PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

Small Cell Lung Cancer

Edgardo S. Santos, MD, FACP Medical Director- Broward County, Florida The Oncology Institute of Hope and Innovation (OIHI) Clinical Associate Professor Charles E. Schmidt School of Medicine/Florida Atlantic University Vice-President, Florida Society of Clinical Oncology (FLASCO) President, FLASCO Foundation

February 9, 2024

The Oncology Institute of Hope & Innovation

Outlines

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

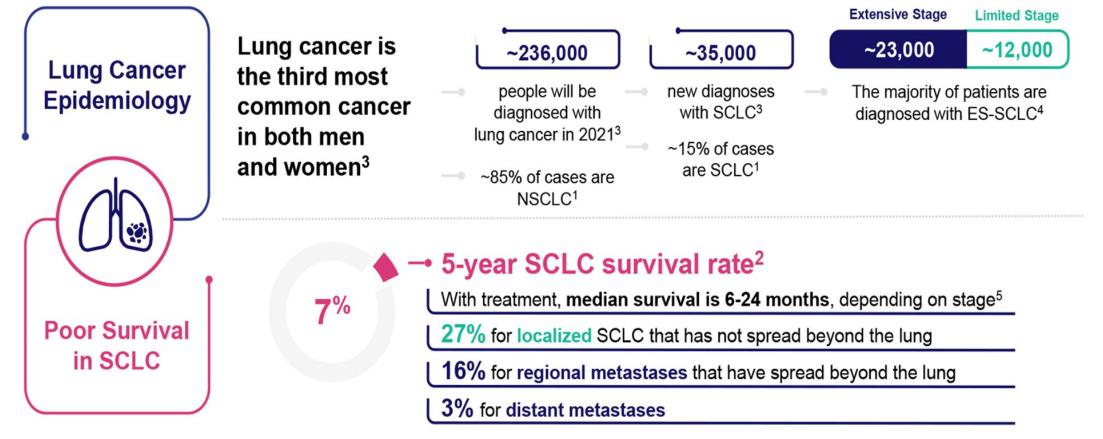
Epidemiology

Biomarkers

□Limited stage SCLC (L-SCLC)

□Extensive disease SCLC (E-SCLC)

□ Future Directions

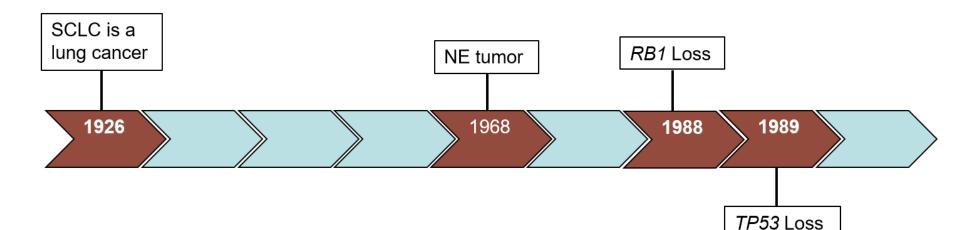


Epidemiology

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

SCLC accounts for ~15% of lung cancers and is characterized by a poor survival.

References: 1. Chen Y, et al. *Cancer Commun.* 2019;39(1):53. 2. American Cancer Society. Lung Cancer Survival Rates. https://www.cancer.org/cancer/lung-cancer/detection-diagnosisstaging/survival-rates.html. Accessed August 24, 2021. 3. SEER. Cancer Stat Facts: Cancer of Any Site. https://seer.cancer.gov/statfacts/html/all.html. Accessed August 23, 2021. 4. American Cancer Society. Small cell lung cancer stages. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/staging-sclc.html. Accessed September 19, 2021. 5. National Cancer Institute. Small Cell Lung Cancer Treatment (PDQ)-Health Professional Version. https://www.cancer.gov/types/lung/hp/small-cell-lung-treatment-pdq. Accessed August 23, 2021.


Prim()

Small Cell Lung Cancer

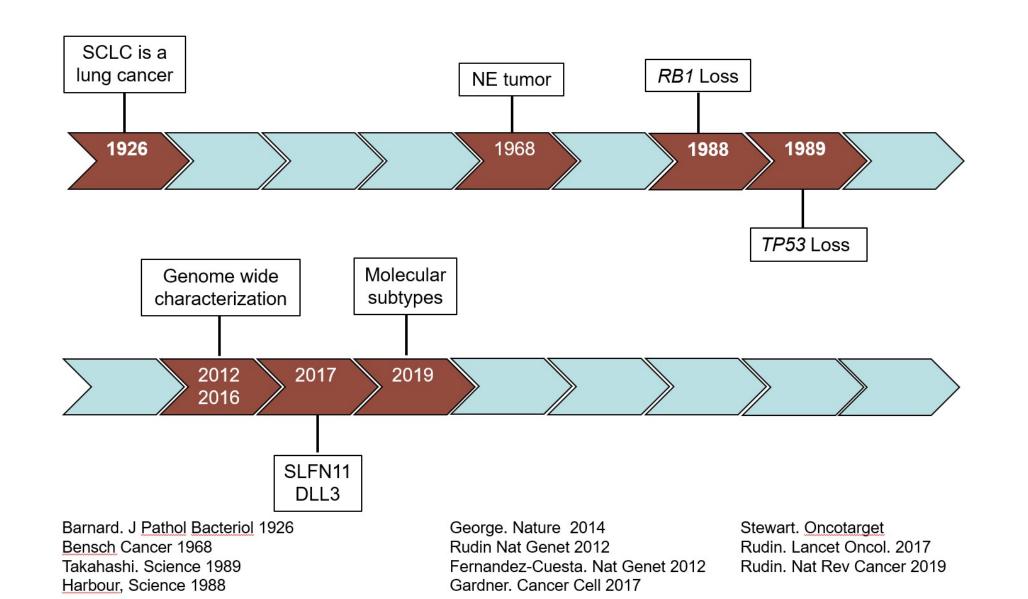
February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

PRIMO 2024

PrimO

- Poorly differentiated neuroendocrine tumor characterized by lack of actionable driver mutations.
- Express at least 1 NE marker Chromogranin A, synaptophysin, CD56 & INSM1 on IHC
- Near universal loss of TP53 & RB1

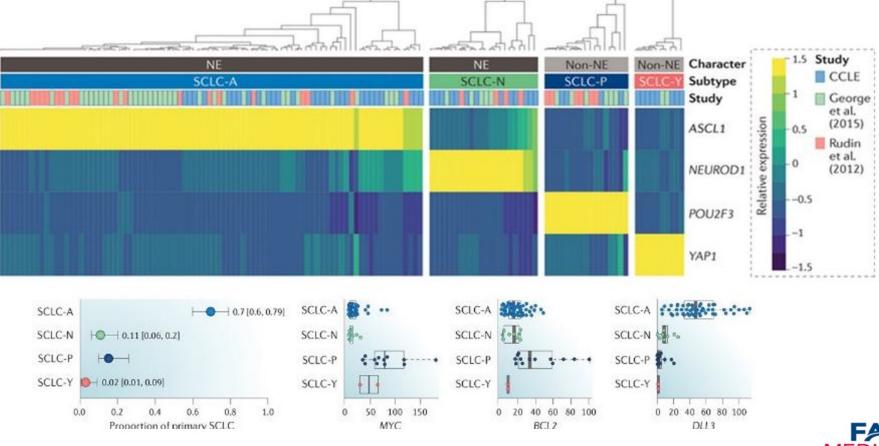
Barnard. J <u>Pathol Bacteriol</u> 1926 <u>Bensch</u> Cancer 1968 Takahashi. Science 1989 <u>Harbour</u>, Science 1988



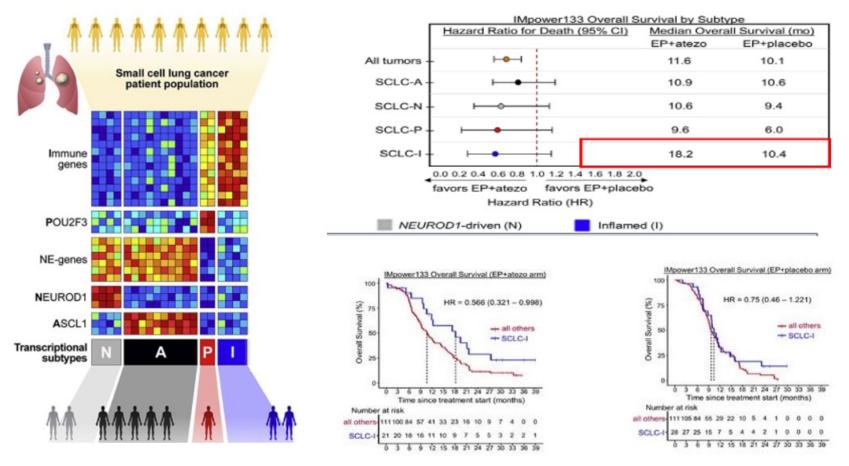
Small Cell Lung Cancer

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

PRIMO 2024

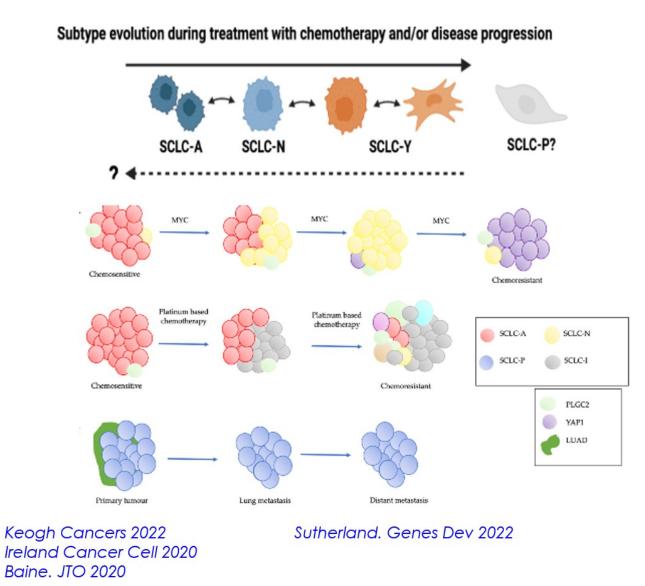

PrimO

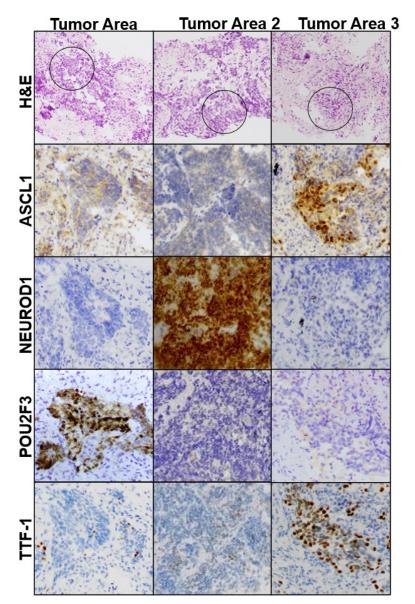
SCLC subtypes defined by dominant transcriptional regulator


Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data

Charles M. Rudin^{1,*}, John T. Poirier^{1,*}, Lauren Averett Byers², Caroline Dive³, Afshin Dowlati⁴, Julie George⁵, John V. Heymach², Jane E. Johnson⁶, Jonathan M. Lehman⁷, David MacPherson⁸, Pierre P. Massion⁷, John D. Minna⁶, Trudy G. Oliver⁹, Vito Quaranta⁷ Julien Sage¹⁰, Roman K. Thomas⁵, Christopher R. Vakoc¹¹, and Adi F. Gazdar^{6,12} 4 subtypes – SCLC-A, SCLC-P, SCLC-N & SCLC-Y!

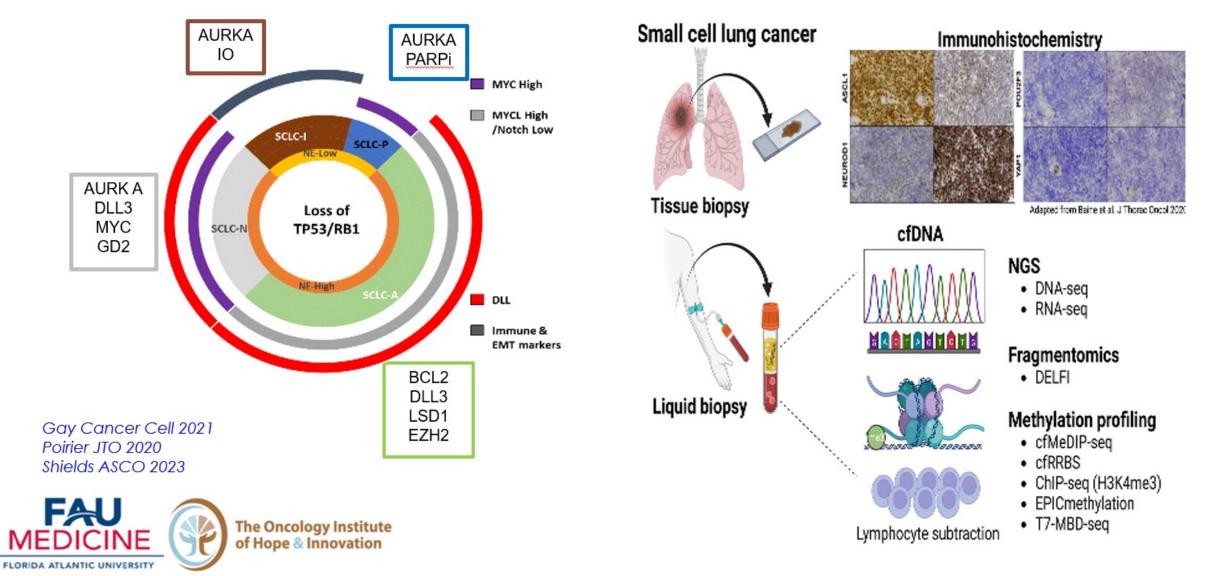
Clinical Impact: SCLC-I subtype may predict response to immunotherapy



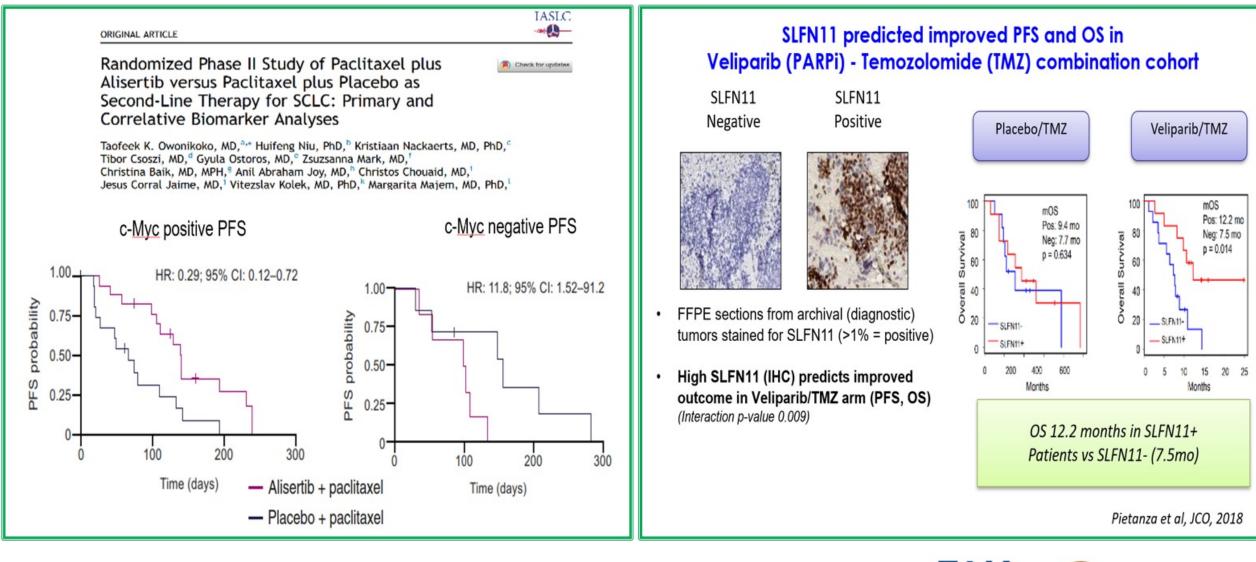

- SCLC-I subtype responsive to ICI
- But gene expression based-signatures may not be viable in clinic

Gay. Cancer Cell 2021

There is more!... SCLC exhibits plasticity enhanced by treatment & tumor evolution



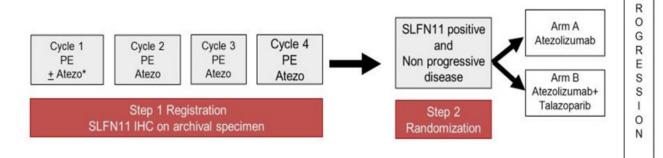
Biomarkers


Clinical implications for SCLC subtypes

SCLC subtype ID by tissue or blood

Targeting MYC in SCLC

Targeting SLFN11 in SCLC

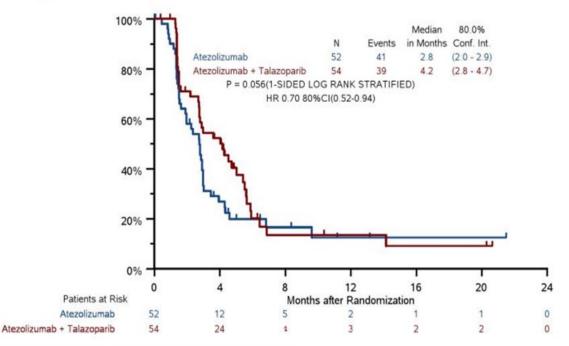

The Oncology Institute of Hope & Innovation

Targeting SLFN11 in SCLC- Selected Population

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

PRIMO 2024

S1929: Phase II Study of Maintenance Atezolizumab Versus Atezolizumab in Combination with Talazoparib in Patients with SLFN11 Positive Extensive Stage Small Cell Lung Cancer (ES-SCLC) NCT04334941



Hypothesis: The addition of talazoparib to maintenance atezolizumab will improve PFS in SLFN11+ SCLC.

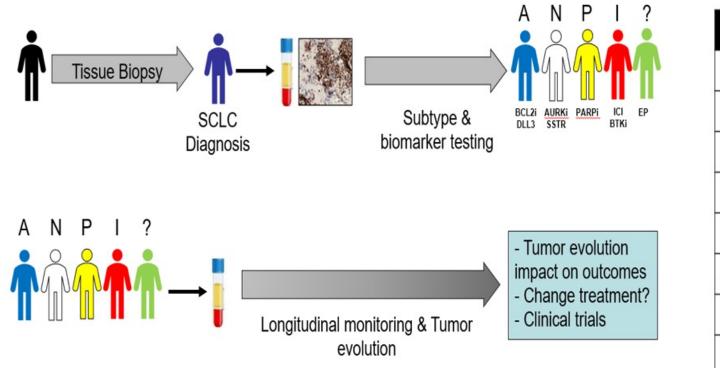
*Atezolizumab was optional if the patient is hospitalized for cycle 1 A maximum of 9 weeks after the end of cycle 4 was allowed prior to randomization Primary Endpoint: PFS Secondary endpoints: OS, ORR, AE. TM Objective: To bank specimens for future correlative studies.

Ρ

Progression Free Survival

Median FU time among patients who are alive is 5 months with a range of (0, 21.5M)

2023 ASCO Annual Meeting. Nagla Abdel Karim, MD



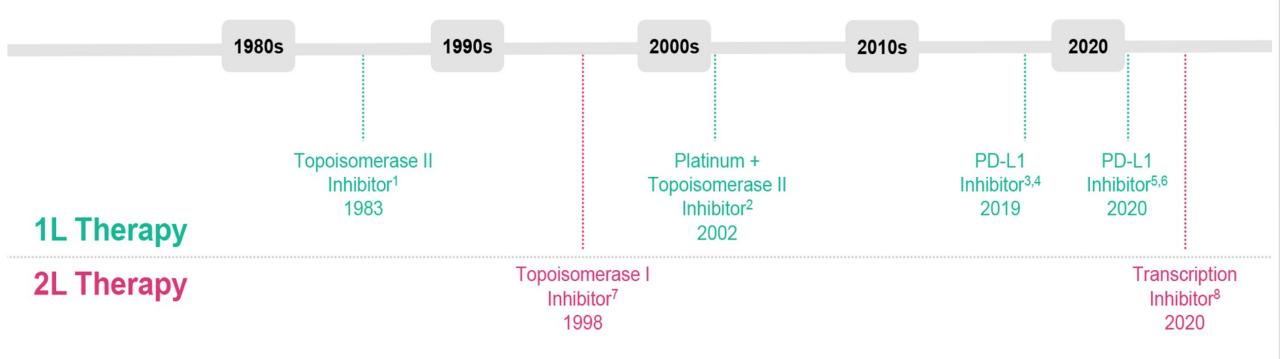
The Oncology Institute of Hope & Innovation

Prim_O

Biomarkers

Personalizing SCLC Treatment->

Status
0
0
0


SCLC Biomarker Scorecard- Conclusions:

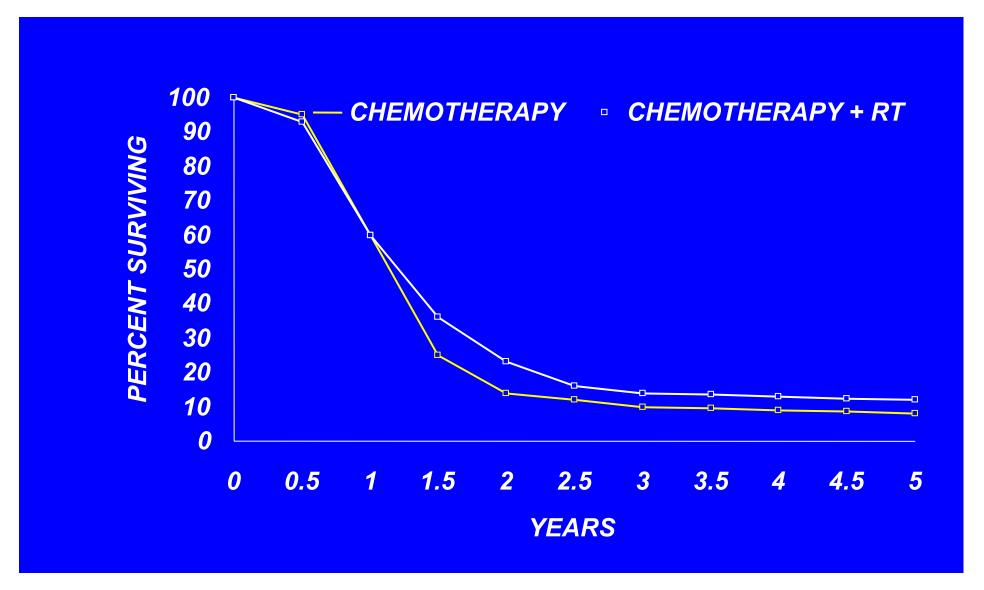
- At present biomarker testing in SCLC has minimal impact in clinic
- Transcriptional subtypes:
 - Need simple & robust test platforms
 IHC or blood-based testing
 - Guide selection of patients for clinical trials
- Continued surveillance during treatment
- BiTEs targeting DLL3 are promising
- Other targets SLFN11, c-Myc and LSD1

The Oncology Institute of Hope & Innovation

Timeline of FDA-approved Therapies for SCLC

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii


Limited-Small Cell Lung Cancer

The Oncology Institute of Hope & Innovation

Limited Stage Small Cell Lung Cancer

Chemotherapy vs Chemotherapy + RT (N = 2103)

Chemotherapy with Chest Radiotherapy in L-SCLC

Modality	Schedule
First-line chemotherapy	Cisplatin 60 mg/m ² IV day 1; etoposide 120 mg/m ² /d IV days 1-3; repeat every 3 weeks
	Cisplatin 80 mg/m² IV day 1; etoposide 100 mg/m²/d IV days 1-3; repeat every 3-4 weeks
	Cisplatin 80 mg/m² IV day 1; etoposide 80 mg/m²/d IV days 1-3; repeat every 3 weeks
	Cisplatin 25 mg/m² IV days 1-3; etoposide 80 mg/m²/d IV days 1-3; repeat every 3-4 weeks
	Cisplatin 60 mg/m² IV day 1; etoposide 120 mg/m²/d IV days 1-3; repeat every 3 weeks
	Carboplatin AUC 5 IV day 1; etoposide 100 mg/m²/d IV days 1-3; repeat every 4 weeks
	Carboplatin AUC 5 IV day 1; etoposide 80 mg/m²/d IV days 1-3; repeat every 3-4 weeks
Thoracic radiotherapy	1.5 Gy twice daily (at least 6 hours apart) in 3 weeks for total dose of 45 Gy
	1.8 Gy daily over 6.5 weeks to total dose of at least 60 Gy
Prophylactic cranial irradiation	25 Gy in 10 daily fractions
	30 Gy in 10-15 daily fractions

L-SCLC: QD or BID RT

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

Intergroup 45 Gy QD vs BID

CONVERT 45 Gy BID vs 60 GY QD

PrimO

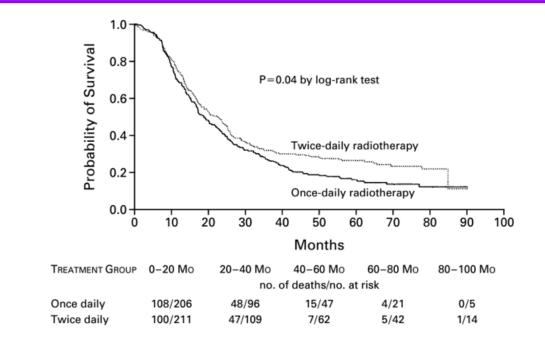
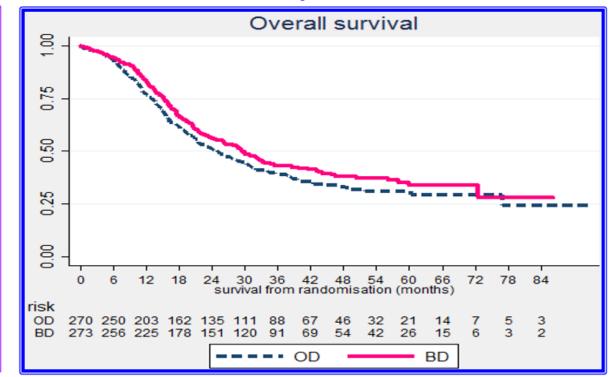
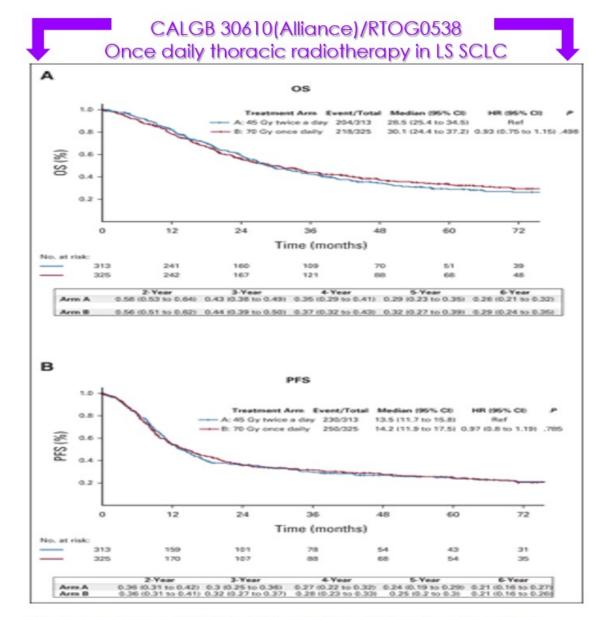



Figure 1. Kaplan-Meier Estimates of Overall Survival for All 417 Patients Assigned to Treatment Groups.

OS(n=543)	BD	OD	Log-rank
Median Mo.	30 (24-34)	25 (21-31)	
1-year	83% (78-87)	76% (71-81)	
2-year	56% (50-61)	51% (45-57)	p=0.15
3-year	43% (37-49)	39% (33-45)	


Other Studies comparing RT Twice vs Once Daily in Combination with Chemotherapy

Phase III trials of once-daily thoracic radiation therapy compared towith twice daily in combination with cisplatin and etoposide

First author [reference no.]	#No. of patients	Chemotherapy	Thoracic radiation therapy	Median overall survival (months)	Hazard ratio or <i>p</i> value	5-year overall survival rate
Turrisi [22]	206	Cisplatin and etoposide, 4 cycles	45 Gy once daily starting cycle 1	19	р = .04	16%
	211	Cisplatin and etoposide, 4 cycles	45 Gy twice daily starting cycle 1	23		26%
Schild [23]	131	Cisplatin and etoposide, 6 cycles	50.4 Gy daily starting cycle 4	20.6	p = .68	21%
	130	Cisplatin and etoposide, 6 cycles	Split course: 24 Gy, a 2.5 week break, and 24 Gy starting cycle 4	20.6		22%
Faivre-Finn [24]	274	Cisplatin and etoposide, 4–6 cycles	45 Gy twice daily starting cycle 2	30	HR: 1.18, p = .14	34%
	273	Cisplatin and etoposide, 4–6 cycles	66 Gy once daily starting cycle 2	25		31%
Abbreviation: HR,	hazard ratio.					

The Oncology Institute of Hope & Innovation

No advantage of 70 Gy QD vs 45 Gy BID; Jeffrey Bogart, et al; J Clin Oncol. 2023, 41(13):2394-402.

Ongoing Phase II and Phase III Trials in L- SCLC

Agent	Mechanism of Action	Phase	Sample Size	Primary End Point	NCT
Concurrent with chemoradiation and as consolidation					
Durvalumab	Anti-PD-L1	2	51	PFS	NCT03585998
Durvalumab (DOLPHIN)	Anti-PD-L1	2	105	PFS	NCT04602533
Pembrolizumab concurrent followed by pembrolizumab ± olaparib (KEYLYNK-013)	Anti–PD-1 and PARP inhibitor	3	672	PFS, OS	NCT04624204
Atezolizumab (NRG LU-005)	Anti-PD-L1	2 or 3	506	PFS or OS	NCT03811002
Sintilimab induction plus platinum-etoposide, followed by chemoradiation and sintilimab consolidation	Anti-PD-1	2	140	PFS	NCT04189094
Consolidation following chemoradiation					
Toripalimab	Anti–PD-1	2	170	PFS	NCT04418648
SHR-1316	Anti-PD-1	2	60	PFS	NCT04647357
Atezolizumab (ACHILES)	Anti–PD-L1	2	212	2 year OS	NCT03540420
Ipilimumab and nivolumab (STIMULI)	Anti–CTLA-4 and anti–PD-1	2	174	OS, PFS	NCT02046733
Durvalumab plus or minus tremelimumab (ADRIATIC)	Anti–PD-L1 and anti–CTLA-4	3	724	PFS, OS	NCT03703297
Atezolizumab ± tiragolumab	Anti–PD-L1 and anti–TIGIT	2	150	PFS	NCT04308785

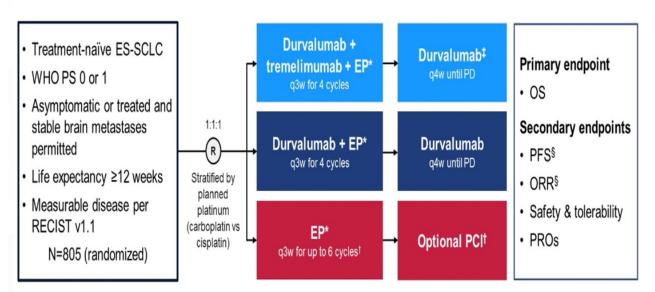
Abbreviations: CTLA-4, cytotoxic T-cell lymphocyte-4; ICI, immune checkpoint inhibitor; LS-SCLC, limited-stage small-cell lung cancer; OS, overall surviv PD-L1, programmed death ligand-1; PFS, progression-free survival.

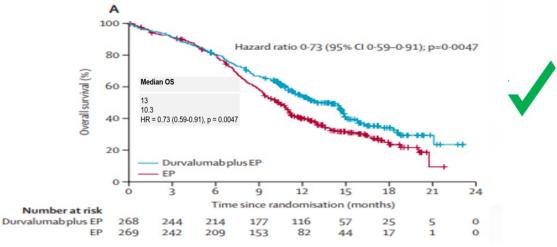
Bogart J. et al; J Clin Oncol. 2023, 41(13):2394-402.

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

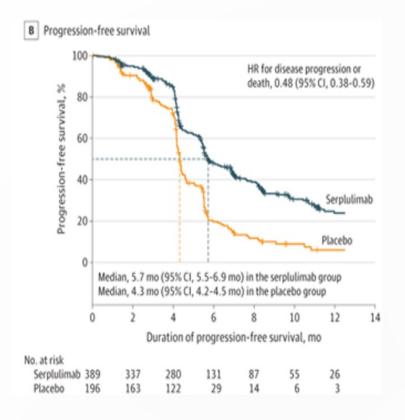
Extensive-Small Cell Lung Cancer

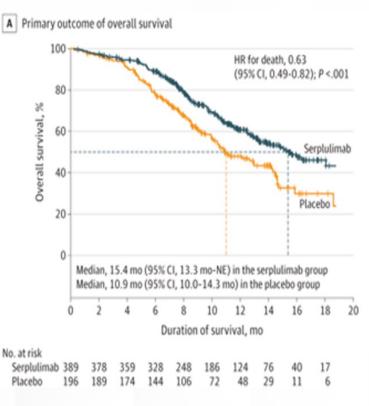


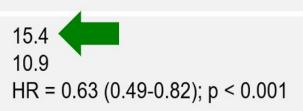


First Line Therapy for SCLC is well defined (for now).

IMpower133: Study Design







ASTRUM-005 (Serplimumab)

Median OS

Cheng Y, et al. JAMA. 2022;328(12):1223-32.

Prior Efforts to Treat SCLC \rightarrow

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

SCLC is an aggressive disease with limited treatment options beyond first-line chemo-immune therapy and no approved third-line therapy

Trial	Phase	Drug	ORR	PFS	os
von Pawel 1999	2	Topotecan IV	24%	~3.1 mo	
von Pawel 1999	2	CAV	18%	~2.9 mo	
Eckardt 2007	3	Topotecan PO	18%	~2.8 mo	~7.7 mo
Pietanza 2012	2	Temozolomide	20%	1.6 mo	5.8 mo
Pietanza 2018	2	Temozolomide + Veliparib	39%	3.8 mo	8.2 mo
Farago 2019	2	Temozolomide + Olaparib	41.7%	4.2 mo	8.5 mo
Checkmate 032, 2020	2	Nivolumab	11.6%	1.4 mo	5.7 mo
Checkmate 032, 2020	2	Nivolumab + Ipilimumab	21.9%	1.5 mo	4.7 mo
Trigo 2020	2	Lurbinectedin	34.7%	3.9 mo	9.3 mo
ATLANTIS, 2021	3	Dox + Lurbi 2mg/m2	31.6%	4.0 mo	8.6 mo
ATLANTIS, 2021	3	Topotecan or CAV	29.7%	4.0 mo	7.6 mo

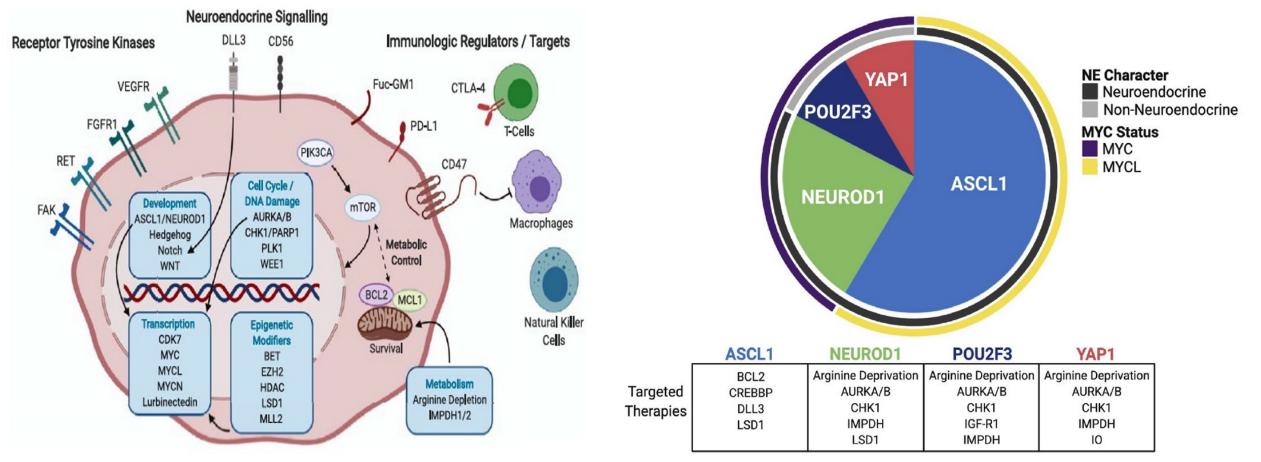
Prim()

Gentzler et al. ASCO 2022.

What Are The Options as Second-line Therapy for Small Cell Lung Cancer?

SCLC SUBSEQUENT SYSTEMIC THERAPY (PS 0–2) ^{f,} Consider dose reduction or growth factor support for patients with PS 2.
CHEMOTHERAPY-FREE INTERVAL (CTFI) >6 MONTHS
Preferred Regimens
Clinical trial enrollment
• Re-treatment with platinum-based doublet ^{9,34,35,37-39}
Other Recommended Regimens
Lurbinectedin ^{17,36} Topotecan oral (PO) or intravenous (IV) ^{14-16,28}
• Topotecan oral (PO) or intravenous (IV) ^{14-10,20}
Irinotecan ^{h,21,28}
CTFI ≤6 MONTHS
Preferred Regimens
Clinical trial enrollment Lurbinectedin ^{17,36}
• Topotecan oral (PO) or intravenous (IV) ^{14-16,28,37}
• Irinotecan ^{h,21,28}
• Re-treatment with platinum-based doublet may be considered for CTFI 3–6 months ^{9,37,38,39}
Other Recommended Regimens
Nivolumab or pembrolizumab (if not previously treated with an ICI) ^{b, 29,30,31,32,33}
• Paclitaxel ^{18,19}
• Temozolomide ^{22,23}
Cyclophosphamide/doxorubicin/vincristine (CAV) ¹⁴ Docetaxel ²⁰
Gemcitabine ^{26,27,40}
• Oral etoposide ^{24,25}

NCCN Guidelines- Version 2.2024, 11/21/23.



The Oncology Institute of Hope & Innovation

SCLC: Where do we go from here?

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

Future Directions

Poirier et al, JTO 2020

PrimO

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort I Lihue, Hawaii **PrimO**

Future Directions

Ongoing clinical trials

Phase 3 LAGOON trial ongoing

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

Confirmatory phase 3 trial has been initiated: LAGOON

- Patients with SCLC progression following prior platinum-containing chemotherapy with or without anti–PD-1 or anti–PD-L1 agents
- Expected N: 705 from >100 sites, mainly in North America and Europe

Lurbinectedin monotherapy or lurbinectedin + irinotecan

Investigator's choice (topotecan or irinotecan)

Primary endpoint: OS Secondary endpoint: PFS

Prim(

 Study Type 0:
 Interventional (Clinical Trial)

 Estimated Enrollment 0:
 705 participants

 Allocation:
 Randomized

 Intervention Model
 Parallel Assignment

 Intervention Model Description:
 Multicenter, open-label, randomized, controlled

 Masking:
 None (Open Label)

 Primary Purpose:
 Treatment

 Official Title:
 A Randomized, Multicenter, Open-label, Phase III Study of Lurbinectedin Single-Agent or Lurbinectedin in Combination With Irinotecan Versus Investigator's Choice (Topotecan or Irinotecan) in Relapsed small Cell Lung Cancer Patients (LAGOON Trial)

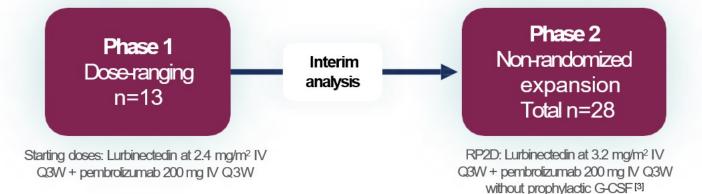
 Actual Study Start Date 0:
 July 22, 2022

 Estimated Primary Completion Date 0:
 July 22, 2025

Estimated Study Completion Date 1 : June 2025

LUPER Study. Background and Study Design

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

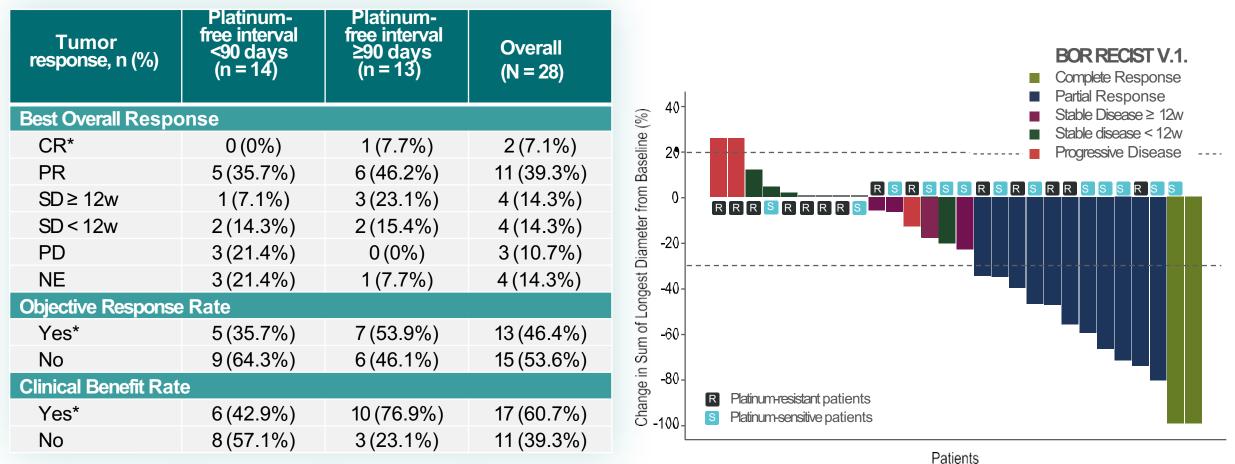

PRIMO 2024

Prim()

- Patients with small-cell lung cancer (SCLC) who relapse have a very poor prognosis and very limited treatment options.^[1]
- Lurbinectedin inhibits trans-activated transcription and modulates the tumor microenvironment and is FDA approved for metastatic SCLC patients with progressive disease on or after platinum-based chemotherapy.^[2]
- LUPER is a prospective, phase I/II, multicenter, open-label, clinical and pharmacokinetic study of the combination of lurbinectedin + pembrolizumab in relapsed SCLC.
- The primary objective in the Phase II stage is to assess the efficacy of lurbinected in with pembrolizumab in terms of ORR, according to RECIST v.1.1, in patients with relapsed SCLC.^[3]
- Secondary endpoints include investigator-assessed DoR, PFS, OS, and safety per CTCAE 5.0.

Key Inclusion Criteria

- ≥18 years old
- Histologically confirmed SCLC
- Progression after 1L platinum-based CT
- No prior exposure to immunotherapy
- ECOG PS of 0-1
- Measurable disease as per RECIST 1.1.
- Brain metastasis allowed if treated and asymptomatic


1 García-Campelo, R., et al. Clin Transl Oncol (2023) 25(9):2679-2691; 2. Singh, S., et al. Clin Cancer Res (2021) 27 (9): 2378–2382; 3. Calles, A., et al. ASCO (2022)

Antonio Calles MD. 2023 ESMO Congress, abstr 1989M0.

LUPER Study

Objective Response Rate (ORR) by RECIST v.1.1.

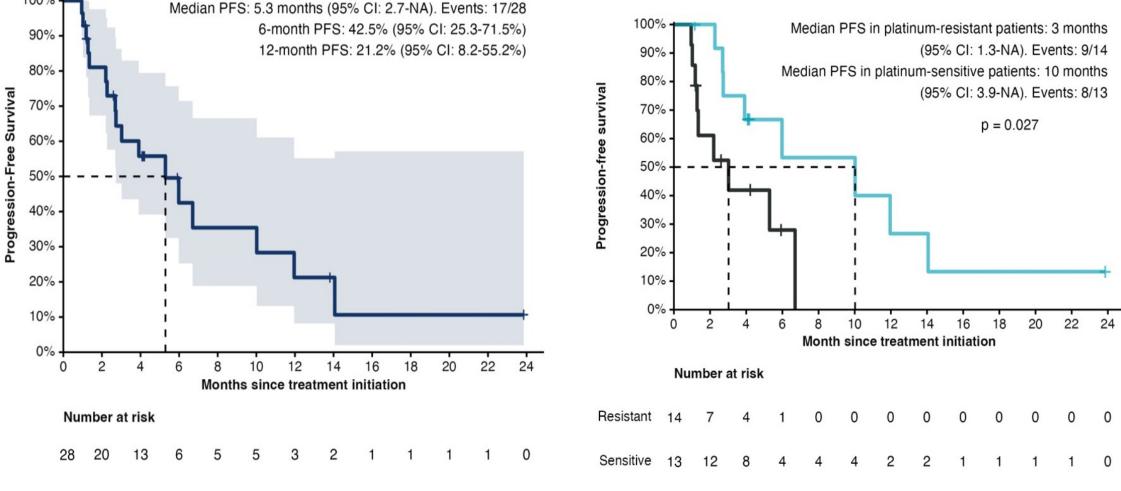
The primary objective has been achieved with 46.4% confirmed response rate assessed by investigator (95% CI: 29.5-64.2; p < 0.001)

n (%), number of patients (percentage based on N); N, number of patients in the population; CR: Complete response; PR: Partial response; SD: Stable disease; PD: Progressive disease; NE: Not evaluated. *Information on the platinum-free interval of patient 0102-004 is missing. This patient had a BOR = CR.

Antonio Calles MD. 2023 ESMO Congress, abstr 1989M0.

PRIMO 2024 February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii Prim()

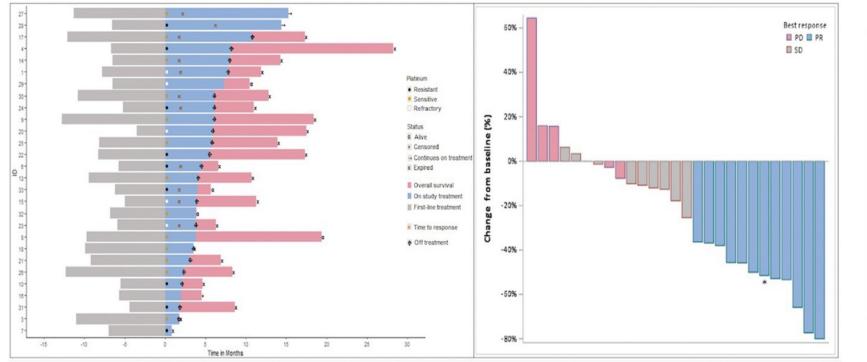
LUPER Study Results- Progression Free Survival


100% -

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

PRIMO 2024

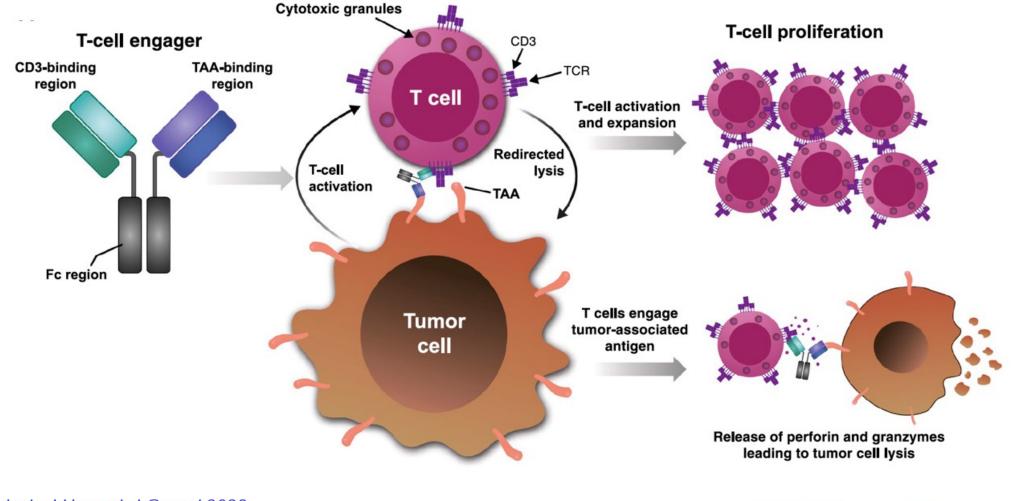
+ Resistant + Sensitive


PrimO

Antonio Calles MD. 2023 ESMO Congress, abstr 1989M0.

PARP inhibitors combos in Relapsed SCLC

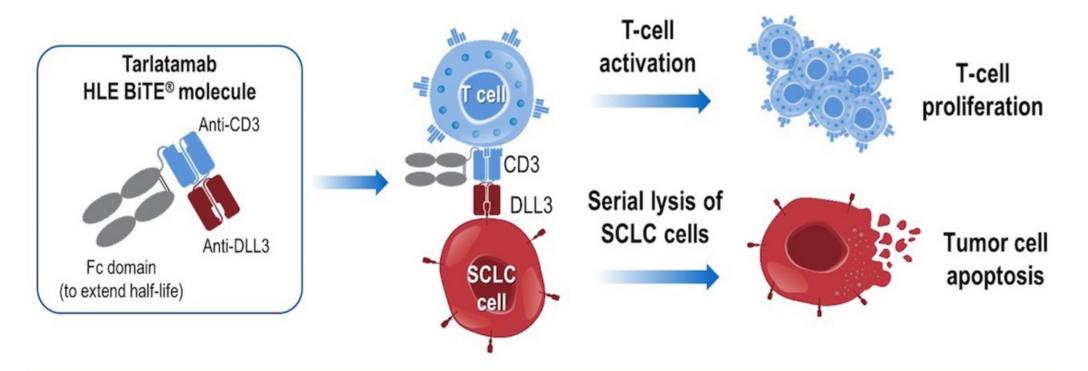
Phase II study of continuous talazoparib plus intermittent low-dose temozolomide


 ORR 39.3%
 PFS 4.5 mo
 OS 11.9 mo
 TRAEs ≥ 3: thrombocytopenia (61.3%), anemia (54.8%), neutropenia (41.9%), atypical pneumonia (3.2%)

Goldman et al. ASCO 2022.

Bi-specific T-cell engagers (BiTEs): Bringing the T-cell to the tumor

Rudin et al., J Hematol Oncol 2023

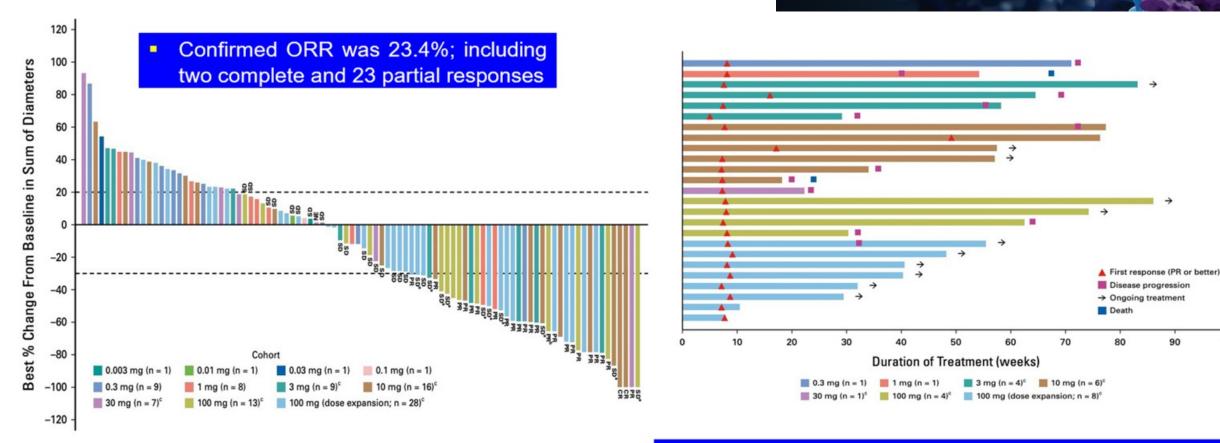

The Oncology Institute of Hope & Innovation

DLL3 targeting HLE BITE

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

Tarlatamab engages endogenous T cells and SCLC cells


 Tarlatamab, a half-life extended bispecific T-cell engager (HLE BiTE) molecule, binds both DLL3 on cancer cells and CD3 on T cells leading to T-cell–mediated tumor lysis.
 Tarlatamab promotes tumor regression in preclinical models of SCLC.

Owonikoko et al. ASCO 2022 Paz-Ares et al. JCO 2023

PrimO

Phase | Tarlatamab: Efficacy

Owonikoko et al. ASCO 2022

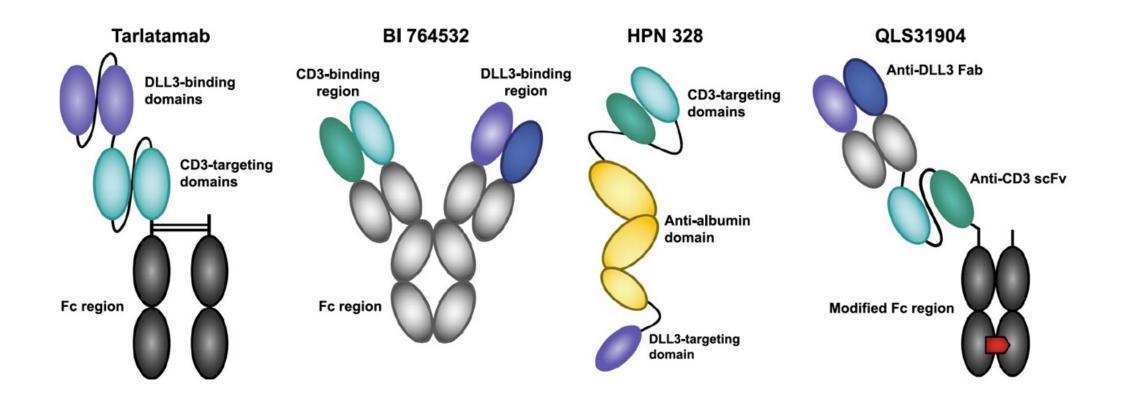
Paz-Ares et al. JCO 2023

Among confirmed responders, the median time to response was 1.8 months (range, 1.2-7.4) and the median DOR was 12.3 months (95% CI, 6.6 to 14.9; Fig 1B).

PRIMO 2024

The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

February 7-10, 2024


Prim()

100

Many BiTEs, many flavors

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

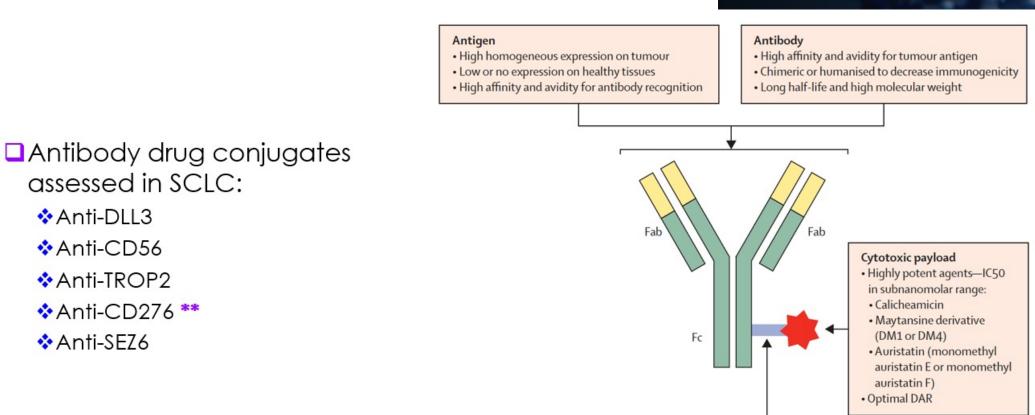
PRIMO 2024

Rudin et al., J Hematol Oncol 2023

The Oncology Institute of Hope & Innovation

PrimO

Antibody-based DLL3-targeted therapies in development for SCLC

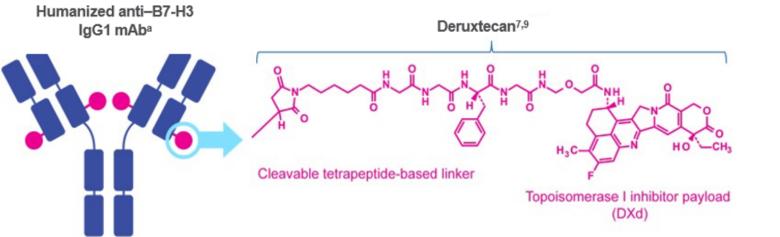

AGENT	MECHANISM OF ACTION ANTIBODY-DRUG CONJUGATES (ADCs)	STATUS
Rovalpituzumab tesirine	ADC targeting DLL3	Terminated
SC-002	ADC targeting DLL3	Terminated
	CHIMERIC ANTIGEN RECEPTORS	
DLL3-CAR-NK cells	Anti-DLL3-transduced natural killer cells	Recruiting (Phase 1)
AMG 119	Anti-DLL3 transduced autologous T cells	Suspended (Phase 1)
	T-CELL ENGAGERS	
Tarlatamab	DLL3/CD3 BITE	Recruiting (Phase 2)
BI 764532	DLL3/CD3 BITE	Recruiting (Phase 1)
HPN328	DLL3/CD3/Albumin TriTAC	Recruiting (Phase 1/2)
RO7616789	DLL3/CD3/CD137 TriTAC	Recruiting (Phase 1)
PT217	DLL3/CD47 BITE	Not yet recruiting
QLS31904	DLL3/CD3 BiTE	Not yet recruiting

Antibody Drug Conjugates

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort | Lihue, Hawaii **PrimO**

Chau et al., Lancet 2019


The Oncology Institute of Hope & Innovation

Linker

- Stable in circulation
- Efficient release of payload at target site
- Prevents premature release of payload at non-target tissue
- Efficient linker technology
- Cleavable versus non-cleavable
- Site of conjugation
- DAR affects drug distribution and pharmacokinetics

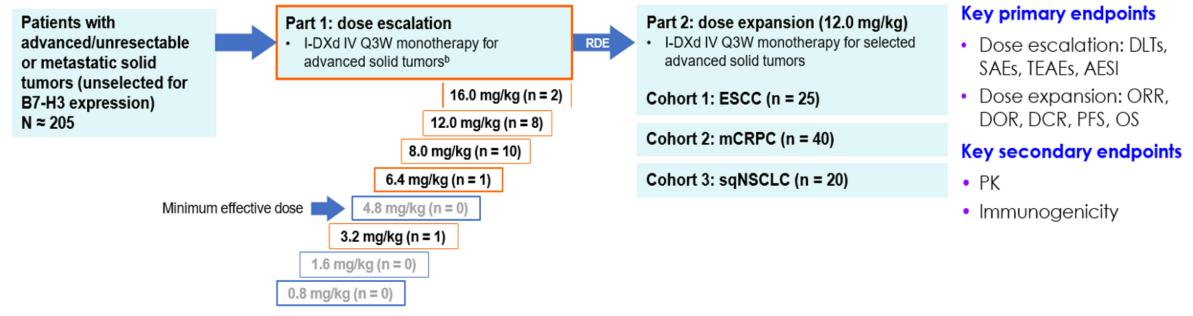
Ifinatamab Deruxtecan (I-DXd; DS-7300) Was Designed With 7 Key Attributes

- □ B7-H3 is overexpressed in a wide range of cancer types and is associated with disease progression and lower survival^{1–5}
- □ I-DXd is a B7-H3 (CD276)-directed ADC composed of 3 parts: 6-9,11
 - A humanized anti–B7-H3 IgG1 monoclonal antibody^{9,11}
 - A topoisomerase l inhibitor payload (an exatecan derivative, DXd)
 - A tetrapeptide-based cleavable linker that covalently bonds the other 2 components

Payload mechanism of action: topoisomerase I inhibitor ^{7,9,11,b}
High potency of payload ^{9,11,b}
Optimized drug-to-antibody ratio ≈ 4 ^{6–8,10,b}
Payload with short systemic half-life ^{9,11,b,c}
Stable linker-payload ^{9,11,b}
Tumor-selective cleavable linker9,11,b
Bystander antitumor effect ^{7,10,11,b}

Image is for illustrative purposes only; actual drug positions may vary. The clinical relevance of these features is under investigation. Based on animal data.

ADC, antibody-drug conjugate; B7-H3, B7 homolog 3; CD276, cluster of differentiation 276; DXd, deruxtecan; IgG1, immunoglobulin G1; mAb, monoclonal antibody.


Yamato M, et al. AACR-NCI-EORTC 2020. Abstract 28. 2. Dong P, et al. Front Oncol. 2018;8:264. 3. Picarda E, et al. Clin Cancer Res. 2016;22(14):3425–3431. 4. Bendell JC, et al. J Clin Oncol. 2020;39(15 suppl 1). Abstract TPS3646.
 Kontos F, et al. Clin Cancer Res. 2021;27(5):1227–1235. 6. Okajima D, et al. Mol Cancer Ther. 2021;20(12):2329–2340. 7. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173–185. 8. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097–5108.
 Yamato M, et al. Mol Cancer Ther. 2022;21(4):635–646.10. Ogitani Y, et al. Cancer Sci. 2016;107(7):1039–1046. 11. Dailchi Sankyo. Data on file.

The Oncology Institute of Hope & Innovation

DS7300-A-J101 Study Design (NCT04145622)

- □ I-DXd is generally well tolerated with early signs of antitumor activity^{1,2}
- U We present a subgroup analysis of patients with SCLC (N = 22^a) from part 1 treated with I-DXd at all doses studied
 - Patients dosed at ≥6.4 mg/kg (n = 21) were evaluable for efficacy
 - Saseline tumor biopsies were retrospectively examined for B7-H3 protein level by IHC and used for correlative analysis in biomarker-evaluable patients dosed at ≥6.4 mg/kg (n = 17)

aNu

event of special interest; B7-H3, B7 homolog 3; DCR, disease control rate; DL1, dose-limiting toxicity; DOR, duration of response; ESCC, esophageal squamous cell carcinoma; IHC, immunohistochemistry; IV, intravenous;

mCRPC, metastatic castration-resistant prostate cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; Q3W, every 3 weeks; RDE, recommended dose for expansion; SAE, serious adverse event;; SCLC, small cell lung cancer; sqNSCLC, squamous non-small cell lung cancer; TEAE, treatment-emergent adverse event. 1. Johnson ML, et al. ESMO. 2021. Abstract 513O. 2. Doi T, et al. ESMO. 2022. Abstract 453O.

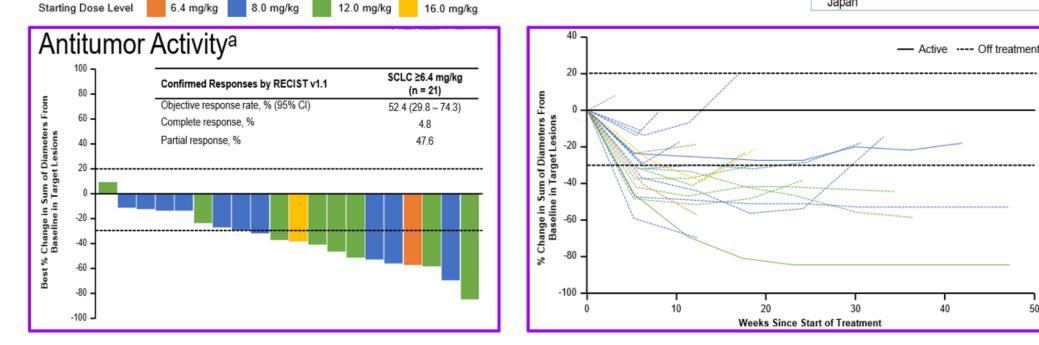
PRIMO 2024

The Royal Sonesta Kaua'i Resort | Lihue, Hawaii

February 7-10, 2024

The Oncology Institute of Hope & Innovation

Prim()

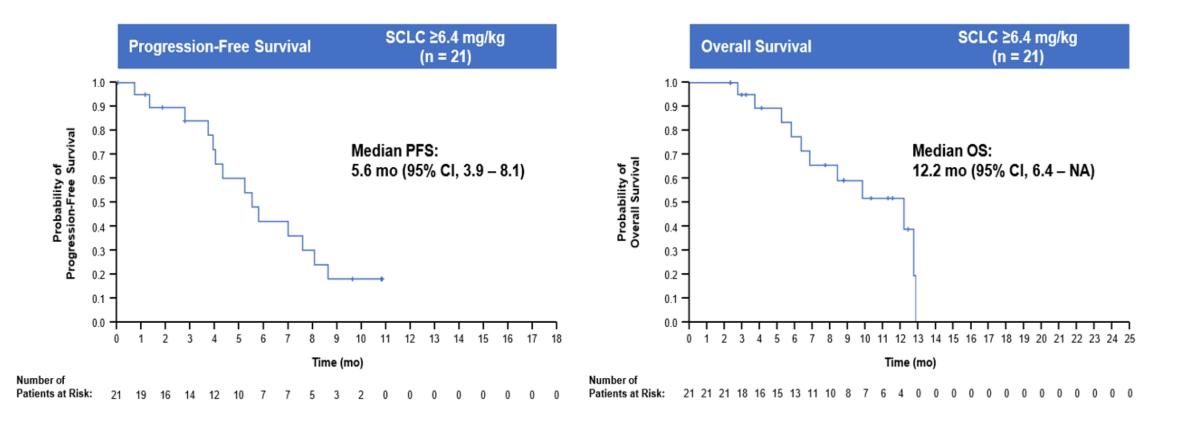

DS7300-A-J101 Study Design (NCT04145622)

As of 31 January 2023, 22 patients with SCLC received I-DXd at doses of 3.2 mg/kg to 16.0 mg/kg

- Nearly all patients with post-baseline scans had a reduction in target lesions
- Median time to response was 1.2 months (95% Cl, 1.2 1.4)
- Median duration of response was 5.9 months (95% Cl, 2.8 7.5); two patients remain on treatment
- Median follow-up was 11.7 months (95% Cl, 4.63 12.88)

Patient or Disease Characteristic	SCLC (N = 22)
Age, median (range)	61 (40 - 84)
Male, n (%)	14 (63.6)
ECOG PS, n (%)	
0	7 (31.8)
1	15 (68.2)
Brain metastasis at baseline, n (%)	2 (9.1)
Number of prior systemic regimens, median (range)	2 (1 – 7)
Prior anticancer therapy received, n (%)	
Platinum-based chemotherapy	22 (100)
Immuno-oncology	18 (81.8)
Taxane	5 (22.7)
Irinotecan or topotecan	5 (22.7) ^a
Region of enrollment, n (%)	
United States	17 (77.3)
Japan	5 (22.7)

50



Johnson M et al. 2023 World Conference on Lung Cancer, Singapore, September 9-12, 2023

Progression-Free and Overall Survival

PRIMO 2024

February 7-10, 2024 The Royal Sonesta Kaua'i Resort I Lihue, Hawaii

Data cutoff: January 31, 2023. Cl, confidence interval; NA, not applicable; mo, months; OS, overall survival; PFS, progression-free survival; SCLC, small cell lung cancer.

Johnson M et al. 2023 World Conference on Lung Cancer, Singapore, September 9-12, 2023

The Oncology Institute of Hope & Innovation

PrimO

Conclusions

- At present biomarker testing in SCLC has minimal impact in clinic.
- Recent discoveries enable biomarker-driven clinical trials; molecular subtypes of SCLC (SCLC-ASCL1, NEUROD1, POU2F3, Inflamed).
- Chemo-immunotherapy now the gold standard frontline treatment of E-SCLC (EP-atezolizumab or EP-durvalumab).
- More to do in second line; approval of Lurbinectedin (2020) occurred 22 years after topotecan approval.
- Multiple classes of antibody-based therapies are in the clinic, with more on the way: blocking antibodies, antibody-drug conjugates (ADCs), T-cell engagers (TCEs), CAR-T constructs and radioimmunoconjugates.
- ADCs and TCEs are showing promising activity in patients with recurrent SCLC (e.g., Ifinatamab deruxtecan, Tarlatamab)

