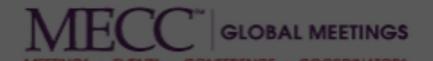
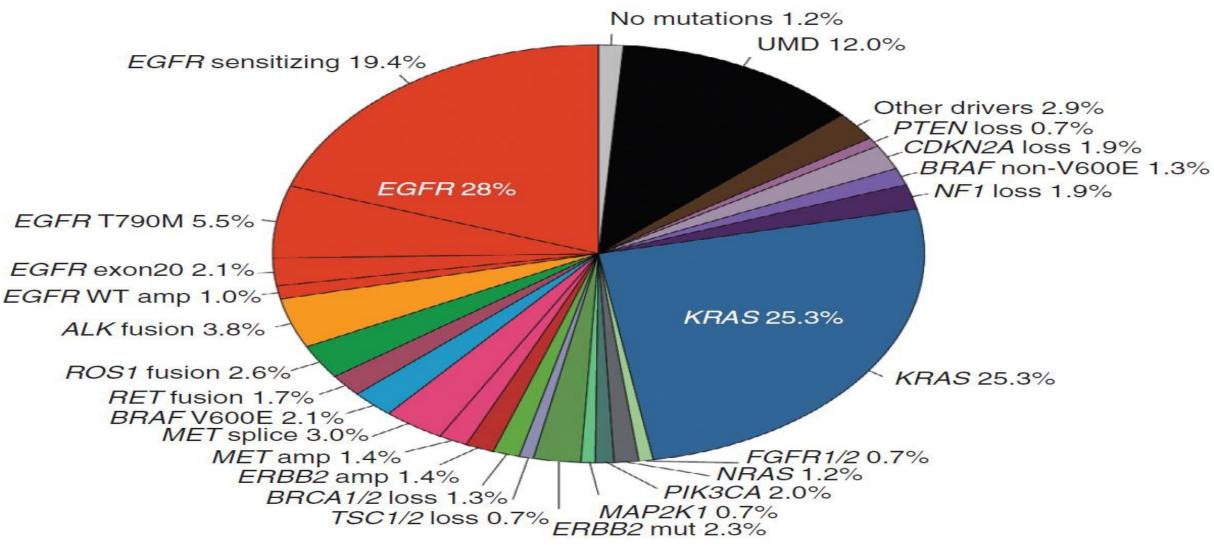


MET, RAF and NTRK

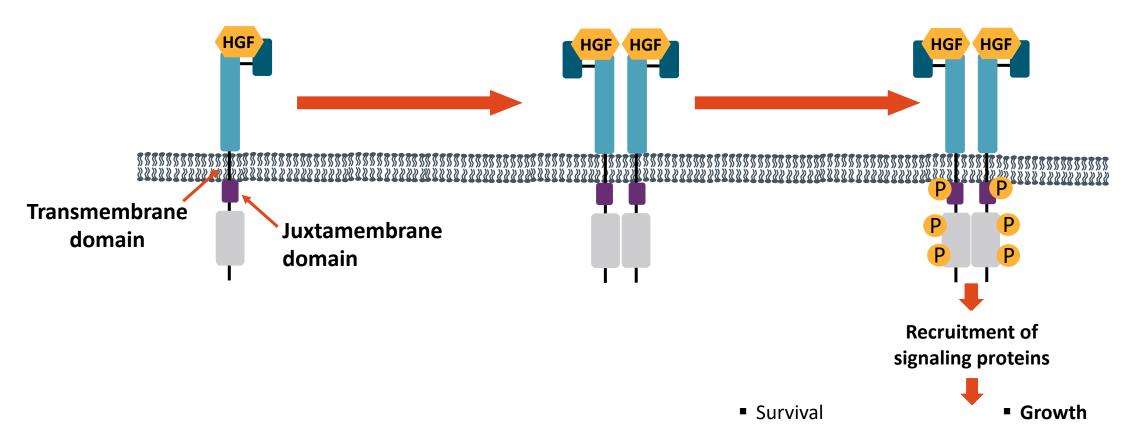
PEDRO SOLIVAN, MD


HEMATOLOGY ONCOLOGY SAN JUAN, PR (787)753-6022

MARCH 1-3, 2024 13TH WINTER CANCER SYMPOSIUM


Accredited by:

W



Rare Targets in NSCLC

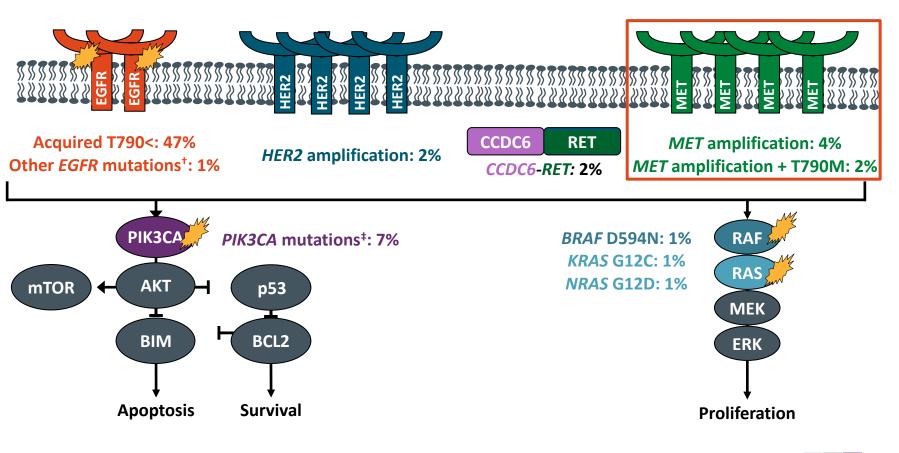
Jordan EJ et al. *Cancer Discov*. 2017;7(6):596-609.

Wild-Type MET Signaling

- Decreased apoptosis
- Differentiation

CO

 Regulation of cytoskeletal
 Stemness functions


MET Aberrations in Cancer: Structural Alterations and Oncogene Addiction

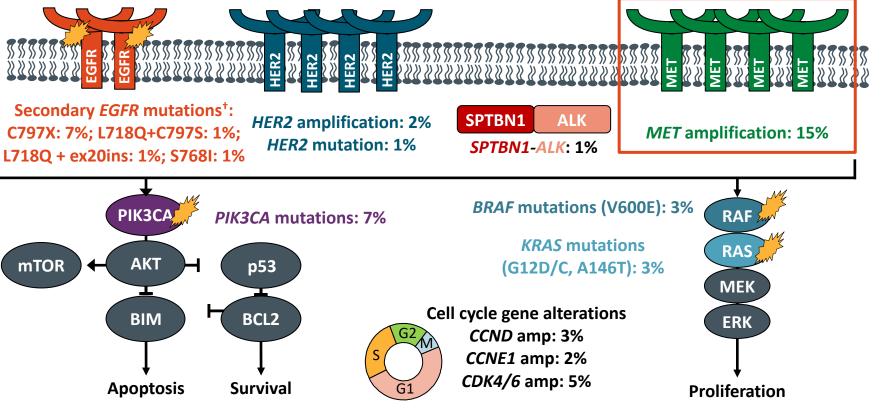
- MET activation occurs via several mechanisms, including METex14 skipping mutations and MET amplification^[1,2]
 - Patient subgroups need to be well characterized
- Types of MET aberrations^[3]
 - Single nucleotide variants
 - Amplification
 - Exon 14 skipping mutation
 - Fusions

FLAURA Paired Plasma NGS: Acquired Resistance Mechanisms With Erlotinib or Gefitinib

- NGS analysis of paired plasma samples at BL and following PD on erlotinib or gefitinib (n = 129)
- Most common acquired resistance mechanisms identified:
 - EGFR T790M
 - MET amplification
 - HER2 amplification

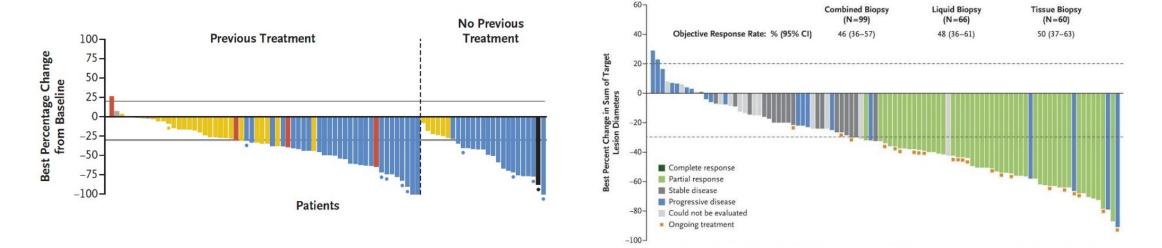
Slide credit: clinicaloptions.com

Candidate Acquired Resistance Mechanisms With Erlotinib or Gefitinib*


*Overlap of reported resistance mechanism may occur. [†]Acquired T790M + C797S + L718Q: 1%. [‡]PIK3CA + T790M (n = 1), PIK3CA + T790M + C797S (n = 1), and PIK3CA (n = 1).

Ramalingam. ESMO 2018. Abstr LBA50.

FLAURA Paired Plasma NGS: Acquired Resistance Mechanisms With Osimertinib


- NGS analysis of paired plasma samples at BL and following PD on osimertinib (n = 91)
- No evidence of acquired EGFR T790M
- Most common resistance mechanisms:
 - *MET* amplification
 - EGFR C797S mutation
- Other mechanisms included HER2 amplification, PIK3CA, and RAS mutations

*Overlap of reported resistance mechanism may occur. [†]n = 2 with de novo T790M mutations at BL; 1 acquired C797S at progression.

MET exon 14 Skipping Mutation-Positive NSCLC

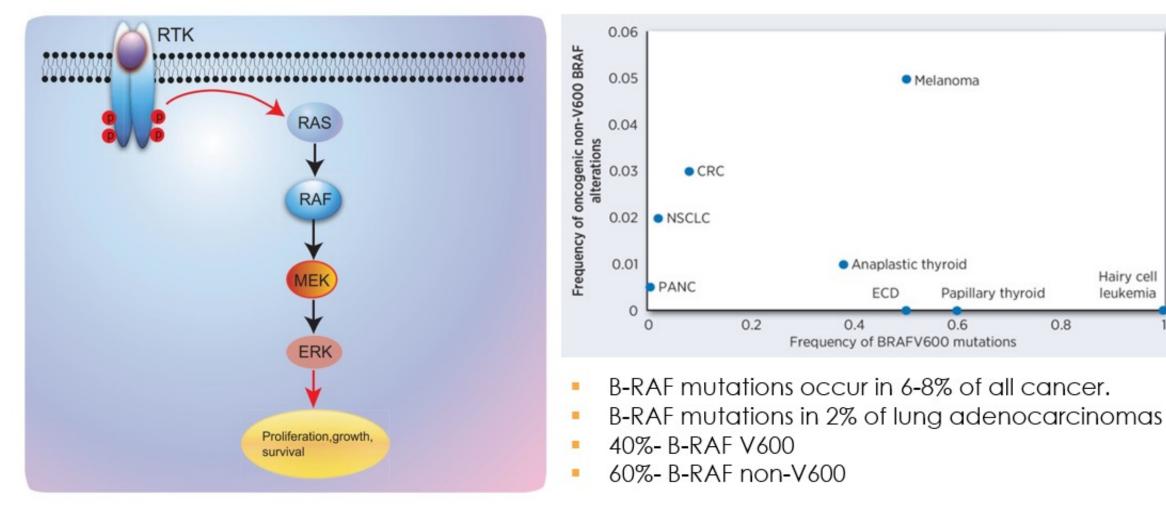
Capmatinib

Tepotinib

	Line of Treatment	N	ORR, %	DOR	Median PFS (Month)
Capmatinib	1L	60	66.7	12.6	12.3
	2-3L	100	44.0	9.7	5.5
Tepotinib	1L	164	57.3	46.4	12.6
	2-3L	149	45.0	12.6	11.0

Wolf J et al. *N Engl J Med.* 2020;383(10):944-957. Paik PK et al. *N Engl J Med.* 2020;383(10):931-943. Wolf J et al. 2021 ASCO Annual Meeting. Abstract 9020. Mazieres J et al. *JAMA Oncol.* 2023;9(9):1260-1266.

MET ADC on the Horizon

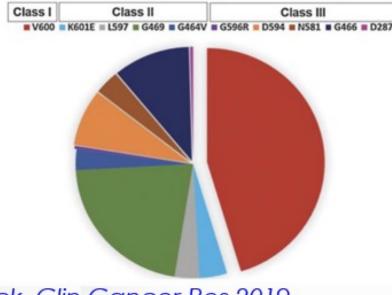

Phase 2 LUMINOSITY

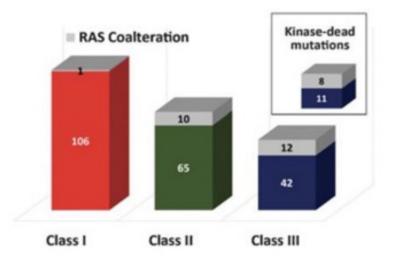
- Telisotuzumab-vedotin c-MET antibody-drug conjugate
- ORR: 35 and 23% in c-Met High and c-Met Intermediate NSCLC, respectively
- Median OS: 14.6 months and 14.2 months in c-Met High and c-Met Intermediate NSCLC, respectively
- Phase 3 TeliMET-NSCLC-01
 - Telisotuzumab-vedotin vs. docetaxel in previously treated c-Met overexpressing EGFR wild type nonsquamous NSCLC

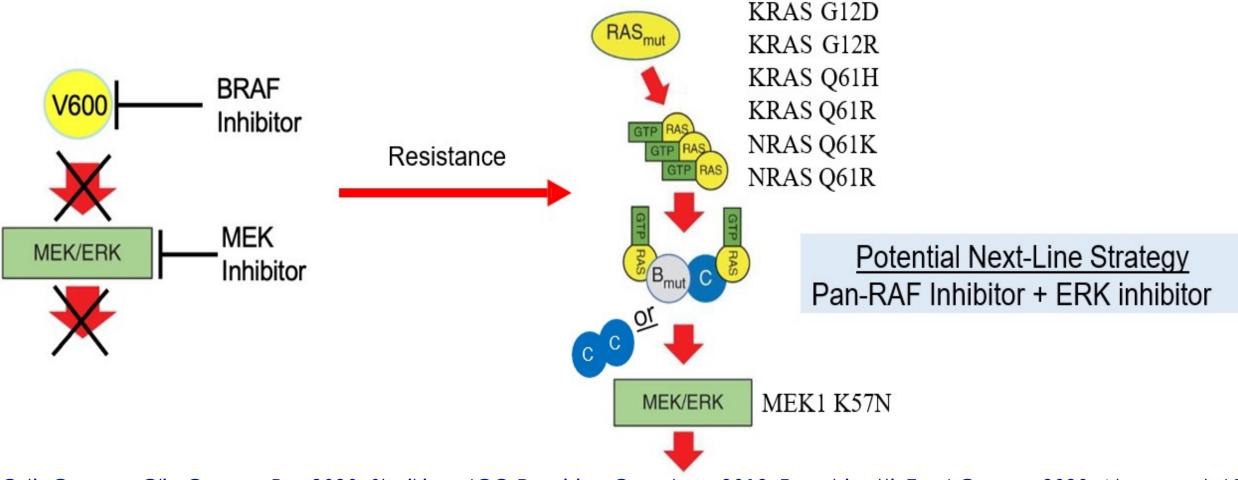
B-RAF Mutations

Hairy cell

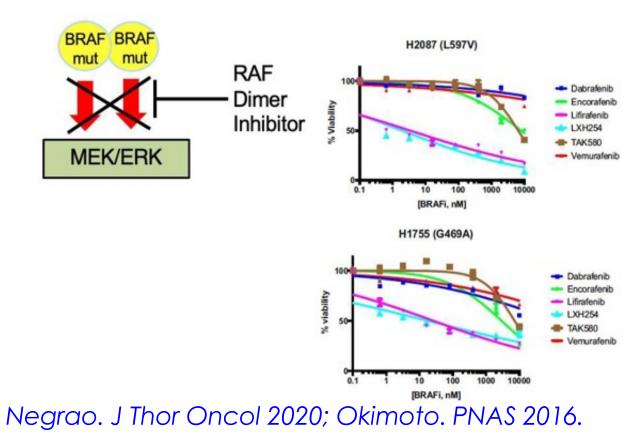
leukemia

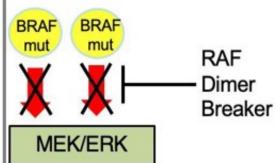


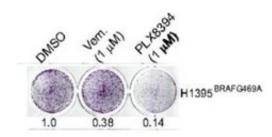

Yan et al. Frontiers in Oncology 2022; Poulikakos et al. Clin Cancer Res 2022.

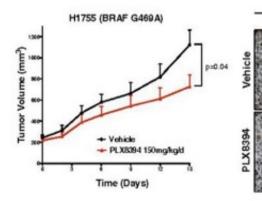

B-RAF Mutant NSCLC

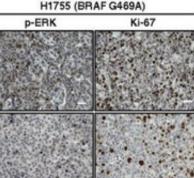
- Characterization of 236 BRAF-mutant NSCLC
 - 107 class I (45%), 75 class II (32%), 54 class III (23%)
 - Never smokers- Class I- 22%, Class II- 3%, Class III- 6%
 - Class II/III more likely to have KRAS co-mutation, brain mets, worse clinical outcomes (PFS, OS) and shorter PFS with platinum based chemotherapy


Resistance to Dabrafenib + Trametinib in V600^{mut} NSCLC

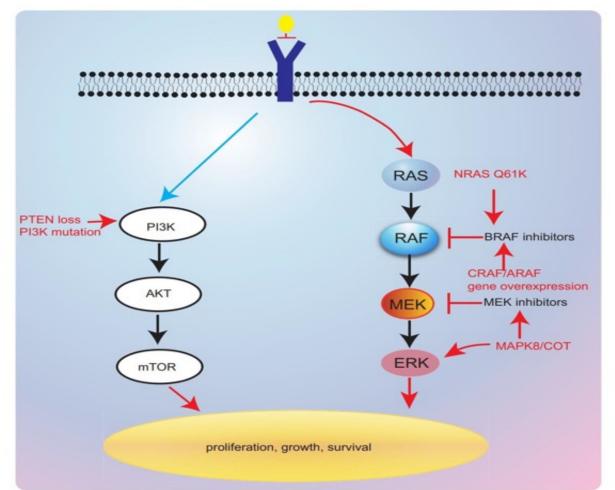

Ortiz Cuaran. Clin Cancer Res 2020; Sheikine. JCO Precision Oncology 2018; Facchinetti. Eur J Cancer 2020; Abravanel. J The Oncol 2018; Yaeger. Cancer Discovery 2019.


Other Strategies for Disrupting Signaling in Class II BRAF^{mut}


BRAF Dimer Inhibitor (e.g., Lifirafenib and LXH254)



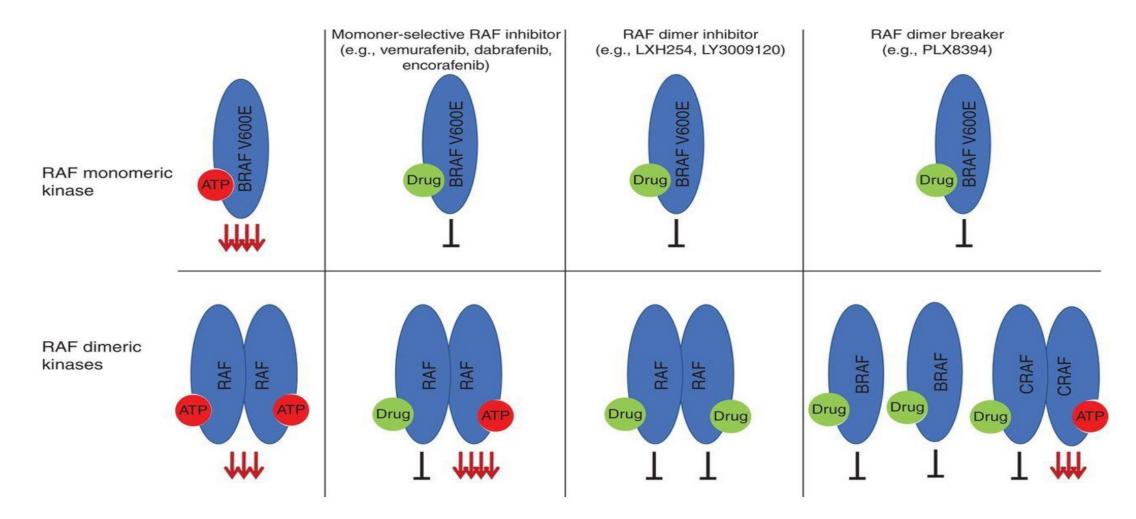
RAF Dimer Breaker (e.g., PLX8394)



Resistance to First Generation B-RAF Inhibitors

Mechanisms of Resistance

- 1. Kras, NRAS mutations
- 2. CRAF/ARAF overexpression
- 3. Increased levels of Braf homodimers
- 4. MEK mutations
- 5. PTEN Loss


Yan et al. Frontiers in Oncology 2022; Riudavets et al. Lung Cancer 2022

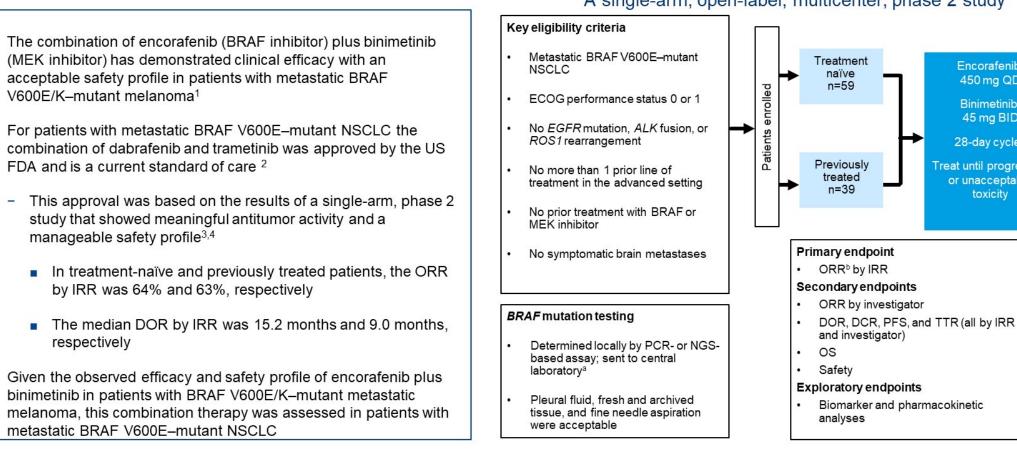
Pan-RAF Inhibitors

- An orally available inhibitor of all members of the Raf family, including A-Raf, B-Raf and C-Raf protein kinases- NCI definition
 - Current B-Raf inhibitors can inhibit A-Raf and C-Raf. But limited since they inhibit monomers and can induce paradoxical activation.
- Next generation Pan-RAF inhibitors:
 - Monomer-selective but do not induce paradoxical activation.
 FORE8394
 - Equipotent for monomers and dimers
 LY3009120, BGB-283
 - Dimer selective
 - Belvarafenib, LXH254

Targeting Alterations in the RAF-MEK Pathway

Yaeger R, Corcoran RB. Cancer Discov 2019; 9(3):329-341.

Abstract 9018


Efficacy and safety of encorafenib plus binimetinib in patients with metastatic *BRAF* V600E-mutant (*BRAF*^{V600E}) non-small cell lung cancer (NSCLC) from the phase 2 PHAROS study

<u>Gregory J. Riely</u>,¹ Egbert F. Smit,² Myung-Ju Ahn,³ Enriqueta Felip,⁴ Suresh S. Ramalingam,⁵ Anne Tsao,⁶ Melissa Johnson,⁷ Francesco Gelsomino,⁸ Raymond Esper,⁹ Ernest Nadal,¹⁰ Michael Offin,¹ Mariano Provencio,¹¹ Gregory A. Otterson,¹² Ibiayi Dagogo-Jack,¹³ Ann Alcasid,¹⁴ Tiziana Usari,¹⁵ Keith Wilner,¹⁶ Nuzhat Pathan,¹⁶ Bruce E. Johnson¹⁷

¹Memorial Sloan Kettering Cancer Center, New York, NY; ²Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, Netherlands; ³Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ⁴Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁵Winship Cancer Institute of Emory University, Atlanta, GA; ⁶MD Anderson Cancer Center, Houston, TX; ⁷Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN; ⁸Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; ⁹Florida Cancer Specialists, Fort Myers, FL; ¹⁰Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain; ¹¹Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; ¹²Ohio State University Comprehensive Cancer Center, Columbus, OH; ¹³Massachusetts General Hospital, Boston, MA; ¹⁴Pfizer, Collegeville, PA; ¹⁵Pfizer, Milan, Italy; ¹⁶Pfizer, La Jolla, CA; ¹⁷Dana-Farber Cancer Institute, Boston, MA

Presented at the 2023 ASCO Annual Meeting, June 2-6, 2023; Chicago, IL, and Online Correspondence: Gregory Riely, <u>rielyg@MSKCC.ORG</u>

Encorafenib plus binimetinib in patients with metastatic BRAF V600E NSCLC

PHAROS (NCT03915951): A single-arm, open-label, multicenter, phase 2 study

Encorafenib:

450 mg QD

Binimetinib: 45 mg BID

28-day cycles

Treat until progression

or unacceptable

toxicity

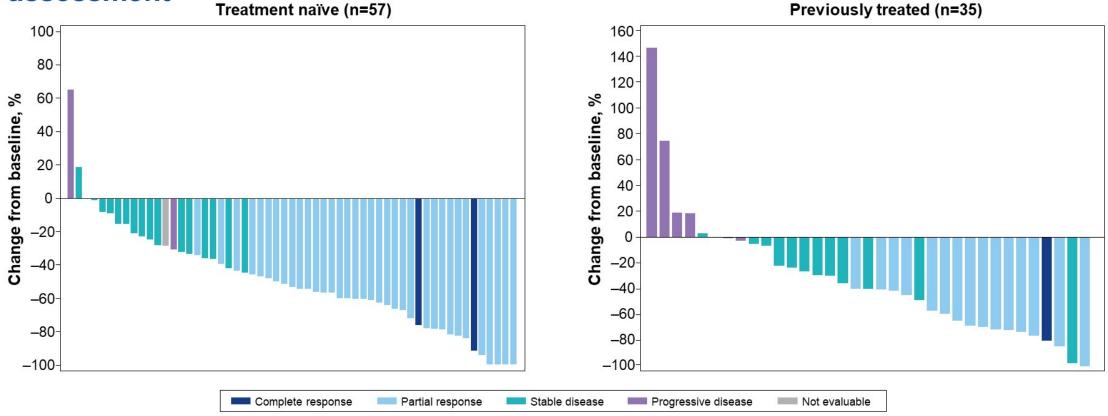
BID, twice daily: DCR, disease control rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; IRR, independent radiology review; ORR, objective response rate; NGS, next-generation sequencing; OS, overall survival; PCR, polymerase chain reaction; PFS, progression-free survival; QD, once daily; TTR, time to response.

^aBRAF V600 mutations were retrospectively confirmed by FoundationOne CDx (Foundation Medicine, Cambridge, MA). ^bAccording to RECIST 1.1.

2 1. Dummer R, et al. Lancet Oncol. 2018;19(5):603-615. 2. Dabrafenib prescribing information. June 2022. 3. Planchard D, et al. Lancet Oncol. 2016;17(7):984-993. 4. Planchard D, et al. Lancet Oncol. 2017;18(10):1307-1316.

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC

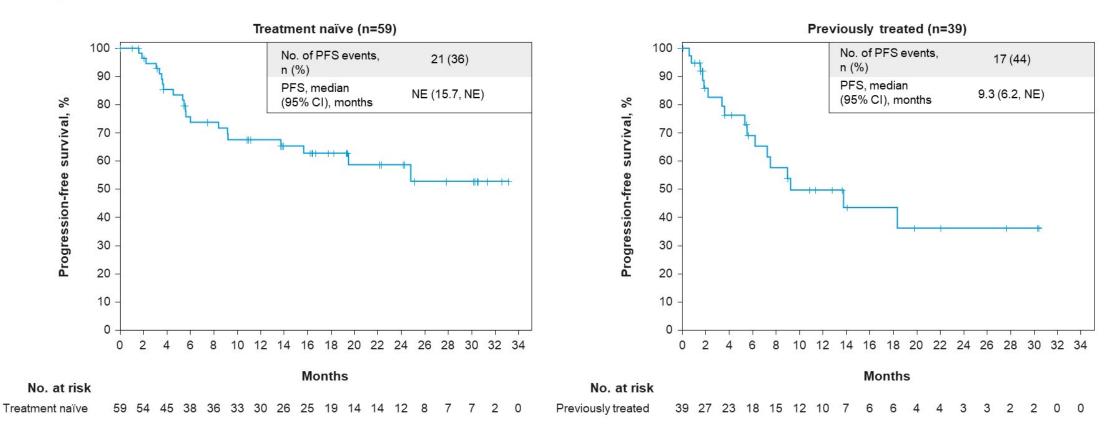
Antitumor activity endpoints by IRR


	Treatment naïve (n=59)	Previously treated (n=39)
Objective response rate (95% CI), % ^a	75 (62, 85)	46 (30, 63)
Complete response	9 (15)	4 (10)
Partial response	35 (59)	14 (36)
Stable disease	10 (17)	13 (33)
Progressive disease	2 (3)	3 (8)
Disease control rate at 24 weeks (95% CI), %	64 (51, 76)	41 (26, 58)
Duration of response, median (95% CI), months	NE (23.1, NE)	16.7 (7.4, NE)
Duration of response ≥12 months, n/N (%)	26/44 (59)	6/18 (33)
Time to response, median (range), months	1.9 (1.1-19.1)	1.7 (1.2-7.3)

IRR, independent radiology review; NE, not estimable.

^aResponse of 3 patients were not evaluable in the treatment-naïve group, and 5 were not evaluable in the previously treated group.

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC


Change from baseline in the sum of diameters of target lesions by investigator assessment^a

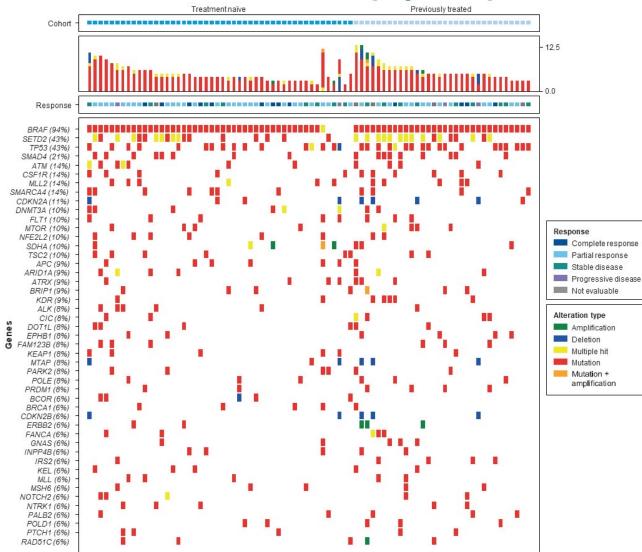
^aPatients for whom an assessment response was not evaluable at all tumor assessments were not included in this analysis.

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC

Progression-free survival by IRR

• The median duration of follow-up for PFS by IRR was 18.2 months (95% CI, 16.4, 22.3 months) in treatment-naïve patients and 12.8 months (95% CI, 9.0, 19.8 months) in previously treated patients

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC Incidence of TRAEs of any grade >10% in all patients


	Overall (N=98)		
	Any grade	Grade 3	Grade 4
Any TRAEs, n (%) ^a	92 (94)	37 (38)	3 (3) ^b
Nausea	49 (50)	3 (3)	0
Diarrhea	42 (43)	4 (4)	0
Fatigue	31 (32)	2 (2)	0
Vomiting	28 (29)	1 (1)	0
Anemia	18 (18)	3 (3)	0
Vision blurred	17 (17)	1 (1)	0
Constipation	13 (13)	0	0
ALT increased	12 (12)	5 (5)	0
AST increased	12 (12)	7 (7)	0
Pruritus	12 (12)	0	0
Blood creatine phosphokinase increased	11 (11)	0	0
Edema peripheral	11 (11)	0	0

Note: Any-grade abdominal pain, alopecia, asthenia, and dry skin occurred in 10% of patients; any-grade pyrexia occurred in 8% of patients.

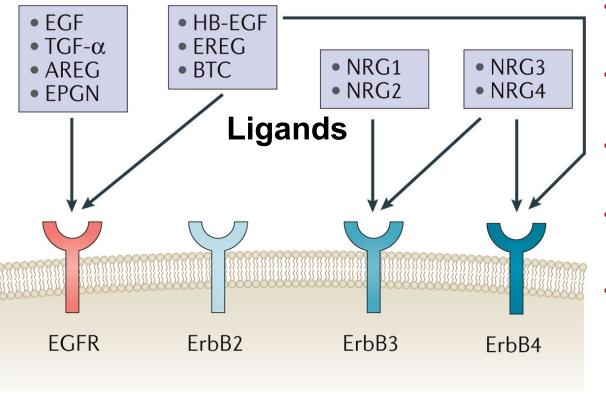
ALT, alanine aminotransferase; AST, aspartate aminotransferase; TRAE, treatment-related adverse event.

^aOne patient died due to intracranial hemorrhage, which was assessed as treatment related by the investigator. ^bGrade 4 TRAEs were colitis, disseminated intravascular coagulation, increased β γ-glutamyl transferase, and hyponatremia.

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC Tumor molecular alterations in baseline biopsy samples^a

Encorafenib plus binimetinib in metastatic BRAF-V600E mutant NSCLC Conclusions

- The combination of encorafenib plus binimetinib showed a meaningful clinical benefit with an acceptable safety profile in patients with BRAF V600E–mutant metastatic NSCLC in the phase 2 PHAROS study
 - Efficacy was observed in both cohorts:
 - ORRs by IRR were 75% (95% CI: 62-85%) in treatment –naïve patients and 46% (95% CI: 30-63%), in previously treated patients
 - Median DORs by IRR were NE (95% CI, 23.1 months, NE) and 16.7 months (95% CI, 7.4 months, NE), respectively
 - The safety profile was consistent with that observed in the approved indication in melanoma
- Encorafenib plus binimetinib represents a potential new treatment option for patients with BRAF V600E– mutant metastatic NSCLC


NRG1 AND NTRK IN NSCLC

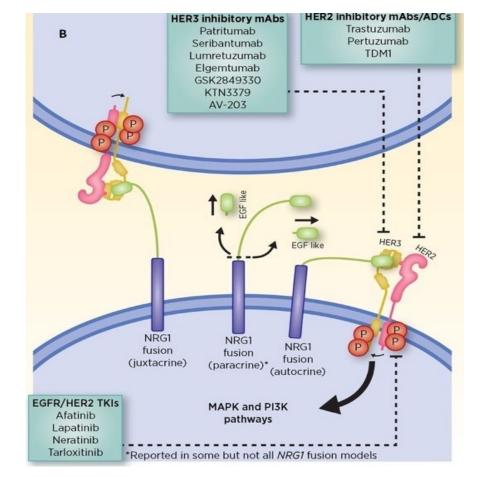
Endorsed by

Biology of ERBB Family of Transmembrane Receptors in Cancer

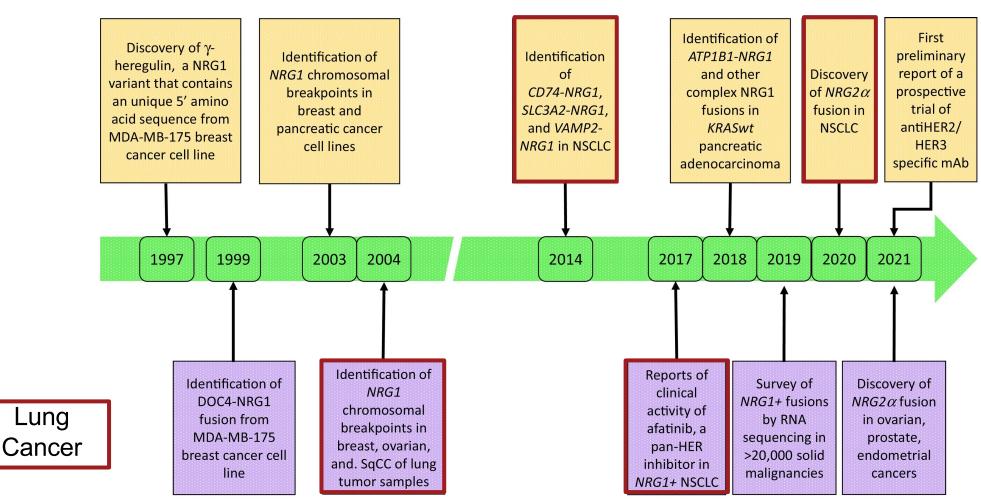
Specificity of the various epidermal growth factor (EGF) receptor ligands for the four known ErbB receptors

- The ERBB family are receptors for growth factors; they form homo- and heterodimers upon ligands binding.
- The dimers activate downstream pathways, especially MAPK and PI3K/AKT.
- HER2 does not have a cognate ligand and form heterodimers with HER3.
- HER3 binds to EGF-like domain of neuroregulins (NRGs).
- Upon bindings to NRGs, HER3 forms heterodimers with either EGFR and HER2.
- The HER2/HER3 heterodimers exert the strongest downstream signaling activity.

Harskamp LR et al. Nat Rev Nephrol. 2016;12(8):496-506.

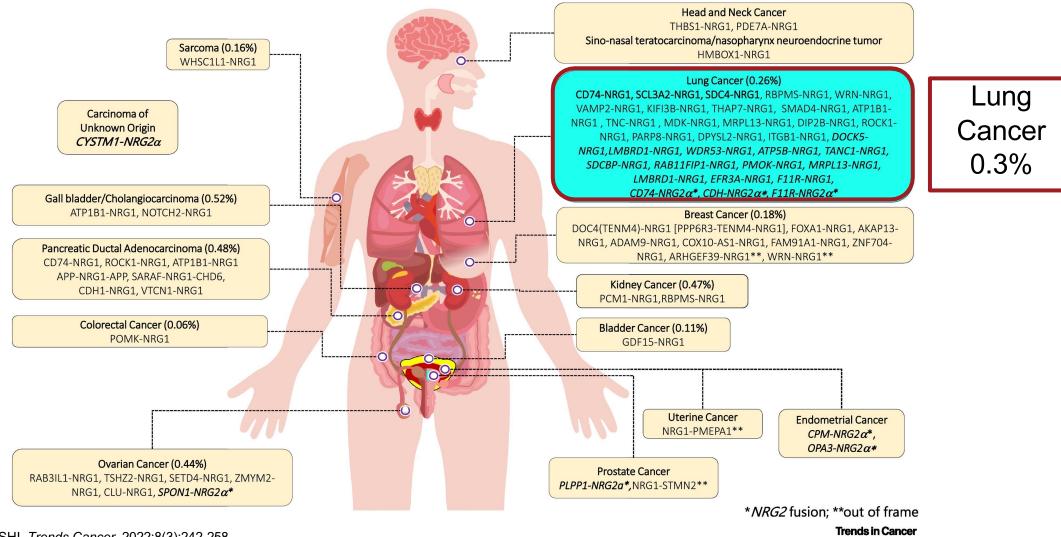

Role of Neuroregulins in Cancer

- Of the four *NRG* genes, *NRG1* is the best characterized (over 30 isoforms).
- In cancer, gene rearrangements (fusions) have been described in NRG1 and NRG2 genes.
- NRG1 fusions exert pro-tumorogenic functions in several cancers, including lung.
- Several gene fusion partners have been described, like CD74 and SLC3A2 that fuses with NRG1 type III-β3 isoform.



Dimou A, Camidge DR. Clin Cancer Res. 2019;25(16):4865-4867.

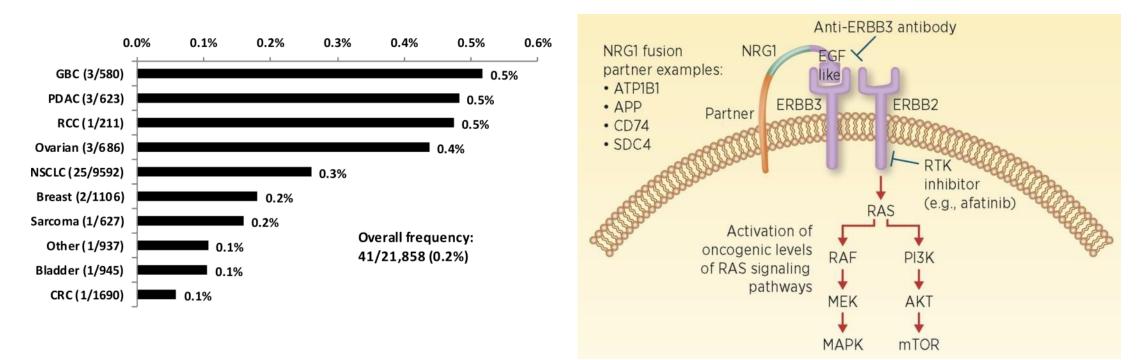
NRG1 EGF-like domain of the fused protein exerts mostly autocrine and juxtacrine activity


Timeline of Milestones of NRG Fusions in Solid Malignancies

Nagasaka M, Ou SHI. Trends Cancer. 2022;8(3):242-258.

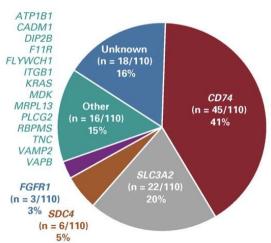
Trends in Cancer

NRG Fusions in Solid Malignancies


Nagasaka M, Ou SHI. Trends Cancer. 2022;8(3):242-258.

Clinical Characteristics of NRG1 Fusion Positive Lung Cancers

- Detected in non-small cell carcinomas (NSCLC; 0.3%), mostly adenocarcinomas.
- More frequent in invasive mucinous adenocarcinomas (IMAs 37% of *NRG1*-fusion+ NSCLCs) than other subtypes.
- More frequent in never smokers (57%) than smokers (43%).
- More frequent in females (59-68%).
- Median age 64-71 years old.


NRG1 fusions

- NRG1 fusions are rare.
 - 0.2% in solid tumors
- NRG1 has an EGF-like domain serving as a ligand to HER3 and HER4.
 - NRG1 binding prompts HER2-HER3 dimerization, resulting in activation of downstream pathways.

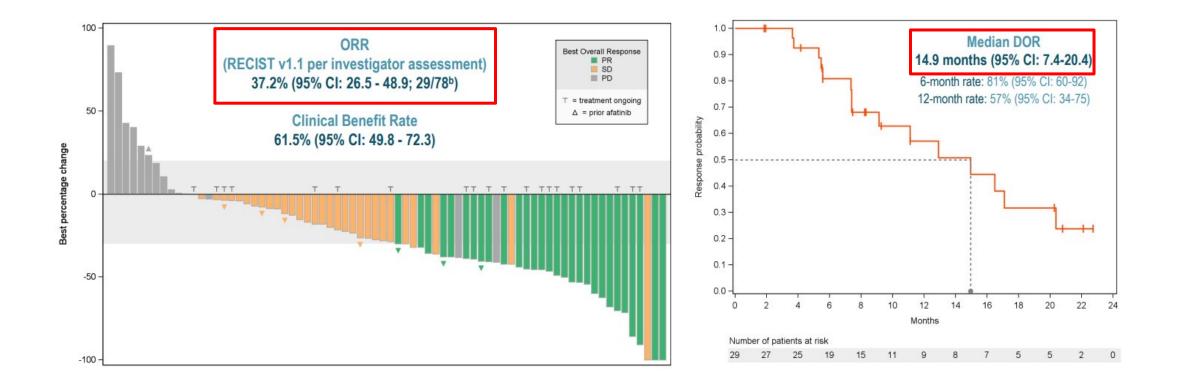
NRG1 fusions in NSCLC

- *NRG1* fusions occur in around 0.3% of NSCLC.
- Optimal detection is by RNA based NGS.
 - CD74 is the most common fusion partner.
- Typically, patients are never smokers. Frequently found in invasive mucinous adenocarcinoma.
- Poor response to standard therapies for NSCLC (eNRGy1 Global Multicenter Registry)

Fusion Partners

Activity of Systemic Treatment

Response	Platinum-Doublet–Based Chemotherapy	Taxane-Based Chemotherapy	Combined Chemotherapy and Immune Therapy	Single-Agent Immunotherapy	Targeted Therapy With Afatinib
Response rate, %	13	14	0	20	25
CR, % (n/N)	0 (0/15)	0 (0/7)	0 (0/9)	0 (0/5)	0 (0/20)
PR, % (n/N)	13 (2/15)	14 (1/7)	0 (0/9)	20 (1/5)	25 (5/20)
SD, % (n/N)	47 (7/15)	14 (1/7)	44 (4/9)	20 (1/5)	15 (3/20)
PD, % (n/N)	40 (6/15)	71 (5/7)	56 (5/9)	60 (3/5)	60 (12/20)
Median PFS (95% CI), range	5.8 months (2.2 to 9.8), 0.7-12.1	4.0 months (0.8 to 5.3), 0.8-5.5	3.3 months (1.4 to 6.3), 1.4-15.2	3.6 months (0.9 to undefined), 0.9-11.2	2.8 months (1.9 to 4.3), 0.3-25.3


NRG1 fusions in NSCLC: Therapies in Development

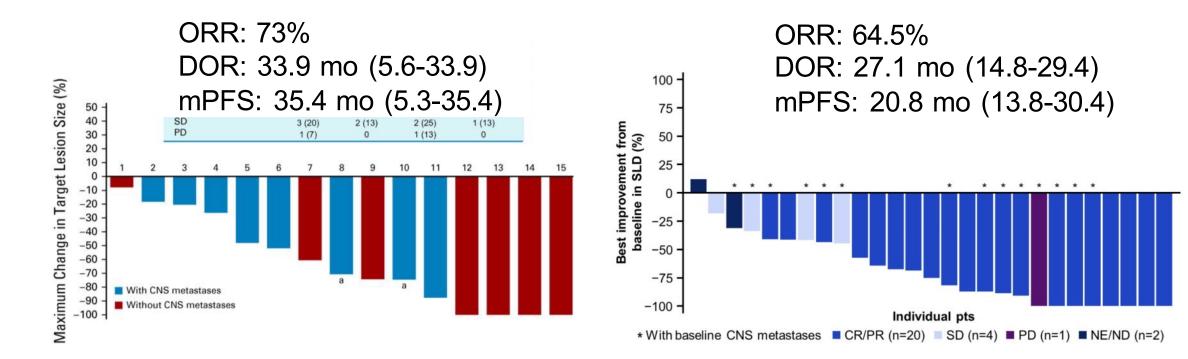
Investigational Agent (Trial Name)	Mode of Action	Phase	Primary Endpoint	Ν	ORR	NCT
Zenocutuzumab (eNRGy)	Bispecific HER2/HER3 antibody	1/11	ORR	78	37.2%	NCT02912949
Seribantumab* (CRESTONE)	Anti-HER3 monoclonal antibody	Ш	ORR	18	39%	NCT04383210

*Development on hold

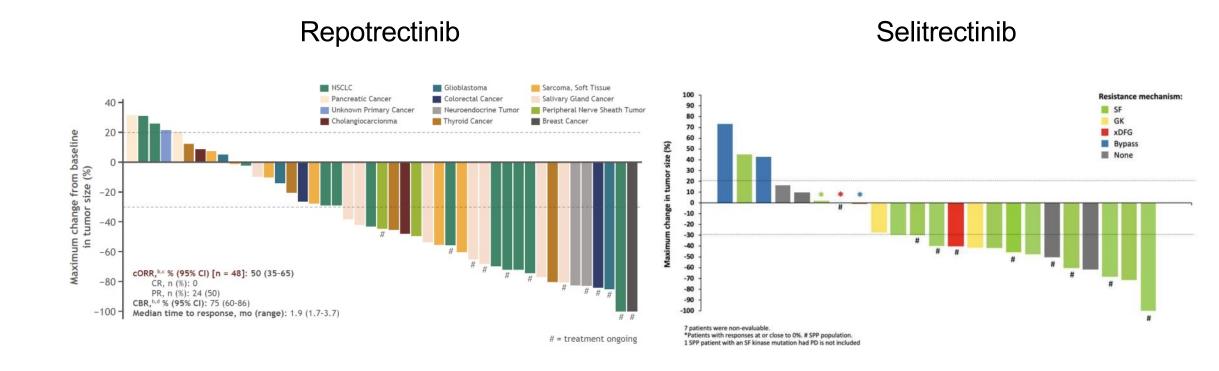
Schram et al. ESMO 2023; Patil et al. AACR 2023 https://inv estors.elevationoncology .com/2023-01-06-Elev ation-Oncology -Announces-Pipeline-Prioritization,-Realignment-of -Resourcesto-Adv ance-EO-3021-and-CEO-Transition

Zenocutuzumab Activity in NRG1+ NSCLC

Safety Profile of Zenocutuzumab


	Related TEAEs (≥10% patients and all Grade 3-4) n (%)		TEAEs Irrespective of Causality (≥10% patients and all Grade 3-4 n (%)	
	All grades	Grades 3-4	All grades	Grades 3-4
≥1 TEAE	115 (61)	11 (6)	166 (88)	66 (35)
Diarrhea	33 (17)	3 (2)	53 (28)	4 (2)
Infusion-related reactions ^b	23 (12)	0	23 (12)	0
Fatigue	18 (10)	0	30 (16)	4 (2)
Nausea	16 (8)	2 (1)	30 (16)	3 (2)
Vomiting	11 (6)	1 (1)	21 (11)	1 (1)
Anemia	7 (4)	1 (1)	29 (15)	7 (4)
Constipation	5 (3)	0	24 (13)	0
ALT increased	5 (3)	1 (1)	18 (10)	5 (3)
AST increased	5 (3)	2 (1)	14 (7)	5 (3)
Decreased appetite	5 (3)	1 (1)	16 (8)	2 (1)
Abdominal pain	3 (2)	1 (1)	21 (11)	4 (2)
Dyspnea	2 (1)	0	24 (13)	6 (3)
GGT increased	2 (1)	1 (1)	13 (6)	6 (3)
Platelet count decreased	2 (1)	1 (1)	4 (2)	1 (1)
Hyperuricemia	2 (1)	1 (1)	3 (2)	1 (1)
Bacteremia	1 (1)	1 (1)	2 (1)	2 (1)
Hypertransaminasemia	1 (1)	1 (1)	1 (1)	1 (1)

- N=189
- Low incidence of grade 3
 or 4 TRAEs
- No patient discontinued treatment due to TRAEs
- Infusion-related reactions in 12% (no grade ≥3 events)


NTRK fusion-positive NSCLC

Clinical Activity of Next-generation TRK Inhibitors in TRK TKI-Pretreated Solid tumors

Select Next-generation TRK Inhibitors

Agent	Targets	Phase	NCT
Selitrectinib	Selective TRK inhibitor	1/11	NCT03215511
Repotrectinib	TRK and ROS1 inhibitor	1/11	NCT03093116 NCT04094610
Taletrectinib	TRK and ROS1 inhibitor	1/11	NCT02675491 NCT04617054
SIM1803–1A	TRK and ROS1 inhibitor	I	NCT04671849
PBI-200	Selective TRK inhibitor	1/11	NCT04901806
TY-2136b	TRK, ROS1, ALK inhibitor	I	NCT05769075

Conclusions

- Molecular profiling should be performed comprehensively to identify rare but crucial alterations.
- The treatment landscape for driver-positive NSCLC is continually evolving, with the active development of novel therapeutics.
- In the future, it's anticipated that these therapies will be increasingly included in earlier stages of the disease.

The End Thanks,!!

