

Memorial Sloan Kettering Cancer Center

Updates on immunotherapy and ADCs in advanced urothelial cancers

Jonathan Rosenberg, MD Chief, Genitourinary Oncology Service Enno Ercklentz Chair Department of Medicine Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College

Treatment Landscape of advanced UC

- Cisplatin-based neoadjuvant chemotherapy is standard for eligible muscle invasive UC patients
- Adjuvant immunotherapy is an option for patients
- Enfortumab vedotin and pembrolizumab approved for metastatic UC
- Platinum based chemotherapy is no longer the default option for metastatic UC patients
 - Role of avelumab maintenance is reduced in this new paradigm
- Patients who are not felt to be candidates for cytotoxic agents may receive pembrolizumab monotherapy

Adjuvant nivolumab improves continued disease-free survival in high-risk bladder cancer after cystectomy

Galsky et al. J Clin Oncol 41, 2023 (suppl 6; abstr LBA443)

Memorial Sloan Kettering Cancer Center

A031501 AMBASSADOR: Pembrolizumab Improves Disease-Survival Compared to Observation in high risk UC

FOR CLINICAL TRIALS IN ONCOLOGY

Cancer Center

Apolo et al. JCO 2024; 42 (supp 4) LBA531.

Metastatic UC: ADC Therapy with enfortumab vedotin

Targets Nectin-4 which is highly expressed in urothelial cancers

EV-201: post-IO/chemo

Rosenberg, et al. J Clin Oncol. 2019; 37(29):2592-2600.

Memorial Sloan Kettering Cancer Center

EV-301: EV improves survival compared to standard chemotherapy in platinum and CPI refractory patients

95% CI, 0.51 to 0.75; P<0.001) Powles, Rosenberg, et al. NEJM 2021

EV-103 Cohort K: EV +/- pembrolizumab

EV Monotherapy (n = 65)

- EV/Pembro activity independent of PD-L1 status ○ 27/44 (61.4%) cORR in CPS<10
 - o 21/31 (67.7%) cORR in CPS≥10

	EV+Pembro (N=76)	EV Monotherapy (N=73)
Confirmed ORR (95% CI)	64.5% (52.7-75.1)	45.2% (33.5-57.3)
Complete response	10.5%	4.1%
Partial Response	53.9%	41.1%
Progressive Disease	7.9%	9.6%
Not evaluable or no assessment	5.3%	10.9%

EV-302/KEYNOTE-A39 (NCT04223856)

Stratification factors: cisplatin eligibility (eligible/ineligible), PD-L1 expression (high/low), liver metastases (present/absent)

•Cisplatin eligibility and assignment/dosing of cisplatin vs carboplatin were protocol-defined; patients received 3-week cycles of EV (1.25 mg/kg; IV) on Days 1 and 8 and P (200 mg; IV) on Day 1

Statistical plan for analysis: the first planned analysis was performed after approximately 526 PFS (final) and 356 OS events (interim); if OS was positive at interim, the OS interim analysis was considered final

EV-302: Progression-Free Survival per BICR

Risk of progression or death was reduced by 55% in patients who received EV+P

EV-302: Overall Survival

Risk of death was reduced by 53% in patients who received EV+P

OS Subgroup Analysis: Cisplatin Eligibility and PD-L1 Expression

OS benefit was consistent with the overall population regardless of cisplatin eligibility or PD-L1 expression status

Data cutoff: 08 August 2023

Van Der Heijden MS, et al. J Clin Oncol 42, 2024 (suppl 4; abstr LBA530)

^aCalculated using stratified Cox proportional hazards model; a hazard ratio <1 favors the EV+P arm

Memorial Sloan Kettering Cancer Center **HR**^a

(95% CI)

0.43

(0.31 - 0.59)

HR^a

(95% CI)

0.44

(0.31 - 0.61)

mOS: NR

30

mOS: NR

OS Subgroup Analysis: Liver Metastases and Metastatic Disease Site

OS benefit was consistent with the overall population regardless of the presence or absence of liver or visceral metastases

Cancer Center

EV-302: Confirmed Overall Response per BICR

Significant improvement in objective response rate was observed with EV+P

	EV+P (N=437)	Chemotherapy (N=441)				
Confirmed ORR, n (%) (95% CI)	296 (67.7) (63.1-72.1)	196 (44.4) (39.7-49.2)				
2-sided P value	<0.00001					
Best overall response ^a , n (%)						
Complete response	127 (29.1)	55 (12.5)				
Partial response	169 (38.7)	141 (32.0)				
Stable disease	82 (18.8)	149 (33.8)				
Progressive disease	38 (8.7)	60 (13.6)				
Not evaluable/No assessment ^b	21 (4.8)	36 (8.2)				

EV+P ORR is remarkably consistent across studies

EV-302: Summary of Subsequent Systemic Therapy

59% of patients in chemotherapy arm received subsequent PD-1/L1 inhibitors

	EV+P (N=442) n (%)	Chemotherapy (N=444) n (%)
First subsequent systemic therapy ^a	128 (28.9)	294 (66.2)
Platinum-based therapy	110 (24.9)	17 (3.8)
PD-1/L1 inhibitor-containing therapy	7 (1.6)	260 (58.6)
Maintenance therapy	0	143 (32.2)
Avelumab maintenance	0	135 (30.4)
PD-1/L1 inhibitor-containing therapy following progression	7 (1.6)	117 (26.4)
Other	11 (2.5)	17 (3.8)

EV-302: Treatment-Related Adverse Events

Grade \geq 3 events were 56% in EV+P and 70% in chemotherapy

Serious TRAEs:

- 122 (27.7%) EV+P
- 85 (19.6%) chemotherapy

TRAEs leading to death (per investigator):

- EV+P: 4 (0.9%)
- Asthenia
- Diarrhea
- Immune-mediated lung disease
- Multiple organ dysfunction syndrome

Chemotherapy: 4 (0.9%)

- Febrile neutropenia
- Myocardial infarction
- Neutropenic sepsis
- Sepsis

Median number of cycles (range): 12.0 (1,46) for EV+P; 6.0 (1,6) for chemotherapy

EV-302: EV Treatment-Related Adverse Events of Special Interest

Majority of treatment-related AESIs were low grade

	EV+P n	(N=440) (%)	Chemotherapy (N=433) n (%)				
	Any grade	Grade ≥3	Any grade	Grade ≥3			
Skin reactions	294 (66.8)	68 (15.5)	60 (13.9)	1 (0.2)			
Peripheral neuropathy	278 (63.2)	30 (6.8)	53 (12.2)	0 (0.0)			
Sensory events	260 (59.1)	19 (4.3)	51 (11.8)	0 (0.0)			
Motor events	44 (10.0)	12 (2.7)	5 (1.2)	0 (0.0)			
Ocular disorders	94 (21.4)	0 (0.0)	12 (2.8)	0 (0.0)			
Dry eye	82 (18.6)	0 (0.0)	8 (1.8)	0 (0.0)			
Hyperglycemia	57 (13.0)	27 (6.1)	3 (0.7)	0 (0.0)			
Infusion-related reactions	9 (2.0)	0 (0.0)	9 (2.1)	0 (0.0)			

EV-302: Conclusions

- Risk of progression or death reduced by 55% with EV+P
- Risk of death reduced by 53% with EV+P
 - Median OS 31.5 months with EV+P
- All patient subsets seemed to benefit
- Confirmed ORR was 67.7% and 44.4% in the EV+P and chemo arms, respectively
 - 29% complete response rate!
- Transformative data
 - Replaces chemotherapy for most patients with mUC
 - Availability will be limited for some time in certain regions of the world

CheckMate-901: two phase 3 trials of immune checkpoint blockade

Checkmate 901: Study design

Does Nivolumab improve outcomes when added to gemcitabine-cisplatin?

Median (range) study follow-up, 33.6 (7.4-62.4) months

Primary endpoints: OS, PFS per BICR **Key secondary endpoints:** OS and PFS by PD-L1 ≥ 1%,^d HRQoL **Key exploratory endpoints:** ORR per BICR, safety

Checkmate 901: OS (primary endpoint)

Adapted from M van der Heijden; ESMO LBA7 2023

Checkmate 901: OS in subgroups

Subgroup	No. of patients	NIVO+GC No. of events	GC /no. of patients	Unstratified HR for death (95% CI)	
Overall (N = 608)		172/304	193/304	⊢ • · · · · · · · · · · · · · · · · · ·	0.78 (0.63-0.95)
Age, years					
< 65	298	85/150	100/148		0.69 (0.51-0.92)
≥ 65 and < 75	236	65/120	66/116		0.89 (0.63-1.26)
≥75	74	22/34	27/40		0.86 (0.49-1.52)
Sex				i	
Male	470	133/236	147/234	⊢ −−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.76 (0.60-0.97)
Female	138	39/68	46/70		0.82 (0.54-1.26)
Race					
White	436	123/211	145/225	⊢ − ●−−₩	0.80 (0.63-1.02)
Asian	138	38/75	36/63	⊢−−−−↓ −	0.71 (0.45-1.12)
Other	32	11/18	10/14		0.84 (0.35-1.97)
Region					
US	40	18/19	15/21	H	1.92 (0.95-3.88)
Asia	133	36/72	34/61		0.73 (0.46-1.17)
Europe	276	72/134	90/142	⊢	0.73 (0.53-0.99)
Rest of the world	159	46/79	54/80		0.73 (0.49-1.08)
ECOG PS				i i	
0	324	74/162	87/162	⊢ −−− +I	0.70 (0.51-0.95)
1	282	96/140	106/142		0.85 (0.64-1.11)
PD-L1 expression					
≥ 1%	221	64/111	67/110		0.75 (0.53-1.06)
< 1% or indeterminate	387	108/193	126/194	⊢ −− ↓I	0.80 (0.62-1.04)
Liver metastases					
Yes	128	45/64	48/64		0.77 (0.51-1.16)
No	480	127/240	145/240		0.77 (0.61-0.98)
Previous systemic anticancer th	erapy			I	
Yes	156	44/88	41/68		0.90 (0.59-1.38)
No	452	128/216	152/236	⊢i	0.76 (0.60-0.96)
				0.25 0.50 1.00 2.00 4.00	
No significant o	differences	hy sube	rouns	NIVO+GC better GC better	

No significant differences by subgroups

c/0 M van der Heijden; ESMO LBA 2023

Checkmate 901: PFS per BICR (primary endpoint)

Checkmate 901: Objective response outcomes

Time to and duration of responses

Any objective response ^c	NIVO+GC (n = 175)	GC (n = 131)				
Median TTR (Q1-Q3), months	2.1 (2.0–2.3)	2.1 (2.0–2.2)				
Median DoR (95% CI), months	9.5 (7.6–15.1)	7.3 (5.7–8.9)				

Complete response ^d	NIVO+GC (n = 66)	GC (n = 36)
Median TTCR (Q1-Q3), months	2.1 (1.9-2.2)	2.1 (1.9-2.2)
Median DoCR (95% CI), months	37.1 (18.1-NE)	13.2 (7.3-18.4)

Nivolumab associated with higher ORR, CR rate, and longer DOR

Adapted from M van der Heijden; ESMO LBA 2023

Checkmate 901: Treatment-related AEs in all treated patients

Javelin Bladder 100 trial: Avelumab as maintenance improves OS in the overall study population and PDL1+ population <u>Median OS (95% CI), months</u>

ITT

PDL1+

Memorial Sloan Kettering Cancer Center

Adapted from Powles et al. ASCO 2020

Javelin Bladder 100 trial: Longer term follow-up (≥ 2 years) confirms initial data

Powles, et al. J Clin Oncol 40, 2022 (suppl 6; abstr 487)

Complete response Partial response Stable disease К **K** 60 \$ ŝ Š, S, 12 16 20 24 28 32 36 52 56 Ó 12 16 20 24 28 32 36 12 16 20 24 Months Months Months No. at risk No. at risk No. at risk Avelumab + BSC 90 85 78 72 64 24 14 Avelumab + BSC Avelumab + BSC 126 100 BSC 89 86 45 37 30 26 21 13 BSC 163 140 103 76 60 46 42 37 29 22 15 10 BSC 98 78 68 50 43 35 34 29 23 14 10 **Complete response Partial response** Stable disease PFS, PFS, PFS, 12 16 20 24 28 16 20 44 48 Months Months Months No. at risk No. at risk No. at risk Avelumab + BSC Avelumab + BSC Avelumab + BSC 163 75 52 42 BSC 89 42 23 17 14 11 11 9 **BSC** 98 27 17 3 0 BSC 163 32 11 -3 -3 -3 1 0

Overall, outcomes favor avelumab no matter prior chemo response

Sridhar et al. ASCO 2022

Chemotherapy + IO in advanced UC

- Checkmate 901:
 - Higher ORR, DOR and CR rate with addition of nivolumab compared to gem/cis
 - Significantly longer PFS and OS
 - First study where chemotherapy + checkpoint inhibitor improved outcomes in mUC
 - Cisplatin and immunotherapy may have advantages over carboplatin-based combinations
- Javelin Bladder-100
 - Improvements in OS in patients who respond to first-line therapy compared to treatment at relapse
 - Would remain standard for EV and cisplatin-ineligible patients
 - Preferred to chemotherapy followed by observation
- Which is the better strategy?
 - Up-front therapy guarantees that all patients get a checkpoint inhibitor, rather than only those who benefit from chemotherapy, but may increase toxicity

Targeted therapy in advanced UC: FGFR3 inhibition

Phase 3 THOR Study Cohort 1: Erdafitinib Versus Chemotherapy of Choice in Patients With Advanced Urothelial Cancer and Select *FGFR* Aberrations

All Patients Received Anti–PD-(L)1 in the First- or Second-Line Setting

Loriot Y et al. N Engl J Med 2023; 389:1961-1971

NCT03390504

Phase 3 THOR Study Cohort 2: Erdafitinib Versus Pemmbrolizumab in Patients With Advanced Urothelial Cancer and Select *FGFR* Aberrations

NCT03390504

Siefker-Radtke et al. Annals of Oncology 2024 (35): 107-117.

Erdafinitinb in refractory mUC

Cohort 1: Erdafitinib improves survival compared to taxane or vinflunine in IOexperienced patients

No. at Risk

(no. with censor	ed da	ata)																												
Erdafitinib	136	117	97	74	46	35	25	17	15	9	5	3	3	2	2	2	1	0	No. at risk		N	lont	ths	Sind	ce R	land	not	iza	tion	1
	(0)	(10)) (20)	(25)	(35)	(39)	(44)	(47)	(48)	(52)	(55)	(56)	(56)	(57)	(57)	(57)	(58)	(59)	Erdafitinih	175 160 131 100 78	60	52	41	30	28	23	21	13	9	7
Chemotherapy	130	87	66	43	30	18	13	9	8	3	2	2	1	0	0	0	0	0	Liuantinio			<u> </u>		40	24	20		4.0		
	(0)	(17)) (25)	(30)	(35)	(41)	(45)	(47)	(47)	(49)	(50)	(50)	(51)	(52)	(52)	(52)	(52)	(52)	Pembrolizumab	176 148 119 103 84	/2	60	52	43	34	29	23	19	11	8

Cohort 2: Erdafitinib does not improve survival compared to pembrolizumab in IOnaïve patients

-		10110			-		00							_	-	-	_
76	5148	119 10	3 84	72	60	52	43	34	29	23	19	11	8	8	1	1	0

Siefker-Radtke et al. Ann Oncol 2024 (35): 107-117.

Memorial Sloan Kettering **Cancer** Center

2 1

0

Loriot Y et al. N Engl J Med 2023; 389:1961-1971

Adverse events associated with erdafitinb treatment

- Hyperphosphatemia is ontarget effect and requires monitoring for dose uptitration at 14-21 days
- Gastrointestinal toxicity is common including stomatitis, dry mouth, and dysgeusia
- Skin and nail toxicity are frequent
- Grade 3 central serous retinopathy (in 2.2%) and other eye disorders (in 2.2%) were uncommon but require monitoring per package insert

Table 2. Adverse Events in the Safety Population.*									
Event		Erdafitinit	o (N=135)			Chemothera	ару (N=112)		
	Any Grade	Grade 1	Grade 2	Grade ≥3	Any Grade	Grade 1	Grade 2	Grade ≥3	
				number	(percent)				
Hyperphosphatemia	108 (80.0)	70 (51.9)	31 (23.0)	7 (5.2)	0	0	0	0	
Diarrhea	84 (62.2)	49 (36.3)	31 (23.0)	4 (3.0)	19 (17.0)	7 (6.2)	9 (8.0)	3 (2.7)	
Stomatitis	65 (48.1)	22 (16.3)	32 (23.7)	11 (8.1)	14 (12.5)	4 (3.6)	8 (7.1)	2 (1.8)	
Dry mouth	53 (39.3)	45 (33.3)	8 (5.9)	0	4 (3.6)	4 (3.6)	0	0	
Palmar–plantar erythrodysesthesia syndrome	41 (30.4)	6 (4.4)	22 (16.3)	13 (9.6)	1 (0.9)	0	1 (0.9)	0	
Dysgeusia	37 (27.4)	28 (20.7)	8 (5.9)	1 (0.7)	8 (7.1)	5 (4.5)	3 (2.7)	0	
Alanine aminotransferase increased	37 (27.4)	24 (17.8)	9 (6.7)	4 (3.0)	4 (3.6)	2 (1.8)	1 (0.9)	1 (0.9)	
Constipation	36 (26.7)	24 (17.8)	12 (8.9)	0	31 (27.7)	13 (11.6)	16 (14.3)	2 (1.8)	
Decreased appetite	36 (26.7)	18 (13.3)	14 (10.4)	4 (3.0)	23 (20.5)	10 (8.9)	10 (8.9)	3 (2.7)	
Anemia	35 (25.9)	10 (7.4)	15 (11.1)	10 (7.4)	36 (32.1)	8 (7.1)	19 (17.0)	9 (8.0)	
Alopecia	34 (25.2)	29 (21.5)	4 (3.0)	1 (0.7)	27 (24.1)	16 (14.3)	11 (9.8)	0	
Dry skin	31 (23.0)	23 (17.0)	6 (4.4)	2 (1.5)	5 (4.5)	4 (3.6)	1 (0.9)	0	
Onycholysis	31 (23.0)	9 (6.7)	14 (10.4)	8 (5.9)	1 (0.9)	0	1 (0.9)	0	
Weight decreased	30 (22.2)	12 (8.9)	15 (11.1)	3 (2.2)	3 (2.7)	3 (2.7)	0	0	
Aspartate aminotransferase increased	29 (21.5)	21 (15.6)	5 (3.7)	3 (2.2)	3 (2.7)	2 (1.8)	1 (0.9)	0	
Onychomadesis	28 (20.7)	9 (6.7)	17 (12.6)	2 (1.5)	2 (1.8)	1 (0.9)	1 (0.9)	0	
Nail discoloration	24 (17.8)	16 (11.9)	7 (5.2)	1 (0.7)	2 (1.8)	1 (0.9)	1 (0.9)	0	
Dry eye	23 (17.0)	20 (14.8)	3 (2.2)	0	2 (1.8)	1 (0.9)	1 (0.9)	0	
Asthenia	20 (14.8)	6 (4.4)	12 (8.9)	2 (1.5)	28 (25.0)	9 (8.0)	15 (13.4)	4 (3.6)	
Nausea	20 (14.8)	10 (7.4)	8 (5.9)	2 (1.5)	27 (24.1)	15 (13.4)	10 (8.9)	2 (1.8)	
Neutropenia	0	0	0	0	22 (19.6)	1 (0.9)	5 (4.5)	16 (14.3)	
Fatigue	20 (14.8)	12 (8.9)	8 (5.9)	0	21 (18.8)	13 (11.6)	4 (3.6)	4 (3.6)	

* Listed are adverse events (of any cause) that emerged or worsened during treatment, according to preferred term and highest grade, and that were reported in more than 15% of the patients in either treatment group.

Novel ADCs in advanced UC: Trop2 and Her2 targeted therapies

Sacitizumab govitecan: Accelerated approval for mUC who progressed after prior platinumbased and CPI-based therapies

	(n=113)
Overall Response Rate	
ORR, % [95% CI]	27% [19.5, 36.6]
CR, % PR, %	5.3 22.1
Response duration	
mDOR, months	7.2

PFS: 5.4 months (95% CI 3.5, 7.2) OS: 10.9 months (95% CI 9.0, 13.8)

Week

Tagawa ST, et al. J Clin Oncol. 2021

Frequency of HER2 alterations is high in bladder cancer

- Mutations
 - 5-11% (higher frequency than breast and other cancer types)
- Amplifications
 - 6-9%
 - Can co-exist with mutations in a subset of tumors
- Overexpression in about 25-40% of UC tumors

Data source AACR GENIE Cohort v12.0-public, accessed 2022-08-04 via cBioPortal. Exclude alterations (mutations and copy number) of unknown significance, germline, and mutation and CNA data. Filtered for minimal number of cases 200 per indication, and alteration frequency > 1%. Data on file. AACR, American Association for Cancer Research; CNA, copy number aberrations.

Denstiny Pan-Tumor 02: Trastuzumab Deruxtecan leads to high response rates in HER2+ urothelial cancer

ORR 39%

T-DxD outcomes by HER2 status

PFS

Memorial Sloan Kettering Cancer Center

≢

OS

Disitamab vedotin: Combined analysis of two Phase 2 studies in refractory advanced UC

Sheng et al. JCO, epub ahead of print 2023

Disitamab vedotin + Toripalimab

(IgG4 anti-PD1 monoclonal antibody)

- Ph I/II study in patients with LA/mUC (n=41)
- HER2 2-3+ in 59% and PD-L1 positive in 32%
- RC48 at 1.5 or 2 mg/kg in combination with toripalimab 3 mg/kg every 2 weeks in dose escalation and expansion cohort
- TRAEs: Transaminitis, peripheral sensory neuropathy, asthenia, hypertriglyceridemia, decreased appetite
- No DLT observed and recommended dose of RC48 was 2 mg/kg

- Confirmed ORR 73.2% (95% CI 57.1, 85.8) including 9.8% CR
 HER2 2-3+: 86.3%
 - HER2 1+: 57.1%
 - HER2 0: 33.3%
- Confirmed ORR PD-L1 positive: 66.6% ORR; PD-L1 negative: 74.1%
- Median PFS: 9.2 months; 2-year OS rate 63.2%

First-line therapy for la/mUC is changing- finally!

- EV/pembro is now standard for metastatic UC patients in US
 - EV-302 markedly favors Ev/P: OS EV/P 31.5mo vs GP 16.1mo
- Addition of nivolumab to gem/cis improves PFS and OS (OS NGC 21.7mo vs) GC 18.9mo)
 - GC+N is a first-line option for patients and likely used more frequently outside US where EV/P is not as readily available
- Pembrolizumab monotherapy for frail patients
- Avelumab maintenance checkpoint blockade following response to initial platinum-based chemotherapy
 - As landscape evolves and CPI is started at initial therapy for metastatic disease, its role will diminish but may remain an option for cisplatin- and EV-ineligible patients
- FGFR3 inhibition is now standard after 1-2 lines of therapy including checkpoint inhibition

Thank you!

