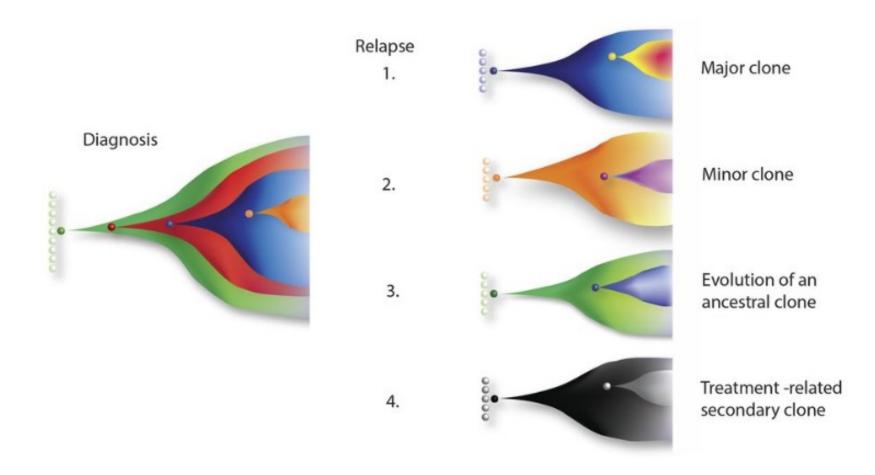

AML: Where are we now? Where are we going?

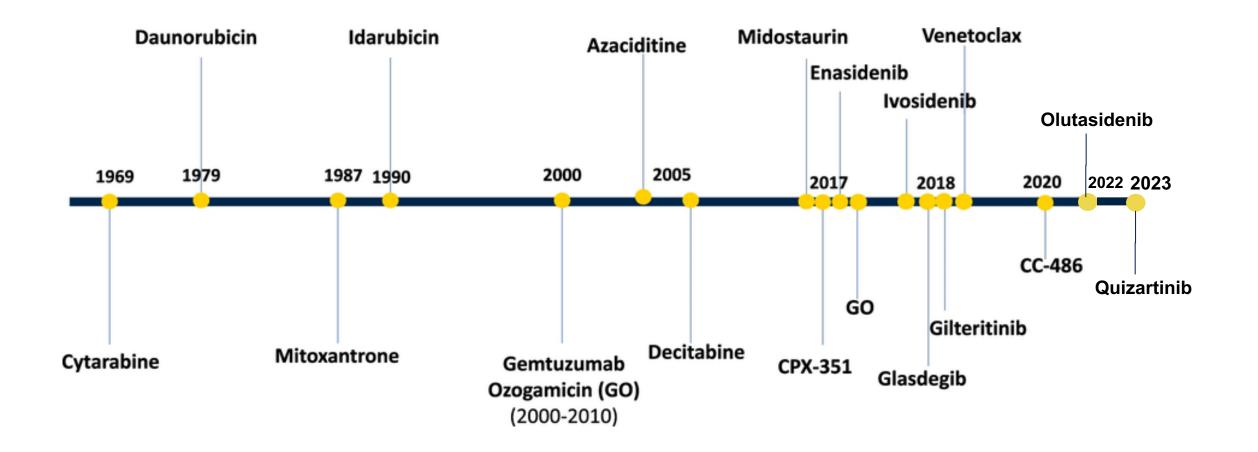
Catherine Lai, MD, MPH Associate Professor Physician Leader, Leukemia Clinical Research Unit University of Pennsylvania

January 21,2024

AML is Not One Disease



Patel et al. N Engl J Med 2012 Papaemmanuil et al. NEJM 2016


Clonal Evolution Makes Treatment Challenging

Grimwade et al. Blood 2016 127:29-41

What has been accomplished in AML treatment?

Adapted from Ochs et al. Annals of Hematology 2022

FDA Approved Drugs Since 2017

Newly diagnosed

- Midostaurin April 2017
- CPX-351 August 2017
- Venetoclax November 2018
- Glasdegib November 2018
- Quizartinib July 2023

Relapsed/refractory

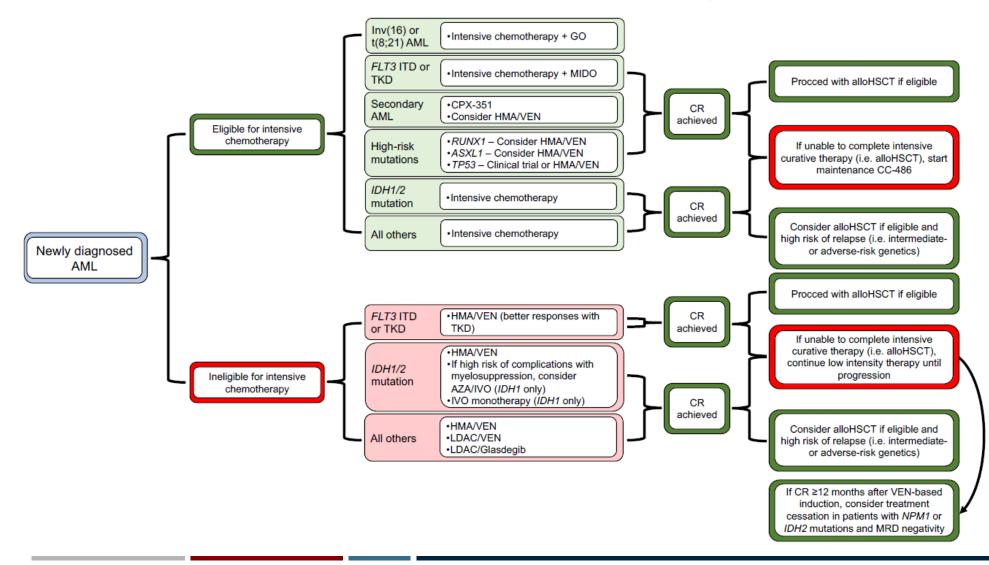
- Enasidenib August 2017
- Gilteritinib November 2018
- Olutasidenib December 2022

Newly diagnosed and Relapsed/Refractory

- Gemtuzumab ozogamicin September 2017
- Ivosidenib July 2018, May 2019

Maintenance

• CC-486 – September 2020



Historical Standard Approach To Induction Chemotherapy

New Standard Approach to Newly Diagnosed AML

Penn Medicine 7

Bhansali, Lai et al. Journal of Hematology & Oncology 2023

VIALE-A: AZA + Venetoclax Superior to AZA alone

Azacitidine plus venetoclax	286	219	198	168	143	117	101	54	23	5	3	0
Azacitidine plus placebo	145	109	92	74	59	38	30	14	5	1	0	0

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for Death (95% CI)	
	no. of events	/total no. (%)		
All patients	161/286 (56.3)	109/145 (75.2)	⊢∎⊣	0.64 (0.50-0.82)
Sex				
Male	61/114 (53.5)	41/58 (70.7)	⊢ ∎ ⊸i	0.68 (0.46-1.02)
Female	100/172 (58.1)	68/87 (78.2)	H 	0.62 (0.46-0.85
Age	, , , ,			
<75 yr	66/112 (58.9)	36/58 (62.1)	⊢ ∎;1	0.89 (0.59-1.33
≥75 yr	95/174 (54.6)	73/87 (83.9)		0.54 (0.39-0.73
Geographic region				
United States	27/50 (54.0)	21/24 (87.5)		0.47 (0.26-0.83)
Europe	70/116 (60.3)	46/59 (78.0)		0.67 (0.46-0.97
China	9/24 (37.5)	5/13 (38.5)	⊢	1.05 (0.35-3.13)
Japan	10/24 (41.7)	9/13 (69.2)		0.52 (0.20-1.33)
Rest of world	45/72 (62.5)	28/36 (77.8)	⊢ ∎	0.73 (0.45-1.17
Baseline ECOG score	, , , ,	, , ,		
Grade <2	89/157 (56.7)	65/81 (80.2)		0.61 (0.44-0.84
Grade ≥2	72/129 (55.8)	44/64 (68.8)	·	0.70 (0.48-1.03
Type of AML				
De novo	120/214 (56.1)	80/110 (72.7)	⊢ ∎1	0.67 (0.51-0.90
Secondary	41/72 (56.9)	29/35 (82.9)		0.56 (0.35-0.91)
Cytogenetic risk	, , ,			
Intermediate	84/182 (46.2)	62/89 (69.7)	H	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)	F	0.78 (0.54-1.12)
Molecular marker	/ / /	1 1 1		
FLT3	19/29 (65.5)	19/22 (86.4)	F	0.66 (0.35-1.26
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65
IDH2	15/40 (37.5)	14/18 (77.8)	F	0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)		0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)	F	0.76 (0.40-1.45
NPM1	16/27 (59.3)	14/17 (82.4)	⊢	0.73 (0.36-1.51)
AML with myelodysplasia-related	1 1 1	, , ,		
Yes	56/92 (60.9)	38/49 (77.6)	⊢ − ∎ −−−−	0.73 (0.48-1.11)
No	105/194 (54.1)	71/96 (74.0)	⊢ -	0.62 (0.46-0.83
Bone marrow blast count				
<30%	46/85 (54.1)	28/41 (68.3)	F	0.72 (0.45-1.15
30 to <50%	36/61 (59.0)	26/33 (78.8)	H	0.57 (0.34-0.95
≥50%	79/140 (56.4)	55/71 (77.5)	F	0.63 (0.45-0.89
		0.1	1.0	10.0
			Azacitidine plus Azacitidine p	lus
			Venetoclax Better Placebo Bett	

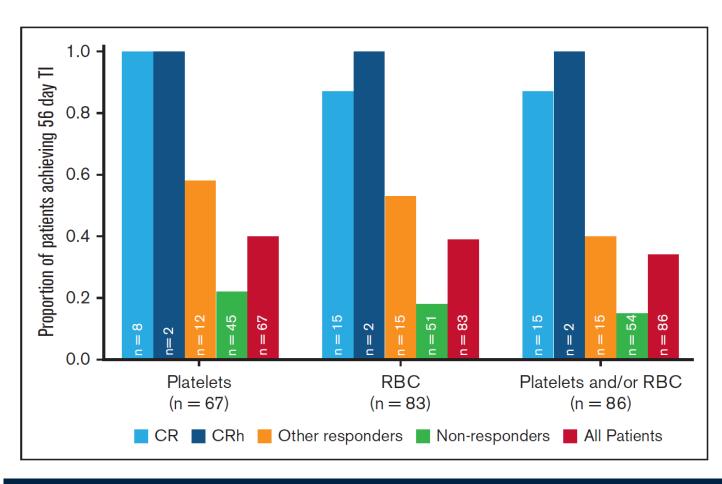
Dinardo et al. NEJM 2020

Azacitidine + Venetoclax has Sustained Benefit Over Azacitidine Alone with Long-term Follow Up of VIALE-A

Median follow-up time: 43.2 months (range: < 0.1 - 53.4)

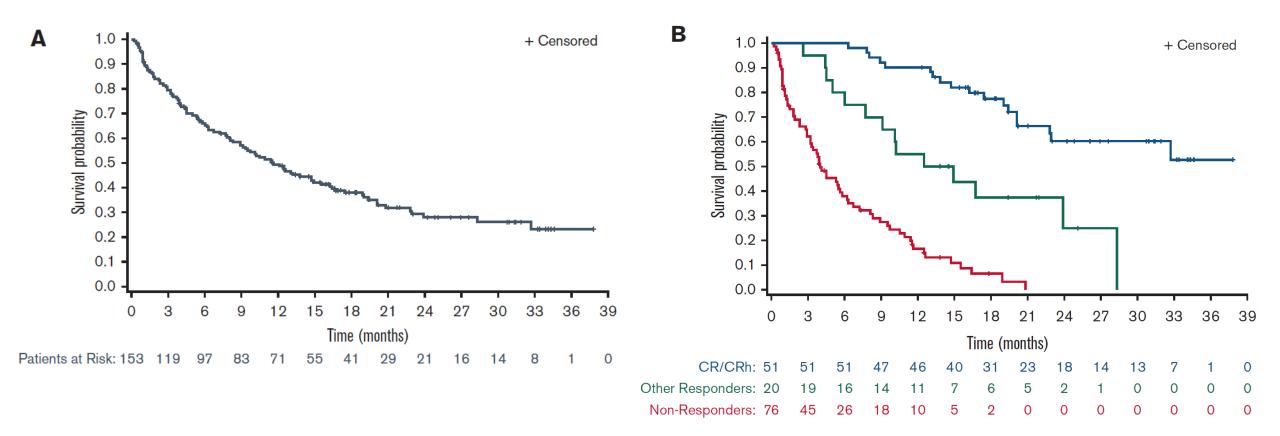
Pratz KW et al, ASH 2022, abstract #219

What happened in 2023?


- Olutasidenib approved
 - IDH1 mutated relapsed AML
- Quizartinib approved
 - FLT3 positive newly diagnosed AML

Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory *IDH1*-mutated AML

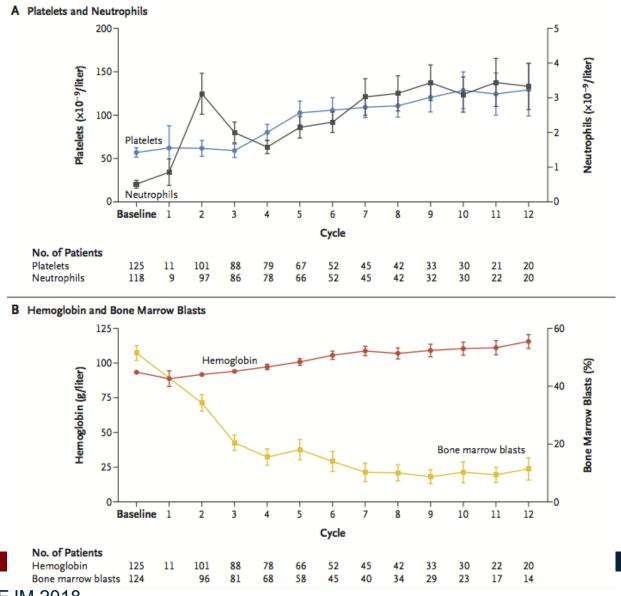
Efficacy-evaluable


Response rates	population ($n = 147$)					
CR* or CRh						
n (%) [95% Cl]	51 (35) [27.0-43.0]					
Median time to CR/CRh, mo (range)	1.9 (0.9-5.6)					
CR*						
n (%) [95% Cl]	47 (32) [24.5-40.2]					
Median time to CR, months (range)	2.8 (0.9-7.4)					
Overall response						
N (%) [95% Cl]	71 (48) [40.0-56.7]					
Median time to first overall response, mo (range)	1.9 (0.9-10.2)					
Best overall response, n (%)						
CR*	47 (32)					
CRh	4 (3)					
CRi	15 (10)					
PR	3 (2)					
MLFS	2 (1)					
SD†	42 (29)					
Progressive disease	10 (7)					
Not evaluable/not done	6 (4) / 18 (12)					

🐺 Penn Medicine

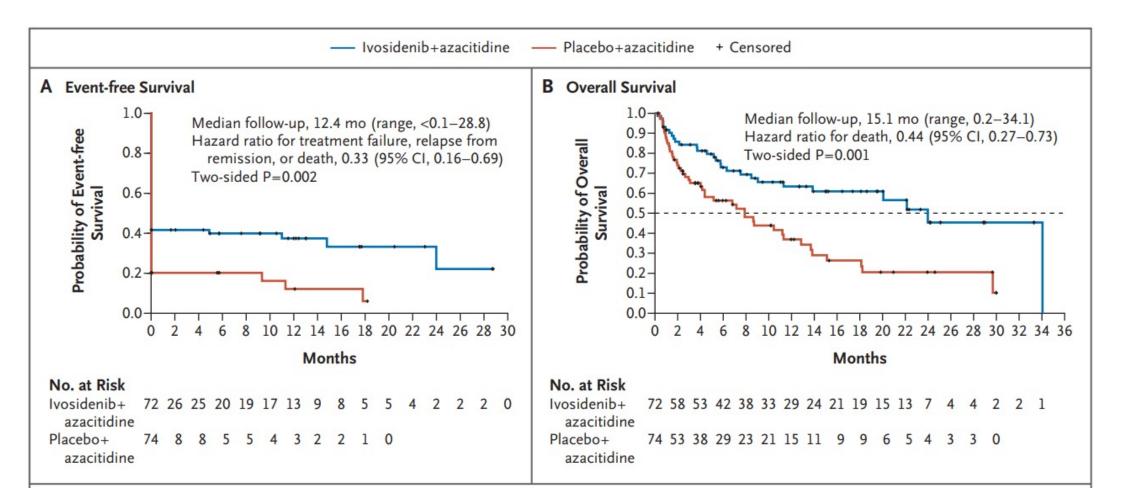
De Botton et al. Blood Advances 2023

Durable response duration and survival in responders


Ivosidenib is first IDH1 inhibitor approved in AML

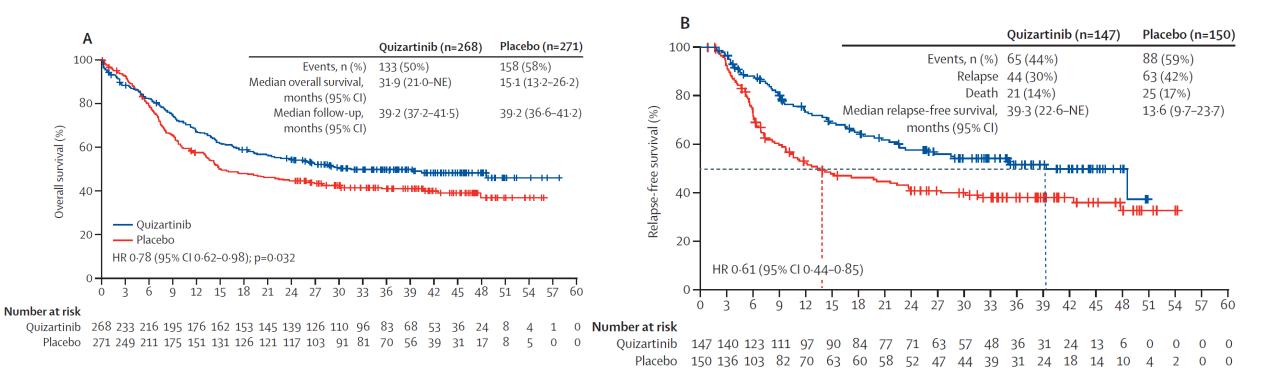
Response	Primary Efficacy Population (N=125)	Relapsed or Refractory AML (N = 179)	Untreated AML (N=34)†	MDS (N=12)‡
CR or CRh				NA
No. of patients	38	54	12	NA
% (95% CI)	30.4 (22.5–39.3)	30.2 (23.5–37.5)	35.3 (19.7–53.5)	NA
Median time to CR or CRh (range) — mo	2.7 (0.9–5.6)	2.0 (0.9–5.6)	2.8 (1.9-2.9)	NA
Median duration of CR or CRh (95% CI) — mo	8.2 (5.5-12.0)	6.5 (5.5–11.1)	NE (1.0-NE)	NA
CR				
No. of patients	27	39	7	5
% (95% CI)	21.6 (14.7-29.8)	21.8 (16.0–28.6)	20.6 (8.7–37.9)	41.7 (15.2–72.3)
Median time to CR (range) — mo	2.8 (0.9-8.3)	2.8 (0.9–8.3)	2.8 (1.9–3.7)	1.9 (1.0–5.6)
Median duration of CR (95% CI) — mo	9.3 (5.6-18.3)	9.3 (5.6–12.5)	NE (5.6–NE)	NE (2.8–NE)
Overall response				
No. of patients	52	70	19	11
% (95% CI)	41.6 (32.9-50.8)	39.1 (31.9–46.7)	55.9 (37.9–72.8)	91.7 (61.5–99.8)
Median time to first response (range) — mo§	1.9 (0.8–4.7)	1.9 (0.8–4.7)	1.9 (0.9–2.9)	1.6 (1.0–2.8)
Median duration of response (95% CI) — mo	6.5 (4.6–9.3)	6.5 (4.6–9.3)	9.2 (1.9–NE)	NE (2.3–NE)

DiNardo et al. NEJM 2018


Ivosidenib Improves Counts Over Time

DiNardo et al. NEJM 2018

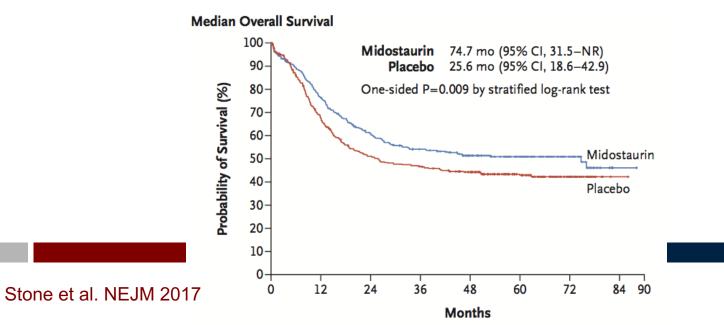
Ivosidenib + Azacitidine Improves EFS and OS Compared to Azacitidine Alone



Quizartinib plus chemotherapy in newly diagnosed patients with *FLT3*-internaltandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial

arameter	Quizartinib (N=167)	Placebo (N=90)	Р
Response after 1 induction cycle, n (%)			
CRc (CR + CRi)	122 (73)	64 (71)	0.74
CR	89 (53)	47 (52)	
CRi	33 (20)	17 (19)	
CR/CRi with MRD negativity	69 (42)	36 (40)	0.80
PR	18 (11)	8 (9)	
MLFS	3 (2)	0 (0)	
Resistance	20 (12)	11 (12)	
Death	4 (2)	7 (8)	
Response after 1 or 2 induction cycles, n (%)			
CRc (CR + CRi)	131 (78)	70 (78)	0.97
CR/CRi with MRD negativity	74 (44)	39 (43)	0.88

Quizartinib Improves RFS and OS



Erba et al. Lancet 2023

ORIGINAL ARTICLE

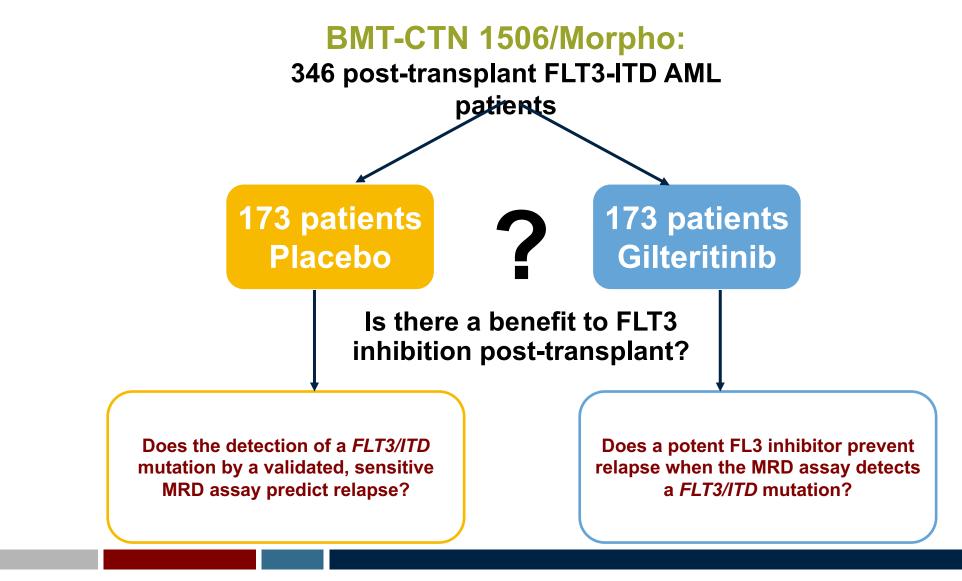
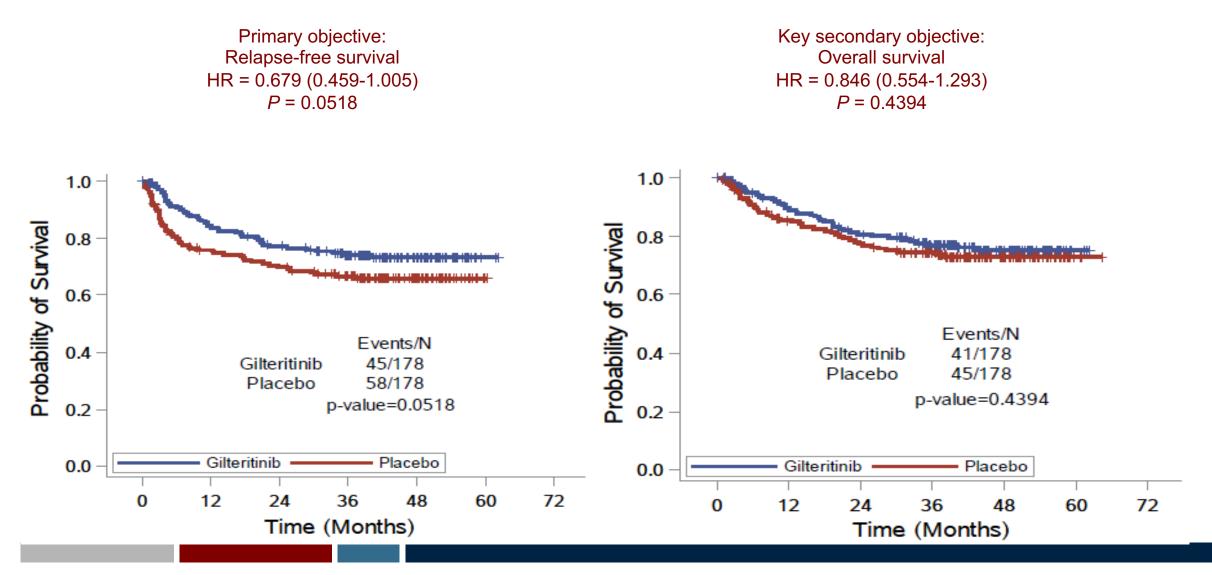
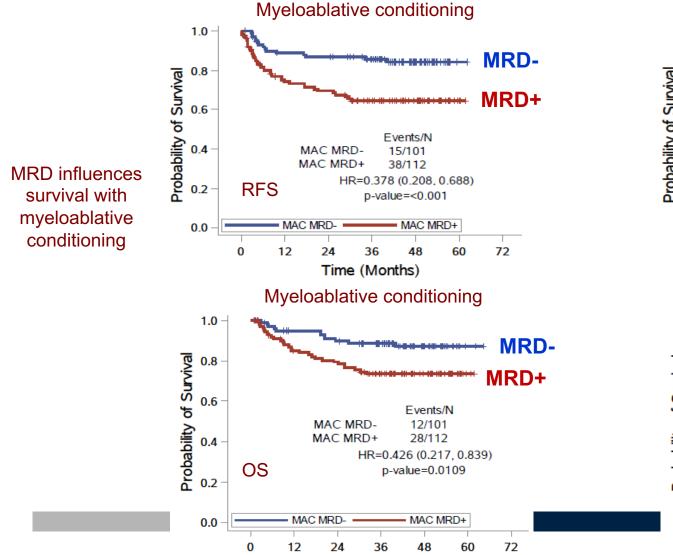

Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a *FLT3* Mutation

Table 3. Summary of Complete Remission.*						
Variable	Midostaurin Group (N = 360)	Placebo Group (N=357)	P Value†			
Protocol-specified complete remission — no. (%)	212 (59)	191 (54)	0.15			
Kaplan–Meier estimate of time to complete remission — days						
Median	35	35				
Range	20–60	20–60				

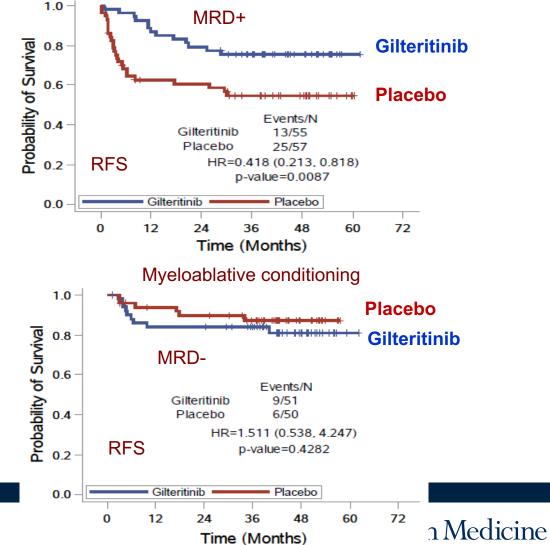
BMT CTN 1506: Efficacy of Gilteritinib in Post-Transplant AML



Levis M, et al. *Blood*. 2019;134:4602.


BMT-CTN 1506 (MORPHO): Efficacy Outcome

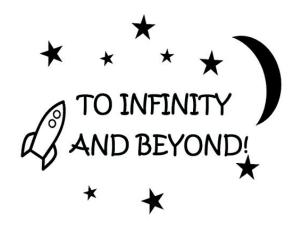
Penn Medicine 20



Myeloablative conditioning, MRD6, and Gilteritinib

Time (Months)

Myeloablative conditioning



21

Where will 2024 take us?

Menin inhibitors

Progress in TP53 mutated AML?

KMT2Ar Acute Leukemia

- Many patients relapse after chemotherapy and/or HSCT¹
- In adults, remission rates after relapse (CR, 5%) and median OS (2.4 months) after ≥2 salvage therapies remain low¹
- Outcomes in infants/children after relapse remain poor

No approved targeted therapies for *KMT2Ar* disease

OS in Adult Patients With R/R *KMT2Ar* AML After ≥3rd-Line Therapy

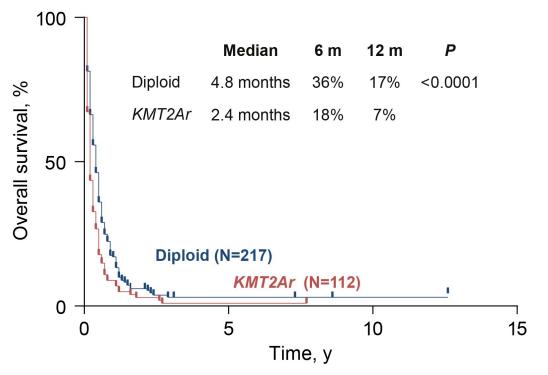
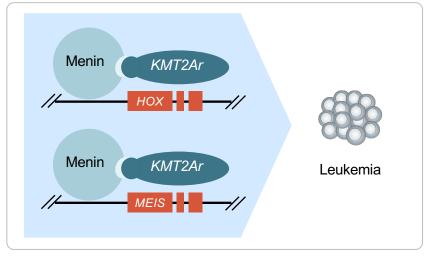
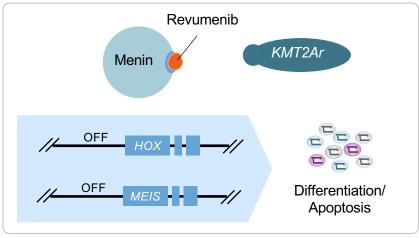


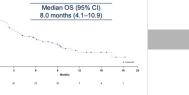
Figure reproduced from Issa GC, Zarka J, Sasaki K, et al. *Blood Cancer J*. 2021;11:162


AML, acute myeloid leukemia; CR, complete remission; HSCT, hematopoietic stem cell transplant; *KMT2* methyltransferase 2A rearrangements; OS, overall survival; R/R, relapsed/refractory. **1.** Issa GC, Zarka J, Sasaki K, et al. *Blood Cancer J.* 2021;11:162.

Revumenib

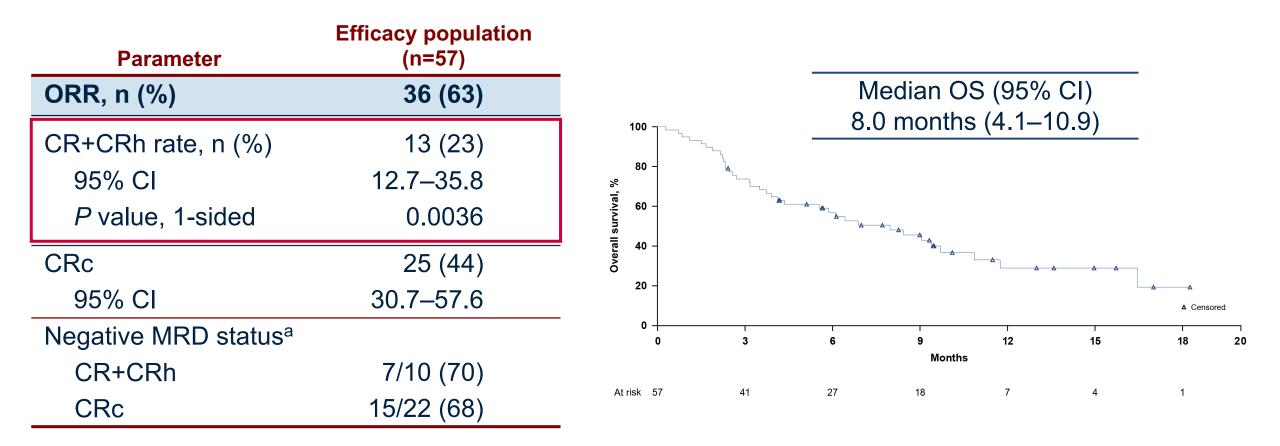

- The menin-KMT2A interaction is a key driver of leukemogenesis¹
- In a phase 1 study of R/R KMT2Ar and NPM1m acute leukemias, revumenib demonstrated
 - Clinically meaningful responses that were consistent across subgroups²
 - High percentage (67%) of responders proceeding to transplant²
 - Manageable safety profile²

KMT2Ar acute leukemia



Gene transcription **ON**

Menin inhibition with revumenib


Gene transcription OFF

Aldoss et al. ASH 2023

HOX, homeobox; KMT2A, histone-lysine N-methyltransferase 2A; *KMT2Ar*, KMT2A rearrangements; *ME* reactions in the provided in the pr

Response and Overall Survival Promising

Data cutoff: July 24, 2023. aMRD done locally; not all patients had MRD status reported. bIncludes patients without postbaseline disease assessment.

Aldoss et al. ASH 2023

CR, complete remission; CRc, composite CR (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recover; Di CR with Medicine 25 incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; MLFS, morphological leukers ire schuld Medicine 25 minimal residual disease; ORR, overall response rate (CRc+MLFS+PR); PD, progress disease; PR, partial remission.

Duration of Treatment

 \star

Ο

>

+

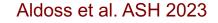
Δ

☆

Ο

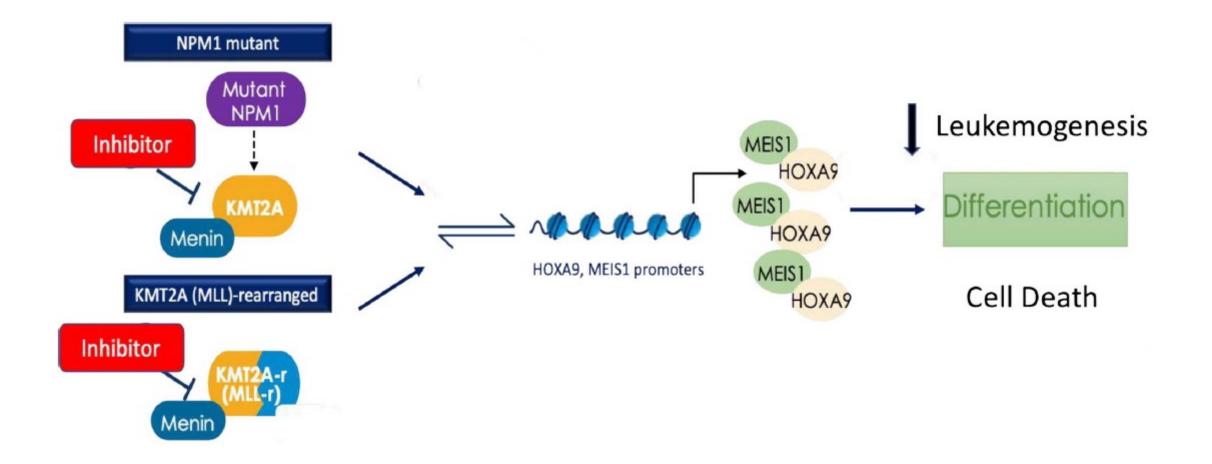
U

Aldoss et al. ASH 2023

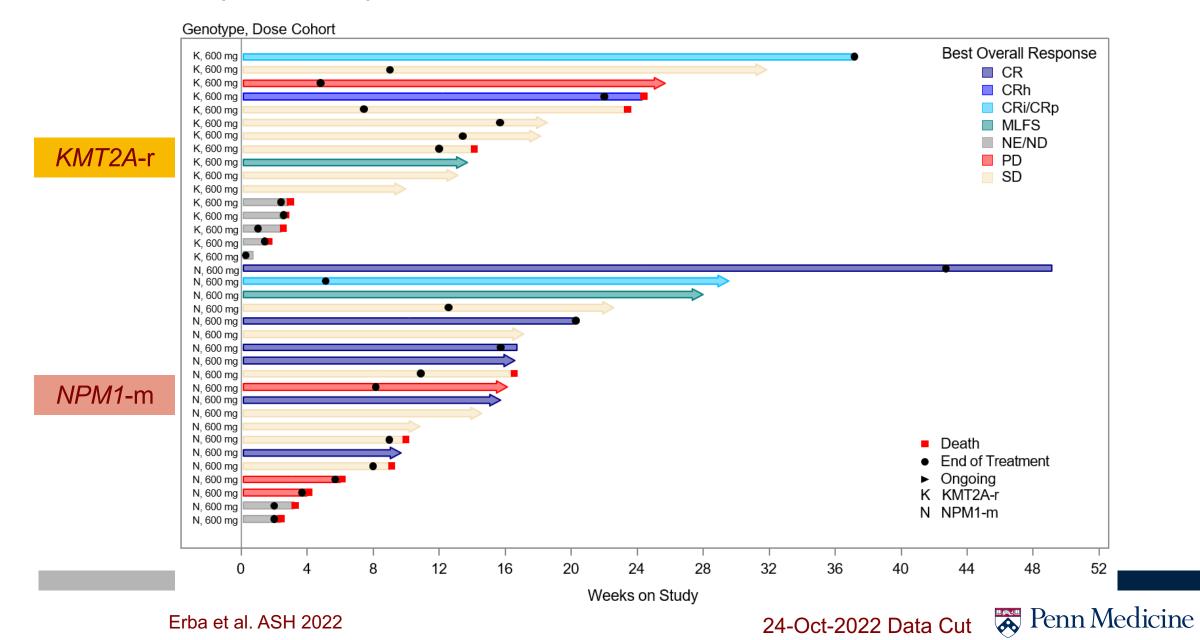

CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematolog 26 PR, partial remission.

0

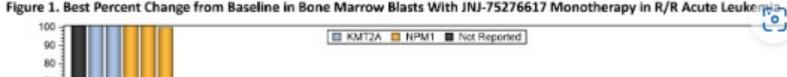
Duration of Response

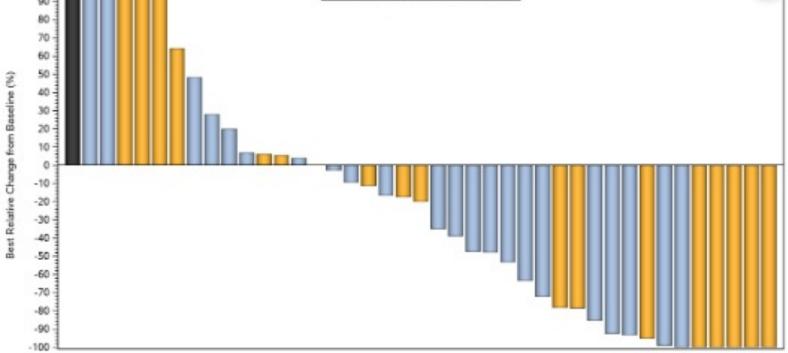

Parameter	Patients achieving CR+CRh (n=13)	
Median duration of CR+CRh, months (95% CI)	6.4 (3.4–NR)	
Proceeded to HSCT, n (%)	14/36 (39)	
Proceeded to HSCT in CR or CRh	6/14 (43)	
Proceeded to HSCT in MLFS or CRp	8/14 (57)	
Restarted revumenib post HSCT, n (%)	7/14 (50)*	
Data cutoff: July 24, 2023	27	

*3 additional patients remained eligible to initiate revumenib after HSCT at the time of data cutoff.


CR, complete remission; CRh, CR with partial hematologic recovery; CRp, CR with incomplete platelet remeter y; Penn Medicine 27 HSCT, hematopoietic stem cell transplant; MLFS, morphological leukemia-free state; NR, not reached.

Menin Inhibitors also used in NPM1 mutated AML

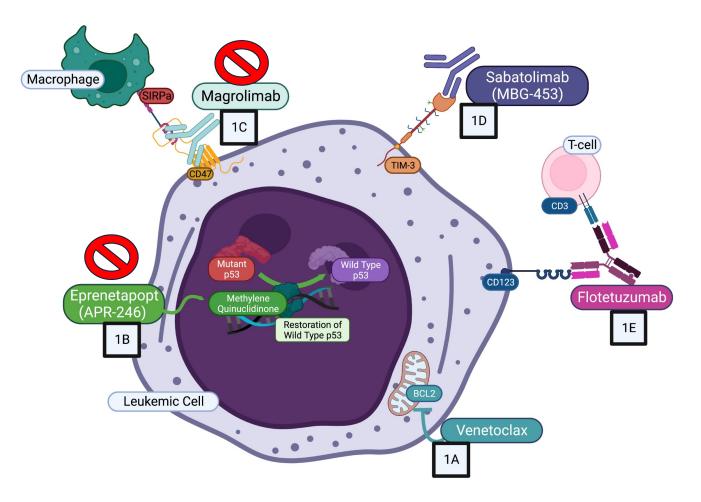



Ziftomenib (KO-539) in Patients with R/R AML

29

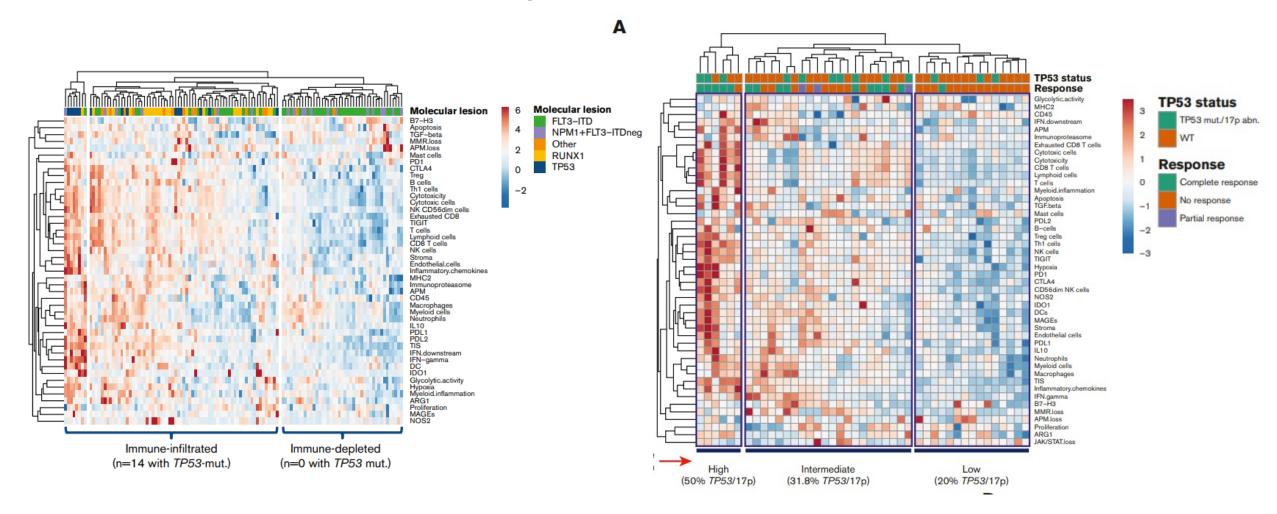
JNJ-75276617 in Adult Patients with Relapsed/Refractory Acute Leukemia Harboring *KMT2A* or *NPM1* Alterations

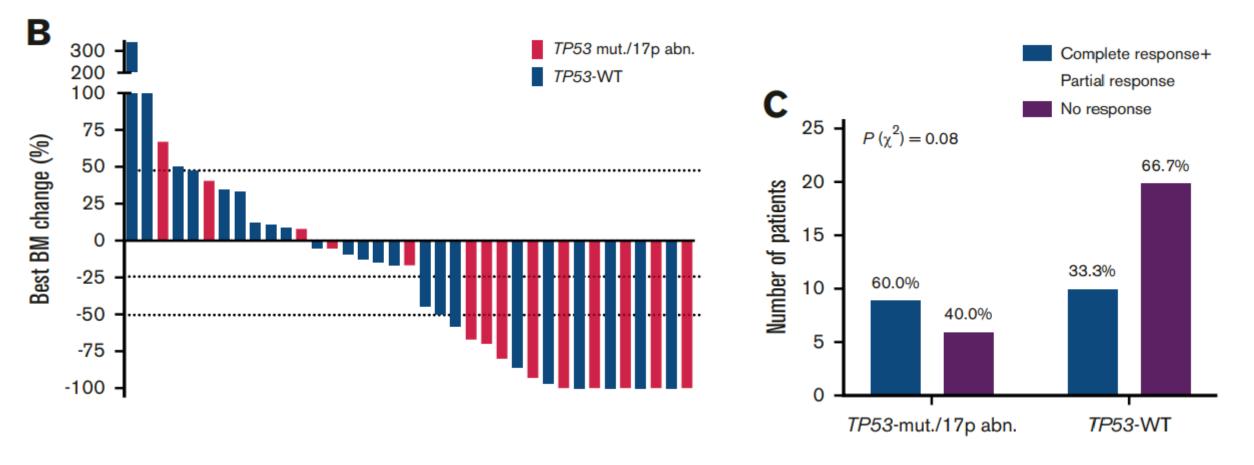
Note: Bars are only presented for participants where a measurable change from baseline is found in the data (n=41; 23 KM72A-altered, 17 MPW1-altered, 1 Not Reported). Note: Each bar represents a unique study participant.


Note: One participant did not have NPM1 or RMT2A mutation reported as of data-cut.

Note: Five participants had best relative change from baseline of >100%.

Jabbour et al. ASH 2023


TP53 Remains the Most Challenging to Treat


Marks, Lai et al. unpublished

TP53 Mutations Correlate with an Immune-infiltrated Tumor Microenvironment and Response to Flotetuzumab

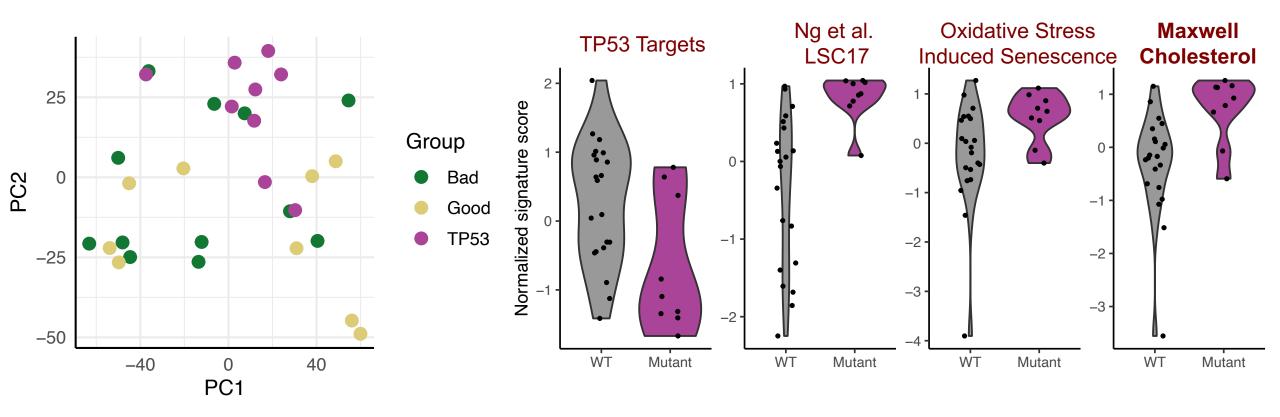
Response to Flotetuzumab in Patients with *TP53* Mutations and/or 17p deletion

Penn Medicine 33

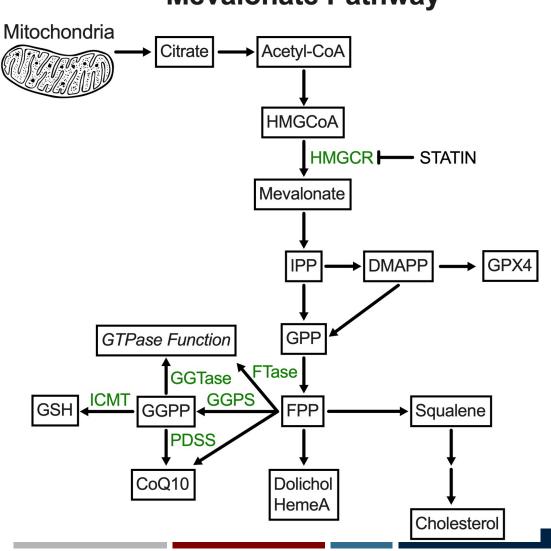
Vadakekolathu J, Lai C et al. Blood Adv, 2020

Magrolimab (Anti CD-47) + Azacitidine Initially Promising

Outcome	All (N = 95^{a})	<i>TP53</i> -wt MDS (N = 61)	<i>TP53</i> -mut MDS (N = 25)
OR rate, % ^b	74.7	78.7	68.0
CR, % (95% CI)	32.6 (23.4 to 43.0)	31.1 (19.9 to 44.3)	40.0 (21.1 to 61.3)
mCR, %	31.6	37.7	20.0
PR, %	0	0	0
SD with HI, %	10.5	9.8	8.0
Duration of CR, months, median (95% CI)	11.1 (7.6 to 13.4)	12.9 (8.0 to NR)	7.6 (3.1 to 13.4)
Time to CR, months, median (range)	3.7 (1.7-7.2)	4.6 (1.7-7.2)	3.1 (1.9-4.0)
Duration of OR, months, median (95% CI)	9.8 (8.8 to 12.9)	9.8 (8.5 to 18.5)	9.2 (5.0 to 12.2)
Time to OR, months, median (range)	1.9 (0.7-10.9)	1.9 (0.7-5.5)	1.9 (1.8-10.3)
mCR with HI/Any HI, %	16.8/58.9	19.7/60.7	12.0/56.0
Converted to RBC transfusion independence, $\%^{\rm c}$	35.1	26.1	46.2
PFS, months, median (95% CI)	11.6 (9.0 to 14.0)	11.8 (8.8 to 16.6)	11.0 (6.3 to 12.8)
OS, months, median (95% CI)	NR (16.3 to NR)	NR (21.3 to NR)	16.3 (10.8 to NR)


Abbreviations: CR, complete remission; HI, hematologic improvement; mCR, marrow CR; MDS, myelodysplastic syndrome; mut, mutation; NR, not reached; OR, objective response; OS, overall survival; PFS, progression-free survival; PR, partial remission; SD, stable disease; wt, wild-type.

What other pathways can be explored?


Primary TP53 mutant AML RNA sequencing

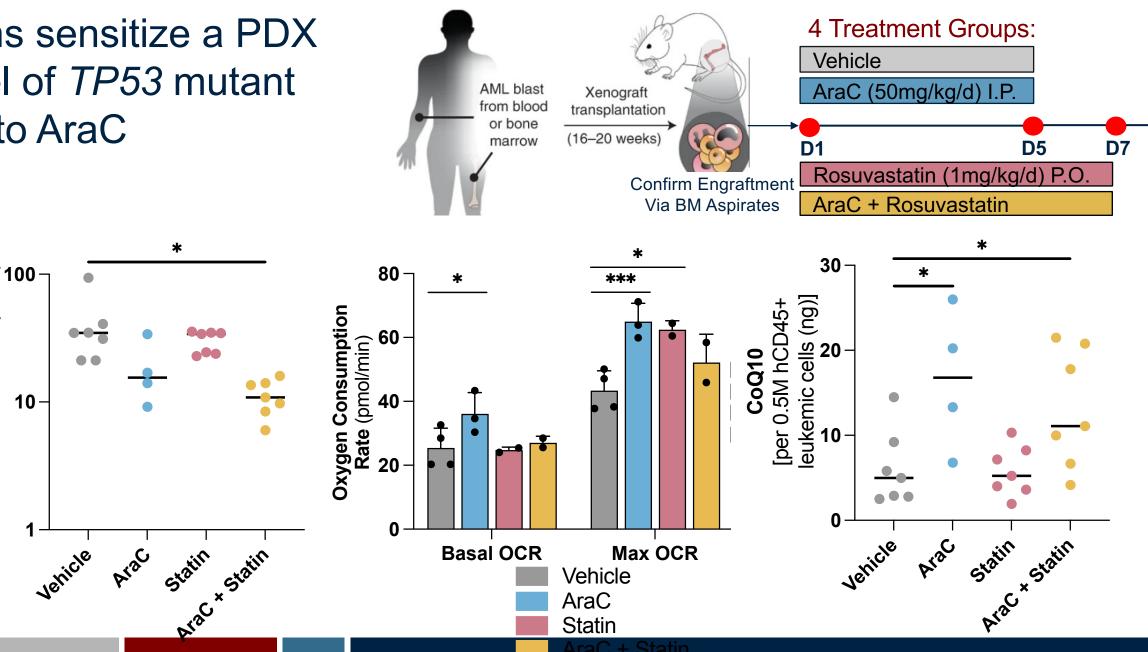
- Primary *TP53* mutant AML has upregulation of cholesterol biosynthesis genes.
- Validated in a Beat AML cohort (Tyner et al. Nature 2018) of newly diagnosed TP53 mutant vs wildtype AML patients.

Mevalonate pathway: a specific target in TP53 mutant AML

Mevalonate Pathway

- TP53 mutations in solid tumor models lead to upregulation AND dependency or the mevalonate pathway
 - Freed-Paster et al. Cell 2023, Moon et al. Cell 2019, Oni et al. JEM 2020, Kaymak et al. Cancer Research 2020
- Multiple byproducts are required for mitochondrial metabolism, which plays a crucial role in AML chemoresistance.
 - Farge et al. Cancer Discovery 2017, Jones et al. Cancer Cell 2018, Liyanage et al. Blood 2017

We hypothesized that the mevalonate pathway controls mitochondrial-mediated chemoresistance in *TP53* mutant AML.

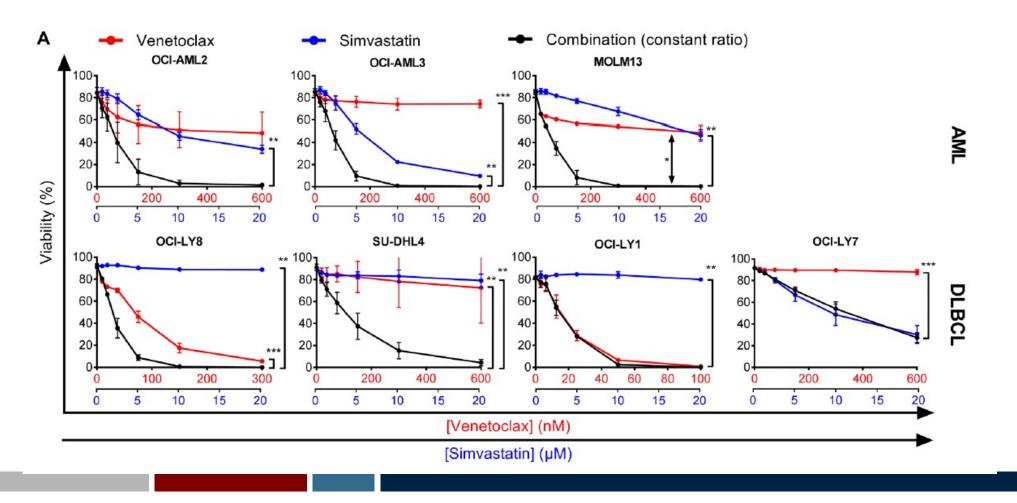

Statins sensitize a PDX Model of TP53 mutant AML to AraC

cells

(Millions of hCD45+CD33+

Leukemic Burden

in bone marrow and spleen)


D8

38

🐺 Penn Medicine

UPenn SCXC, Clementina Mesaros; Figure adapted from Bosc et al. Nature Cancer 2021

Statins Selectively Enhance Efficacy of Venetoclax Against Blood Cancers

Up and coming...

- Multi-center Investigator Initiated Study
 - University of California Hospitals
 - University of Pennsylvania
- Newly diagnosed TP53 mutated high risk MDS and AML
- Treatment:
 - Azacitidine + venetoclax + pitavastatin

Conclusions

- AML treatment landscape has improved and has become more complicated
- New FDA approved drugs in the last year are olutasidenib for IDH1 mutated AML and quizartinib for FLT3 mutated AML
- Menin inhibitors are effective in NPM1 mutated and KMT2Ar AML and may have an FDA approval later this year
- ► *TP53* mutated patients have poor outcomes and better therapies are needed

Take home message

Normal bone marrow

Bone marrow with AML

- Know the types of flowers in your garden = What molecular abnormalities are present? What mutations are driving the disease burden?
- Understand the optimal conditions for growth = Modify how we approach standard therapy in older AML
- Use the appropriate weed killer = Tailor treatment to individual genetic profiles and physiologic function to change survival outcomes

Catherine.lai@pennmedicine.upenn.edu

Thank you!

