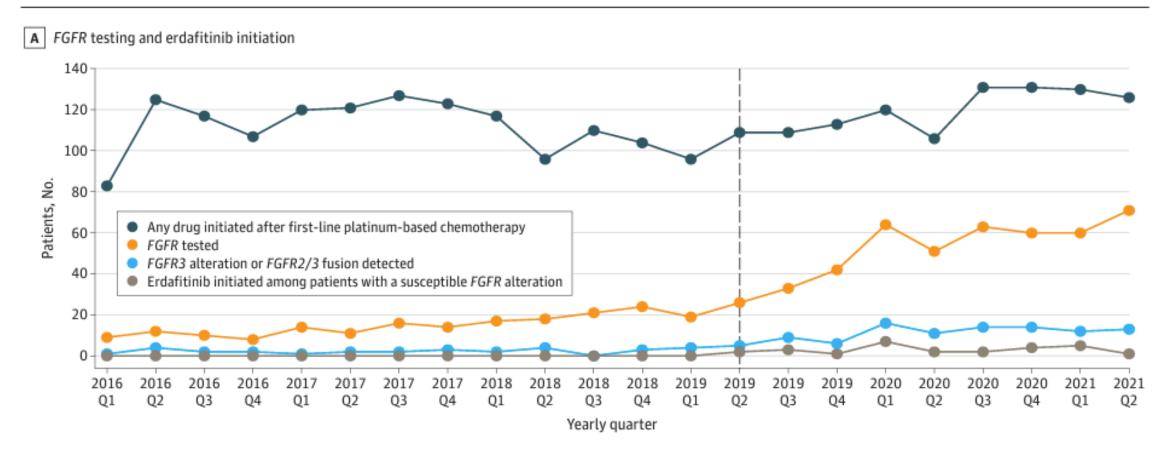
■FGFR4

Concordance tissue vs liquid biopsy

Spatial localization of FGFR3 alts.

ns		1	i i	1 1
atio	10	Negative	Positive	Inconclusive
cfDNA testing for FGFR alterations	Negative	34	1	0
ting for F	Positive	4	16	1
cfDNA tes	Incon- clusive	12	6	0

	%	
Concordance (including inconclusive samples)	89 (67)	_
Proportion of potentially eligible patients missed	9	
by tissue testing		
Sensitivity (cfDNA testing)	94	
Specificity (cfDNA testing)	87	
Positive predictive value (cfDNA testing)	76	
Negative predictive value (cfDNA testing)	97	_


Table 2. Concordance of FGFR testing

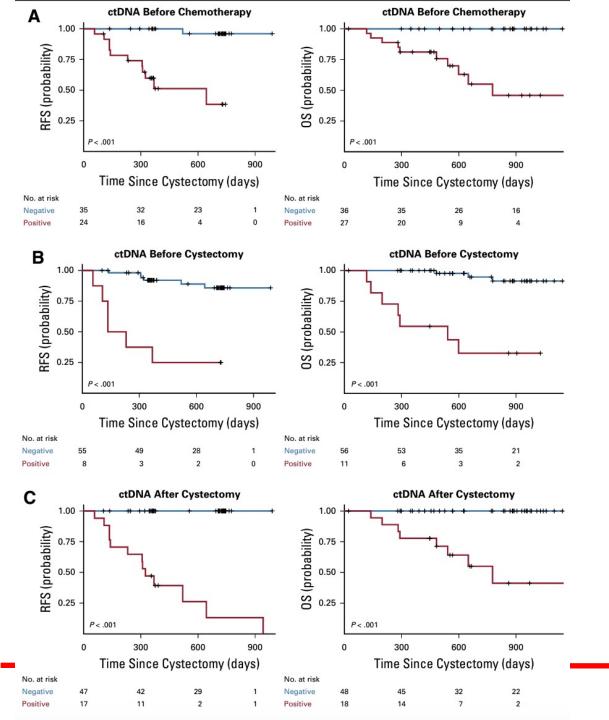
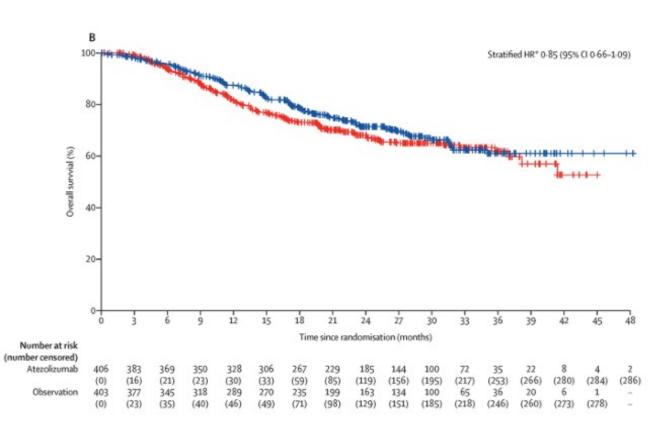
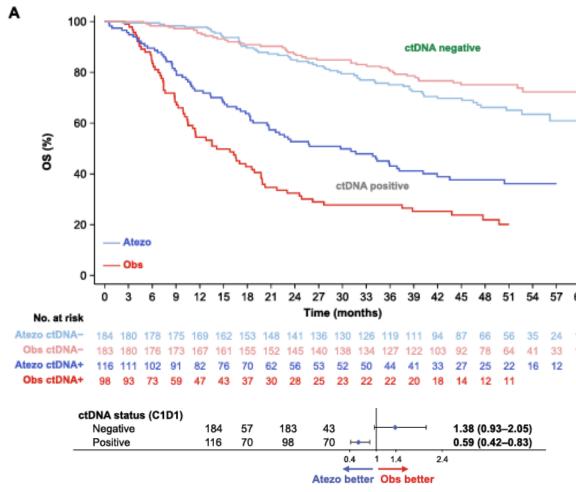

Genetic Testing in mUC

Figure 1. Real-world Use of Pan-Fibroblast Growth Factor Receptor (FGFR) Testing and Rate of Erdafitinib Uptake




Minimal Residual Disease

 ctDNA assessment for early risk stratification, therapy monitoring, and early relapse detection in bladder cancer is feasible

 Presence of ctDNA was highly prognostic at diagnosis before chemotherapy

OS from IMvigor010 Phase 3 Trial – ctDNA for better selection

Bellmunt et al, Lancet Oncol 2021

Powles et al, Eur Urol 2023

IMvigor011: surveillance group analysis

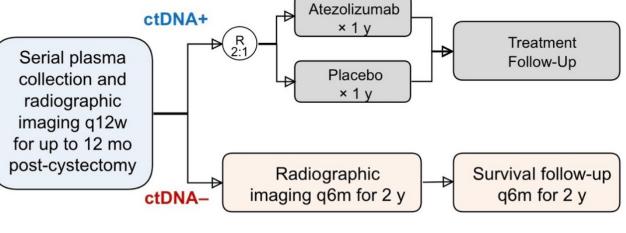
Screening

High-risk MIBC (y)pT2–T4a N0 M0 or (y)pT0-T4a N+ M0 at cystectomy

Received or did not receive prior NAC

Eligible or not eligible for AC

Cystectomy within past 6-24 weeks with no evidence of residual disease


No known PD-L1 status for adjuvant therapy

Available tumour sample for PD-L1 statusa and WES and matched blood sample

Primary endpoint:

- Investigator-assessed DFS Key secondary endpoint:
- os

Surveillance Treatment Follow-Up

Primary analysis population: Not included in analysis

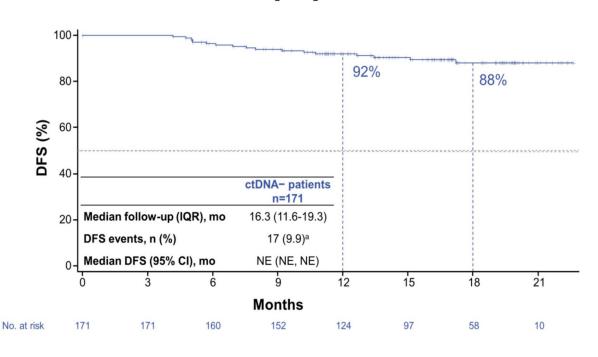
Surveillance group: Included in analysis

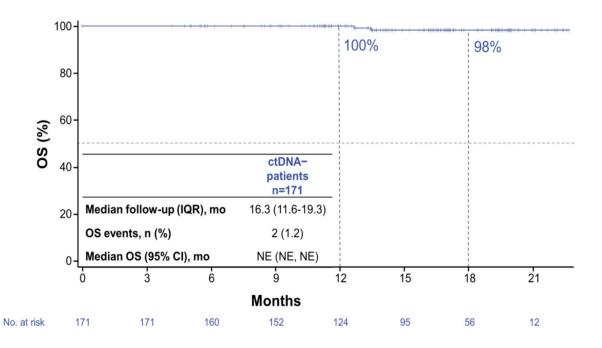
ctDNA- definition:

- Disease-free status at baseline
- ≥1 ctDNA- result and no ctDNA+ result
- ≥1 post-baseline diseases assessment
- Completed ≥12 mo of surveillance post-cystectomy or discontinued surveillance <12 mo with no ctDNA+ result

www.eau24.org

ClinicalTrials.gov ID, NCT04660344. Stratification factors were nodal status (positive vs negative), tumour stage after cystectomy (≤(y)pT2 vs (y)pT3/(y)pT4), PD-L1 IHC status (IHC score of IC0/1 vs IC2/3 by VENTANA SP142 IHC assay) and time from cystectomy to first ctDNA+ sample (≤20 weeks vs >20 weeks). AC, adjuvant chemotherapy; IHC, immunohistochemistry; NAC, neoadjuvant chemotherapy; OS, overall survival; q6m, every 6 months; q12w, every 12 weeks; WES, whole-exome sequencing. aPD-L1 status was determined by the VENTANA SP142 IHC assay.

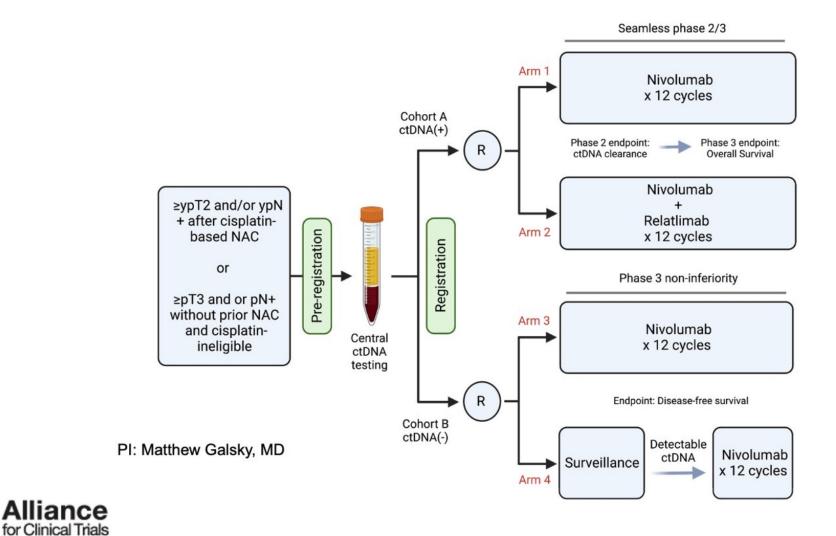

https://ter.li/ef5d4t



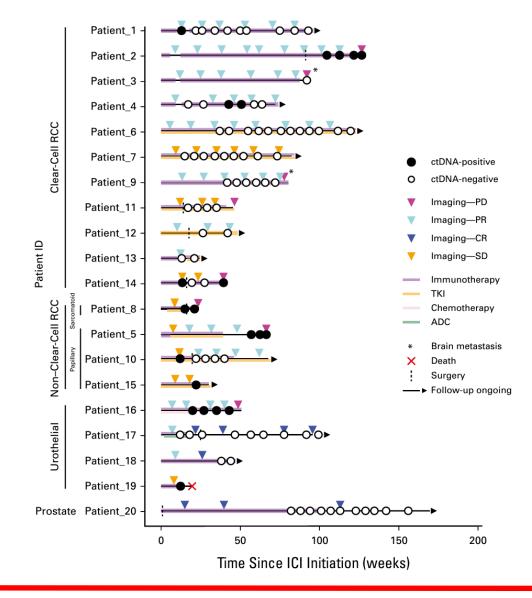
Outcomes ctDNA- (N=171) IMvigor011

DFS in the ctDNA- population

OS in the ctDNA- population



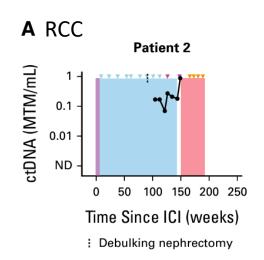
A032103 (MODERN): An integrated Phase 2/3 and Phase 3 Trial of MRD-based Optimization of aDjuvant thErapy in uRothelial caNcer

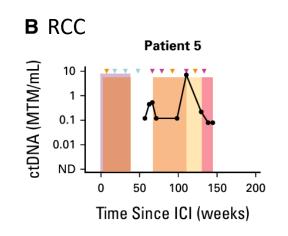


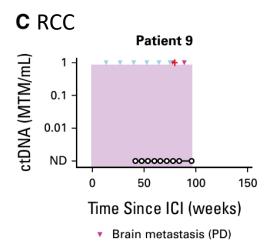
in Oncology

Serial ctDNA changes in M1: pilot study

Characteristic	Total Group (N=20)
Age, years, median (range)	68 (42-85)
Sex, No.	
Male	17
Female	3
ECOG, No.	
0	15
1	5
Cancer type, No.	
Renal cell carcinoma	15
Urothelial cell carcinoma	4
Prostate adenocarcinoma	1
Ethnicity, No.	
Non-Hispanic White	15
Black	4
Hispanic	1
Sites of metastases at ICI initiation, No.	
Lymph nodes	14
Lung	11
Bone	4
Liver	4
Spleen	1
Brain	1ª



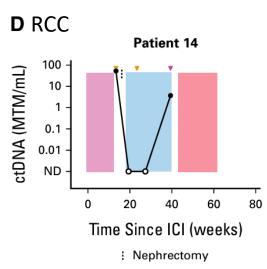

Serial ctDNA changes in M1: pilot study

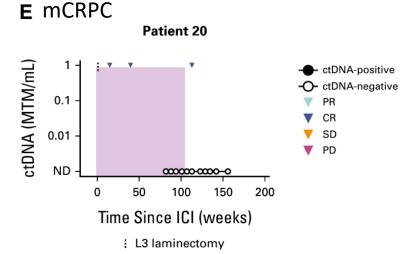

median Fup = 67.7 weeks

concordance= 83% (15/18)

Discordance - CNS; slow PD

+ Radiotherapy


Pembrolizumab (ICI)


Ipi/nivolumab (ICI)

Nivolumab (ICI)

Tivozanib (TKI)

Axitinib (TKI)
Cabozantinib (TKI)

Thank you!

Pedro.Barata@UHhospitals.org 216-262-1214

